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University of California, Berkeley 

1. Summary. In the present paper the problem of point estimation is con­

sidered in terms of risk functions, without the customary restriction to unbiased 

estimates. It is shown that, whenever the loss is a convex function of the esti­

mate, it suffices from the risk viewpoint to consider only nonrandomized esti­

mates. For a number of specific problems the minimax estimates are found ex­

plicitly, using the squared error as loss. Certain minimax prediction problems 

are also solved. 

2. Introduction. The principles most commonly applied in the selection of a 

point estimate are the principles of maximum likelihood (R. A. Fisher) and of 
minimum variance unbiased estimation (Markoff).2 Both of these principles are 

intuitively appealing, but neither of them can be justified very well in a sys­

tematic development of statistics. This holds also for some modifications of these 

principles proposed by G. W. Brown [1], as the author himself points out. 

In an important early paper [2], Wald indicated a more systematic approach 

to the problem, which he later developed into his general theory of statistical 

decision problems [3, 4, 5]. Consider a random variable X distributed over a 
SpaCe tf aCCOrding tO a distribution re With 8 E fl . Jt iS desired to estimate SOme 

g(8). If the value x of X is observed one makes an estimate, say j(x), and thereby 

incurs a loss of W[g(8), j(x)] when 8 is the true value of the parameter. We shall 

assume that the loss function is nonnegative. It then follows that the expectation 

of the loss will always exist (although it may be infinite). The risk associated 

with the estimate j is defined to be the expected loss, as given by 

(2.1) R1 (8) = E6 W[g(O),j(x)] = f lV[g(O),.f(:r)] dP: (x). 

~X 

The choice of estimate should then be made according to the risk function. As a 
particular possibility W ald suggests the use of minimax estimates, i.e. estimates 

which minimize sups R1 (8). 

The main purpose of the present paper is to obtain minimax estimates for a 

number of specific problems. Only few such problems have been worked out so 

far, the emphasis in Wald's work having been on the general theory. In [2] Wald 
obtained the minimax estimate of an unknown location parameter. Stein and 

Wald [6] treated the sequential problem of estimating the mean of a normal dis-

1 This work was supported in part by the Office of Naval Research. 
2 Actually, the principle of minimum variance unbiased estimation goes back to Gauss. 

For discussions of the history of these ideas, see E. CzuBER~Tlzeorie der Beobachtungsfehler, 

Leipzig, 1891, and R. L. PLACKETT, "A historical note on the method of least squares", 

Biometrika, Vol. 36 (1950), p. 458. 
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tribution with known variance, and in his forthcoming book Wald considers 

as an example the sequential problem of estimating the mean of a random variable 

distributed uniformly over an interval of length 1. 

It seems worthwhile to consider further special problems both because one 

may obtain estimates that in some cases are preferable to the conventional ones, 

and because these examples throw some light on the general desirability of the 

minimax principle. As we shall see below, it does not seem possible to reach 

any definite conclusions on this latter point, and to obtain a generally valid com­

parison between the minimax estimate and, for example, the unbiased estimate 

with uniformly smallest variance (when such an estimate exists). 

Consider, for example, the problem of estimating the probability of success from 

a number of independent trials each of which may be a success or a failure, when 

the loss-function is the squared error. If the number of trials is one, the minimax 

estimate (as is shown below) is given by f(X) = !X + i, where X is 1 or 0 as 

the trial is a success or failure. As is easily seen, this estimate has smaller risk 

than the usual estimate j*(X) = X whenever 0.07 ;;;i p ;;;i 0.93. On the other 

hand, when the number of trials is large the standard estimate Jt has smaller 

risk than the minimax estimate nearly everywhere. The minimax estimate is only 

slightly better in a small interval centered at P. = !, whose length tends to zero 

as the number of trials tends to infinity, and is worse everywhere else. 

For our purpose it is convenient to formulate the problem of point estimation 

as follows (see in this connection [7]). A random variable X is distributed over a 

space 'OC according to a distribution P belonging to a family ~-We wish to esti­

mate g(P) where g is a function whose domain is~ and whose range is contained 

in some space 'Y (in any example 'Y is usually a Euclidean space, mostly even a 

one dimensional Euclidean space). An estimate is a statistic f(X) taking on 

values in 'Y. We denote by W[g(P), f(x)] the loss which results from making 

the estimate f(x) when P is the true distribution, and we define the risk function 

of the estimate f by 

(2.2) R,(P) = EPW[g(P), f(X)] . 

The problem is to determine f so as to minimize supp.{J R1 (P). 

Our principal tool will be the following theorem, which is essentially contained 

in Wald's work but which is not stated there explicitly. The theorem is a slight 

modification of one used for the theory of testing in [8]. 

THEOREM 2.1. Let {P8 l, 8 E w (where w is a subset of a Euclidean space), be a 

parametric subfamily of~. and let X be a probability measure over w. Suppose that 

f minimizes 

(2.3) i Es W[g(P s), f(X)] if>.. (0) 

and that 

(i) Es W [g(Ps), f(X)] is constant (say c) for all 0 E w, 

(ii) EPW [g(P),f(X)] ~ cfor all Pin~-

Then f is a minimax estimate for estimating g. 
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PROOF. Let r be any other estimate of g. Then 

sup E, W[g(P),j(X)] = 1 Ee W[g(P,),j(X)] 0>.(8) 
Ptff w 

(2.4) ~ £ E, W{g(P,),r(x)J 0>.(8) 

~ sup E~' W[g(P), r(X)]. 
p,\j' 

We note that iff is the unique function minimizing (2.3), then the first in­

equality in (2.4) becomes strict, and hence f is the unique minimax estimate of g. 

Following Wald we shall call the function f that minimizes (2.3) the Bayes 

estimate of g associated with the a priori distribution >... Ai3 a corollary to theorem 

2.1, we note that a Bayes estimate whose risk function is cqnstant, is a minimax 

estimate. 

3. Randomization. In the formulation of the problem of point estimation given 

above, the estimate f(x) is assumed to be completely determined by the observed 

value x of the random variable X . In the present section a broader formulation 

of the problem will be considered, in which the estimate corresponding to x may 

itself be a random variable, say T"' . This extension is a special case of the notion 

of randomized decision function introduced by Wald in· his general decision 

theory. We associate with each x in OC a probability distribution F.,, with the 

convention that when X is observed to have the value x, we estimate g(P) by 

means of a rand<?m variable T"' which is distributed according to F"' . Estimates of 
this latter kind we shall call randomized, and the fixed estimates f(x) 

non randomized. 

The motivation behind the admission of randomized estimates (or more gen­

erally of randomized statistical decision funtions) is that in some problems of 

statistical inference the performance of the decision function is considerably im­

proved by randomization. It is clear however that the randomized functions are 

more complicated, and hence that it is useful to know when their consideration 

is not necessary. Before investigating this question we give the following defini­
tion, which makes precise a sense in which certain estimates may be omitted from 
consideration. (SeeWald [9]). 

DEFINITION. For a given estimation problem a class C of estimates will be 

said to be essentially complete with respect to a class D of estimates, if for every 

estimate gin D there exists an estimate fin C such that R1(P) ~ Ru(P) for all 
P in :f. If· D is the class of all randomized estimates we simply say that C is 

essentially complete for the given problem. 

It is clear that if one adopts the risk function point of view, one loses nothing 
by restricting consideration to an essentially complete class of estimates. In the 

present section we find conditions under which the totality of nonrandomized 

estimates forms an essentially complete class. 
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For this purpose we need the notion of convexity. A setS in a k-dimensiona1 

Euclidean space is said to be convex if, whenever P and Q are in S, then all 

points on the line segment from P to Q are also in S. A real valued function 1/1 

defined over a k-dimensional Euclidean space is said to be convex, if for any 

points (x1 , · · · , xk) and (yl , · · · , yk) of the space, and any number 0 < a < 1 

we have 

aJ/;(x1 · · · x~:) + (1 - a)I/I(Yl · · · Y~:) ~ 
(3.1) ' , ' ' 

t/t(axt + (1 - a)yl , · · · , ax~: + (1 - a)y,). 

We use the following notation for conditional expectation. H U and V are 

two random variables which have a joint distribution, then E(U!v) denotes the 

conditional expectation of U given that V = v; E(U!S) denotes the conditional 

expectation of U given that Vis inS. Let ~(v) = E(Uiv); thenfor~(V) we write 

E(U IV). 

LEMMA 3.1. Let U, V be two random variahles with a joint di8tributioo, such that 

U i8 distnouted in a k-dimensional space and E ( U) i8 finil£. Let if; be a real-valued 

convex junction defined over this space and bounded from below. Then 

E{t/;{E(U I V)}} ~ E{I/I(U)}. 

PRooF. The proof is immediate in the special case that, for almost all v, there 

exists a determination of the conditional probability distribution of U given v 

which is a measure. We then know, from the convexity of 1/1, that for almost all 

values v of V, 1/;{E(U I v) l ~ E{tf;(U) I v}. Replacing v by V and taking expecta­

tions of both sides, we obtain the desired result. 

If we do not assume the existence of conditional measures, the proof is more 

complicated. Since E(U) is finite, there exists a function E(U I v) such that for 

any set S, E(U IS) = E{E(U I V) IS}; see [10], p. 47. Since if; is convex it is 

measurable, and since if; is bounded from below E {1/1( U)} exists. Excluding the 

trivial case E{l/I(U) l = co, we know there exists a function E{t/;(U) I v} such 

that for any setS, E{tf;(U) IS} = E{E{tf;(U) I VIIS}. 

Ifthelemmawen false,weshould haveE{E{t/;(U)j V}} < E{t/;{E(UI V)}}, 

and could find an E > 0 and a set A of positive V measure such that for every 

v e A, E {1/;(U) I v} + 2e < 1/I{E(U I v) }. This implies the existence of a number d 

and a set B of positive V measure such that for every v E B, E{tf;(U) j vl ~ d 

and d + e ~ 1/1 { E ( U I v) }. Since if; is con vex, the domain D of points P for which 

1/;(P) < d + e is convex, and we may find a subset C of B, of positive V measure, 

for which the set of points E(U I v), v E C, lies in a convex domain E disjoint of D. 

It follows that E(U I C) lies in E, and hence that if;{ E( U I C) l ~ d + E. Clearly 

d ~ E{t/t(U) I C}. Thus we have the contradiction E{t/;(U) I C} > 1/;{E(U I C)}. 

DEFINITION. A loss function W will be called convex if for every u e 'Y, W(u, v) 

is a convex function of the estimate v. 

An example of a convex loss function is provided by the Markoff principle of 

estimation. The variance of an unbiased estimate may be considered a.s a risk 
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function if we take the loss function to be the squared error, i.e. the square of 

the difference between the true value g(P) and the estimated value f(x) or T .. ; 

and this loss function is clearly convex. 

THEOREM 3.2. If the loss function W is convex, if 'Y is in a Euclidean space, 

and if we consider only estimates having finite expectation, then the class of non­

randomized estimates is essentially complete. 

PRoOF. Let Tx be any randomized estimate such that E(Tx) exists and is 

finite. Applying lemma 3.1 we see that E(Tx I X), which as a function of X only 

is a nonrandomized estimate, has a risk never greater than that of T x . 

The restriction in theorem 3.2 to estimates having finite expectation may be 

replaced by the requirement that for each u E 'Y there exist a number M, such 

that if I v - u I = Mu then W(u, v) > W(u, u). With this requirement and the 

convexity assumption, it follows that the risk associated with T x is infinite when­

ever E ( T x) is infinite. 

Theorem 3.2 is related to a generalization of a theorem of Blackwell. If Y is a 

sufficient statistic for g(P), and if for almost ally the conditional distribution of 

X given y exists in the sense of measure, we may regard estimation of g(P) based 

on X as randomized estimation of g(P) based on Y; and if the assumptions of 

theorem 3.1 are satisfied, we may apply this theorem to conclude the essential 

completeness of the class of nonrandomized estimates based on Y. In the general 

case we may resort again to lemma 3.1 to prove the following theorem; the proof 

is the same as that of theorem 3.2 if X is replaced by Y throughout. 

THEOREM 3.3. If the loss function W is convex, if 'Y is in a Euclidean space, if 

we consider only estimates having a finite expectation, and if Y is a sufficient statistic 

for :I, then the class of nonrandomized estimates which are functions of Y only is 

essentially complete. 

Blackwell [11] proved that if U is a sufficient statistic for a real-valued param­

eter 8, and if Tis an unbiased estimate for 0, then E(T I U), which is a function of 

U only and also an unbiased estimate for 0, has a variance which never exceeds 

that of T. Observing that the theorems above hold true when we restrict attention 

to unbiased estimates, Blackwell's result may be obtained from theorem 3.3 by 

letting 'Y be one-dimensional, letting W be the squared error, and restricting 

ourselves to unbiased estimates. In a similar manner we can get from theorem 3.3 

an extension of Blackwell's theorem given by Barankin [12], who treated the 

case in which W(O, t) = 18- t I', s > 1. It is clear that these loss functions are 

convex. 

If the convexity assumption is removed, theorems ·3.2 and 3.3 cease to be 

true . For example, if~ has only n points, if 'Y is a finite line segment of length 

greater than 2na, and if the loss is 0 whenever I g(P) - f(x) I :::; a, and 1 otherwise, 

then the minimax risk among nonrandomized estimates is 1. By admitting ran­

domization, however, the maximum risk can be brought below 1 without using X 

at all; if our estimate Tis uniformly distributed over 'Y, then the maximum risk 

will be 1 - a/ (length of cy)_ 

The example just given may seem inappropriate, in that with the specified loss 



20

MINIMAX POINT ESTIMATION 

function the problem would customarily be considered one of interval estimation 

rather than point estimation. This objection does not apply however to the loss 

functions considered in the following theorem. 

THEOREM 3.4. Let~ = {0, 1, · · · , n}, n ~ 1. Let ~be the set of binomial dis-

tribuHons P 'P defined by P 'P(X = x) = (: )p:r(1 - p t-:r, 0 < p < 1, Let 'Y be the 

closed £nterval [0, 1] and g(P ") = p. Let W (p, t) = I p - t 1•, 0 < s < 1. Then no 

minimax estimate can be nonrandomized, and the class of nonrandomized estimates 

is not essentially complete. 

PnooF. For any nonrandomized estimate f, R1(p), being a sum of products of 

continuous functions of p, is itself a continuous function of p. The nonrandomized 

minimax risk is less than 1, as may be shmvn by considering any estimate of the 

following kind: f(O) = 0, f(n) = 1, and 0 < f(x) ~ 1 for all x. Here R1(0) = 
R1(1) = 0, while if 0 < p < l, R1(p) < max., i p - f(x) I' < 1. By continuity 

supos; p:Sl R,(p) < 1. 

It. is easy to see that there exists among the nonrandomized estimates a minimax 

cst.imate, say h. Let the corresponding minimax risk be denoted by M. We know 

that. M = supos;ps;l Rh(p) < 1; it is obvious that M > 0. Observe that h(O) < 
1, since h(O) ~ 1 leads to the contradiction Rh(O) = I h(O) I' > 1. We can write 

L PP(X = x) · I p - h(x) 1• + L Pp(X = x) · I p- h(x)t. 
h(z) - h(O) h(z)JO'h(O) 

ThC' seeond sum has a finite derivative with respect top at p = h(O), while the 

first sum increases with infinite speed asp is moved away from h(O). Therefore 

Rh { h(O)} < M; and by an exactly symmetrical argument, 0 < h(n) and 

Rh {h(n) l < M. Using the continuity of Rh, we can find a positive number w so 

small that Rh(p) < M whenever I p - h(O) I < w or I p- h(n) I < w. 

Consider now the randomized estimate Tx defined by T:r = h(x) if 0 < x < n, 

and hy T., = h(x) + aY otherwise, where Y is a random variable independent of 

X and taking on the values 1 and -1 each with probability !, and where 0 < 
a < w. Observe 

Rrx(P)- Rh(p) = (1- pt[!l I P- h(O) +a I'+ I P- h(O) - a I'} - I P­

h(O) I ·1 + p"[! {I p - h(n) + a I • + I P - h(n) - a I • l - I p - h(n) ! ']. 

By the concavity of the functions involved, the first square bracketted term is 

nt>gative whenever I p - h(O) I > a, and the second is negative whenever 

I p - h(n) I ~ a. We can choose a so small that whenever either I p - h(O) I 
or I p - h(n) I is less than a, Rrx(P) - Rh(p) < w. A continuity argument 

now shows that supos; ps; 1 RTx(P) < lvf. But this proves that no minimax esti­

mate, with randomization permitted, can be nonrandomized. It is also now 

obvious that the class of nonrandomized estimat.es is not essentially complete: 

evNy nonrandomized estimate must have a risk function which somewhere ex­

CC'cJs supo::;: p:S 1 Rrx(p). 
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4. General properties of minimax estimation. Whether a principle such as the 

minimax principle is a desirable one has to be decided mainly on two criteria: 

(i) its general properties, and 

(ii) its performance in many particular instances. 
It has already been remarked that in the second respect the minimax principle 

does not seem entirely satisfactory. With regard to the former, one great ad­

vantage of this principle is that when there is a unique minimax estimate, it is 

admissible. Here an estimate f is said to be admissible (see [3]) if there exists no 

other estimate f* such that R1.(P) < R1(P) for all P in ~with strict inequality 

holding for some P. It is interesting that, as we shall show below, this admissi­
bility property is not shared by either the principle of unbiasedness or the maxi­

mum likelihood principle. 
In this connection we begin by proving another theorem concerning essentially 

complete classes. 
ThEOREM 4.1. Suppose that the space 'Y is a finite interval [a, b) on the real line, 

and that for each u E 'Y, W(u, v) is a non-decreasing function of v when v > u 

and a non-increasing function of v when v < u. Then the class of estimates whose 

range is contained in 'Y is essentially romplete with rupect to the class of all real 

valued estimates. 

PROOF. If T is any real-valued estimate, define T* by 

{
T if T e 'Y, 

(4.1) T* = a if T < a, 
b if t > b. 

It is clear that Rr-(P) < Rr{P) for every P E ~ 

Halmos [7] has provided an example in which the minimum variance unbiased 
estimate takes on, with positive probability, values outside the range of the 

parameter. It can be shown from the proof of theorem 4.1 that in this case any 
unbiased estimate is inadmissible, provided the loss function is of the kind 

described in theorem 4.1. 
That the maximum likelihood principle may also lead to inadmissible esti­

mates is easy to show, since this is the case in many familiar situations. The 

following example may be of interest in that here the maximum likelihood 

estimate is uniformly worst among all estimates which one would consider 

using. 
Example. Let X be a random variable with only 0 and 1 as possible values, and 

let P(X = 1) = p. Assume it to be known that! < p ~ J. Then the maximum 

likelihood estimate for p is easily seen to be }(X + 1), and, if the loss function 

is the squared error, the associated risk function is l(p - !)2 + ~-This risk 
function is, for every possible value of p, greater than that of any estimate f(x) 

satisfying: ! < f(O) S f(1) = 1 - f(O) ~ j. 

The selection of loss function in any problem should in theory be governed by 
metastatistical considerations, but in fact the circumstances of statistical prob­

lems do not usually offer compelling reasons for using one loss function rather 
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than another. Considerations of mathematical facility are often determining. 

Thus, various classical unbiased estimates become minimax estimates when the 

loss function is judiciously chosen. For, if we take as loss function the ratio of 

squared error to the variance of the unbiased estimate, the risk becomes constant, 

and we can easily obtain the classical estimates as minimax estimates in the 

familiar binomial, Poisson, and rectangular probleinB, and in some of the non­

parametric problems considered in section 6. 

However, this approach seeins to be somewhat artificial, and hereafter we 

shall restrict ourselves to a single loss function, namely the squared error. There 

are two reasons for this choice. With squared error for the loss, the mathematical 

problems are rather simple. And as was remarked above, squared error (if one 

restricts oneself to unbiased estimates) is the traditional loss function. Fortun­

ately, the squared error loss function is convex, and hence theorem 3.2 permits 

us to avoid considering randomized estimates. 

When the loss function is squared error, we have the following obvious linearity 

property, which for later reference we state as 

THEOREM 4.2. If f(X) is the minimax estimate for g(P), then af(X) + b is the 

minimax estimate for a · g(P) + b. 

However, as we shall show by an example in the next section, it need not be 

true that if X1 , • · · , X,. are independent andfi(X,) is the minimax estimate for 

g,(P,), i = 1, · · · , n, then L::-1 aJ,(X,) is the minimax estimate for 

L:;-1 a,g,(P,). This is a definite disadvantage of the minimax principle as 

compared with the Markoff principle which does possess the linearity property 

mentioned. 

We conclude this section with an explicit solution of the Bayes problem in the 

squared error case. If the distribution P is itself a random variable distributed 

over :J according to some distribution>., we may compare estimates f by means 

of their expected loss Q(J) = E[g(P) - f{X)}2 • Since Q(f) = E{E[g(P) - f(X)} 2 l 
X I, it is well known that Q(J) is minimized by using the estimate 

f(x) = E[g(P) l x], provided the conditional measures exist. In fact, this result 

holds even without this assumption. 

THEOREM 4.3. E[g(P) - f(X)]2 is minimized by f(x) = E[g(P) l x] . 

PROOF. E[g(P) - f(X) ]2 - E { g(P) - Efg(P) l X]} 2 = E { E[g(P) l X] - f(X) 12 

+ 2E[E {g(P) - E[g(P) l X]} { E[g(P) l X] - f(X) I l X] > 0. 

In applications it is convenient to write E[g(P) l X] more explicitly. Suppose 

that with respect to some measure J' over <OC, each distribution P E :lhasa general­

ized probability density PP, so that for any A, the probability that X E A com­

puted for P, is given by 
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Minimizing a quadratic expression shows that 

(4.2) 

is a Bayes solution. 

h g(P)pp(x) dA(P) 

h pp(x) dA(P) 

5. Binomial and hypergeometric distributions. In the present section we shall 

consider three discrete minimax problems. 

PROBLEM 1. (Binomial.) Let X be a binomial random variable witd parameter 

p, 0 s p s 1, so that P(X = k) = (~)pk(1 - pt-k. We shall show that the 

minimax estimate for p is 

(5.1) X Vn + 1 

n (vn + 1) 2(vn + 1)" 

Consider any linear estimate aX+ [3. The risk Ep(aX + {3- p)2 is a quadratic 
1 

function of p which is constantly equal to {32 when a = Vn ( 1 + vn) and 

1 
{3 = 2(1 + vn) . Hence (5.1) is a constant risk estimate of p. Since it is easily 

seen that 

11 
k n-k a-1 b-1 d 

p·pq ·p q p 
o a+ k 
~~--------------- = 11 a+ b + n' 

k n-k a-l b-l d pq ·p ,., p 
0 

(q = 1 - p), 

it follows that (5.1) is the Bayes estimate when pis distributed with probability 
density C(pq)<..;nl2>-1, and hence by Theore~ 2.1 we conclude that (5.1) is the 

minimax estimate of p. 

Mter obtaining this result we were informed that it had been obtained earlier 

by H . Rubin, to whom, therefore, the priority belongs. 

It is interesting to compare the risk of the above estimate with that of the 

standard unbiased estimate X/n . We have 

E(:- py = r;, 
E[1 + 1-vn (:n + ~)- p J = 4(1 +1

vn) 2 • 

As is easily seen, :q s 4(1 + 1Vn)2 if and only if 

I 1 I > V1 + 2v'n 
P - 2 - 2(1 + y'n) · 
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Thus the standard estimate is better than the minimax estimate outside an 

interval around p = ! whose length decreases with increasing n, tending to 0 as 

n tends to infinity. However, for very small values of n the minimax estimate has 

the smaller risk over nearly the whole range. 

PROBLEM 2. (Difference of binomials.) Let X and Y be independent binomial 

random variables, where P(X = k) = (~)p~ (1- Pif_,. and P(Y = l) = (7) 
p;(1 - P2f-1• By use of theorem 2.1 we shall show that the minimax estimate for 

PI - Pz is v~ (~- !::). For the set w of theorem 2.1 we take PI = p, 
1 + 2n n n 

p2 = 1 - p, 0 < p < 1, and we let Z = X + n - Y. Applying the result of 

Problem 1 to Z, we find the minimax estimate of p to be az,. · Z + {3211 , and by 

Theorem 4.2 the minimax estimate based on Z for 'Pl. - p2 = 2p - 1, is 

V~ (X - y) , and the risk of this estimate is constant over w. 
I+ 2n n n 

To prove that this is also the minimax estimate of 'Pl. - p2 for the original 

problem, we consider the risk as a function of PI and P2 . It is easy to show that 

(1 + yi2n)2 R(pi, P2) = 2·[pl(1- PI)+ Pz(l- p2)] + (pt- p2)2
• Finallyit 

can be shown that p1(i - P1) + p2(1 - p2) is maximized, subject to the condition 

that P1 - P2 be constant, when P1 + P2 = 1. 

PROBLEM 3. (Hypergeometric.) We finally consider the problem of estimating 

the number of defectives in a lot from a sample drawn from this lot at random. 

We denote by Nand n the number of elements in lot and sample respectively, 

and by D and X the corresponding number of defectives. For later reference we 

note 

P(X = k) 

E(X) 
D 

=n­
N' 

2 nD(N - n)(N - D) 
CJ:r; = 

N 2(N- 1) 

As in Problem 1 we easily find a linear function of X whose risk is constant. 

In fact 

when 

a= 
_an) 

N. 
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To prove that aX + {3 is the minimax estimate of D we shall show that it iB the 

Bayes estimate corresponding to 

(5.2) P(D = d) = ll (~) pdqN-d . C pa-tq'-1 dp, 

where a, b > 0, and 

r(a +b) 
c = r(a) r(b) · 

In this connection it is useful to notice that since (5.2) is a distribution 

(5.3) £ (N) r(a + d) r(N + b - d) . r(a + b) = 1 
a-o d r(N + a + b) r(a) r(b) · 

Using theorem 4.3, we find the Bayes estimate associated with (5.2) to be 

f(k) = Nr:m (~ ~ kd) (~) r(a +d) r(N + b- d). 

~ (~) (: ~ kd) (~) r(a + d) r(N + b - d) 

Replacing d by (d - a) + a, and using the relation 

( d) (N - d) (N) (N - n) . . k n _ k d = d _ k . (terms not mvolvmg d), 

we find: 

~ (N -:- n) r( d + a + l) r(N + b - d) 
f(k) = i-o t - a. 

~ (N ~ n) r(d + a) r(N + b - d) 

Now apply (5.3) to numerator and denominator separately; then 

f(k) = k a + b + N + a(N - n) . 
a+b+n a+b+n 

P . a + b + N a(N - n) R b . il 
uttmg a + b + n = a, a + b + n = 1-1 one o tams eas y 

{3 N-an-/3 
a=-- b=-----

a-1' a-1 

Substituting the values of a and f3 one finds that f3 > 0, N > an + f3 and that 

a > 1 provided N > n + 1. In the special case N = n the result is immediate, 

while if N = n + 1, the ~!'lult is obtained by giving to D a binomial distribution 

withp = !. 
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6. Non parametric problems. We shall in this section consider estimation 

problems in which the functional form of the distribution of X is not assumed 

known. Restrictions will be imposed on the variables only to insure the existence· 

of estimates with bounded risk. The problem will be treated under two different 

such restrictions: (i) that the variables are bounded with known bounds, (ii) that 

the variables have bounded variances. 

In the first of these cases we can assume without loss of generality that the 

variables are distributed over the interval [0, 1], and then obtain 

THEOREM 6.1. Let x1 ' ... 'x .. be independenay distributed over [0, 1] according 

to a joint distribution belonging to a family ~- Suppose that ~contains the subfamily 

~o according to which X1 , · · · , Xn are t'ndependenay and identically distrt"buted 

with P(X, = 1) = p, P(X, = 0) = 1 - p, 0 < p < 1. Let E(X,) = p., , 

1 ~ -rh the·· · . .r • - £...; p.; = p.. en mtntmax esttmate o; jl ts 
n •-1 

(6.1) 1 +1vn (vn x + !). 

PROOF. Since (6.1) is the minimax estimate of jl = p when the distribution of 

the X's is known to belong to ~ , we only need to show that its risk is largest for 

the distributions of ~o . But 

A2 " 
E(AX + B- jl) 2 = A 2 u~ + [B + (A - 1)jl]2 = 2 L u!, + [B +(A- l)jl]1 

n •-1 
and 

:Eu!, = :EE(X~) - :Ep.: ~ :Ep.; - Lp.~ = njl - I:.(p., - jl) 2 - njl2 ~ njl(1 - jl) 

where equality holds for the distributions in :fo . 
CoROLLARY 6.2. Let X 1 , · · • , X,. be a sample from an unknown univariate 

distribution over [0, 1]. Then the minimax estimate of E(X,) = p. is given by (6.1). 

CoROLLARY 6.3. Let X 1 , • • • , X,. be a sample from an unknown absolutely 

continuous univariate distribution over [0, 1]. Then the minimax estima.te of E(X.,) = 
p. is given by (6.1). 

Corollary 6.3 follows from the fact that any risk function that can be obtained 

for binomial distribution can be approximated by means of absolutely continuous 

distributions. 

Theorem 6.1 can be extended to include variables th~t are negatively cor­

related. Namely if Xt , · · · , Xn are distributed over [0, 1] according to a joint 

distribution belonging to some family~ if for each distribution of ~the correla­

tion coefficient Pii of X; , X1 is ~ 0 for all£, j, and if :J contains the family :To of 

theorem 6.1, then the conclusion of this theorem remains valid. This result can 

be used for example in the following situation. Suppose a sample of n is tal\:en 

from a lot of unknown size, and suppose it is desired to estimate the proportion 

p of defectives in the lot. If k is the number of defectives in the sample, it follows 

from the above remarks that the minimax estimate of p is 1 + 1 Vn ( ..5n + ~) . 
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It should be point~d out that this result holds only if no upper bound is assumed 

known for the lot size. If it is known that the number of items in the lot is <No , 

then the minimax estimate is that found in section 5 for the case of a hypergeo­

metric distribution with N = N 0 • 

Next let us consider estimating the difference of the average means in two 

groups of variables. 

THEOREM 6.4. Let xl ' 0 0 0 'X,. ; yl ' 0 0 0 
' Y,. be independently distributed over 

the interval [0, 1] according to a joint distribution belonging to a family :f. Suppose 

that ~contains the subfamily :J1 , according to which X 1 , • · • , X,. ; Y1 , · · · , 

Y,. are two samples with P(X.- = 1) = P1 , P(X.- = 0) = 1 - P1 ; P(Y.- = 1) = 

P2 'P(Y.- = 0) = 1 - P2 '0 < Pl 'P2 :-:::; 1. If E(X,) = J.l.i 'E(Y.-) = Vi' ~ J.l.i = 
n 

1 
ji., - v, = ii, then the minimax estimate of ji. - ii is 

n 

(6.2) 

PROOF. Again, since (6.2) is the minimax estimate in the binomial case (Prob­

lem 2 of section 5), we need only verify that its risk is a maximum in ~ . But 

E[A(X - Y) - (ji. - v)]2 

= E[A(X - Ji.) - A(Y - v) + (A - 1)(Ji. - v)J2 

= A 2(ui + u~) + (A - 1)2 (ji. - 11)2, 

of which we already have shown that it is maximized in the binomial case. 

Up to now we assumed the variables to be bounded. Let us now suppose in­

stead that the variances are bounded. With this assumption we can give an 

analogue of the classical Markoff theorem on least squares. 

THEOREM 6.5. Suppose that xl ' 0 0 0 'X,. are independently distributed according 

to a joint distribution belonging to some family :I, which contains the subfamily 

fo where the X's are normal with variance M 2
• Suppose that for all distributions in 

~ E(X1) = L.i-1 a.-i Oi and ui-, ~ M 2• We assume the matrix (a.-i) to be known 

and of rank s ~ n. Then the estimate [f1(X), · · · , f.(X)] of (01 , • • • , o.) which 

minimizes sup E L [.f,(X) - ot, is the Markoff estimate. 

' PROOF. Consider first the subfamily ~o . Then there exists an orthogonal trans­

formation to Y1 , • • • , Y,. such that E(Y.-) = kJJ.- for i = 1, · · · , s, where 

ki > 0; E(Yi) = 0 fori = s + 1, · · · , n; and u~, ~ M 2 fori = 1, · .. , n. 

Then (Y1 , • • • , Y,) is a sufficient statistic for (01 , • • • , o.), and it is easily shown, 

using the methods of [6], that (~ 1 
, • · · , ~:) is the minimax estimate for 

(01, · · · , 0,). But this is the Markoff estimate. In order to complete the proof we 

must show that the risk of this estimate takes on in~ its supremum over~- But 

h. . . d' · f E "'' [f·(X) - ·1 2 - E "'~ (y' - ·)2 < M 2 "'~ _! t IS 1s 1mme Jate, or L.,t-1 , (), - L.,.-1 k; 0, = L.,•-1 k:. 
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In a similar manner it is easily shown that the least squares estimate for a 

linear function of one or more of the 8's, is the minimax estimate. 

Theorem 6.5 gives a justification of the least squares estimate different from 

that of the Markoff theorem. In the Markoff theorem, it is shown that the least 

squares estimate has uniformly smallest risk among all linear unbiased estimates; 

here it is shown that the least squares estimate minimizes the maximum risk 

among all estimates. (The assumptions concerning variances also differ.) 

7. Prediction problems. Frequently one is interested in estimating the value 

of a random variable rather than that of a parameter. A customary method for 

this is to estimate the expectation of the random variable (a parameter) and then 

to "identify" the variable and its expectation; i.e., to use the estimate of the 

expectation as a prediction for the variable. As we shall see below one is led to 

this procedure if one adopts the point of view of unbiased estimation, so that 

from this point of view prediction poses no new problem. This however is no 

longer true when one employs the minimax principle. 

Consider a pair X, Y of random variables having a joint distribution P 

belonging to a family ~of distributions. It is desired to use the observed X to 

predict, say, g(Y) . We are interested in minimax predictions; i.e., functions 

f(X) which minimize supp,\l EPW[g(Y), f(X)]. To obtain minimax predictions 

we need the following analogue of Theorem 2.1. 

THEOREM 7.1. Let {Psi. 8 f w be a parametric subfamily of~. and let A. be a 

probability measure over w. Suppose that f is such that J Es W[g(Y), f(X)] dA.(8) zs 

minimum, and that 

(i) EsW[g(Y), f(X)] is constant, say = c, for all 8 f w, 

(ii) EPW[g(Y),f(X)] ;£ cfor all P f ~ . 

Then f is a minimax prediction for g(Y) . 

The proof is the exact analogue of that of theorem 2.1. 

CoROLLARY 7.2. A constant risk Bayes prediction is a minimax prediction. 

Suppose now that X and Y are independent and that W[g(y), f(x)] 

[g(y) - f(x)f Consider the problem first from the point of view of unbiasedness. 

A prediction could reasonably be called unbiased if Epf(X) = Epg(Y). Subject to 

unbiasedness, the risk is given by EP[g(Y) - f(X)]2 = u~f(X) + u~ g(Y). 

But u~g(Y) is a known function of P, and hence the problem of minimizing 

(for a particular P) the expected squared error reduces to that of finding an 

unbiased estimate of Epg(Y) with minimum variance at P. In a similar way one 

sees, without any restriction to unbiased predictions, that the Bayes prediction 

for g(Y) is the same as the Bayes estimate for Epg(Y), and hence that formula 

(4.2), with g(P) replaced by Epg(Y), may be used if the assumpti.ons there made 

are valid. 

One might expect that as in the unbiased theory the prediction will coincide 

with the estimate. This however is not the case since the A.'s that give constant 

risk in the two cases will usually be distinct. In fact the two problems are rather 
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different in that the "least· favorable" A for the prediction problem must not 

only take into account the difficulty of finding the correct value of() for various 

a priori distributions but also the difficulty of predicting g(Y) when ()is known. 

As a first example consider the prediction analogue of problem 1 of section 5. 

Let X, Y be independent binomial variables such that P(X = k) = 

(~) pk(1- p)m-k and P (Y = l) = (~) p1(1 - p)m-1• We shall obtain the minimax 

prediction of Y in a manner quite analogous to the one in which we determined 

the minimax estimate of p. Actually, the present problem is a generalization of 

the earlier one, to which it can be reduced by letting n ~ oo . First it is easily seen 

that 

( X y)2 

E a;n+J3-n 

is a quadratic function of p, which when m > 1 is constant for 

a = m : 1 [ 1 - v' ~ + * - ~n], 
1 - a 

J3 = -2-. 

But we have already seen that a -! + J3 is the Bayes solution corresponding to 
m 

Cp0
-

1 ql>-1 where a = m b , J3 = +a + b . Clearly J3 = 1 -2 a when 
m+a+ m a 

a = b, and a > 0 provided 0 < a < 1, which is easily verified when m, n > 1. 

We note that as n ~ oo, the values of a, J3 tend to those of the minimax estimate 

of P. 

( X Y) 2 n - 1 1 - a 
When m = I E a - + J3 - - is constant for a = -- J3 = --

' m n 2n' 2' 

and again a X+ J3 is the Bayes estimate of a beta distribution when n > 1, and 
m 

hence minimax. 

Finally in the case n = 1, the situation degenerates. Since E(! - Y) 2 = l, the 

prediction /(X) = ! has constant risk. In addition it is the Bayes prediction 

corresponding to the distribution which assigns probability I to p = !. Hence 

in this case, regardless of the value of X one would predict for Y the. value !. 
It is interesting that the above prediction problem can be interpreted also as 

an estimation problem in the following ,manner. Suppose a lot of size N = m + n 

is such that the number of defectives follow a binomial distribution; this is the 

case when the items making up the lot are produced by a manufacturing process 

that is in statistical control. It is desired to estimate from a sample of size m 

taken from this lot, the proportion of defectives in the remainder. That this is 

equivalent to the prediction problem treated above follows from a. remark of 

Mood {13] that in such a lot the number of defectives in the sample and in the 

remainder are independently distributed according binomial distributions with 

common p. 
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We can again use the binomial results to obtain the solutions of certain non­

parametric problems. For example, let X 1 , • • • , Xm be independently aP.d 

identically distributed on [0, 1] and let Y1 , • • · , Yn be another sample from the 

same distribution. Then the minimax prediction for Y is given by aX+ {J with 

a= ~ [1 - • /!.. +.!.- _!_ J, {J = 1 
2 a. Thi~ follows from the fact 

m- 1 'V m n mn 

that 

E(aX + fJ - Y)2 = E[a(X - rs) - (Y - p.) + (fJ + (a - l)p.)]2 

= a2 (~ + ~) cr2 + [p + (a - l)p.]2 

~ a 2 (~ + ~) p.(1 - p.) + [p +(a - i)p.]2
• 

An analogous modification clearly is possible for theorem 6.4. 

For the situation considered in 6.5, the prediction problem gives the same 

result as the estimation problem. For consider first two samples X 1 , • • • , 

Xm ; Y1 , • • • , Y, from a normal distribution with known variance cr2• Here 
2 

E,[j(Xl, · · · , Xn) - :Yt = E,[j(XI, · · · , Xm) - 8]2 + ~, 

and hence the risk differs from that of the estimation problem only by a con­

stant. Thus X is the minimax prediction of Y, and it is then seen immediately 

that it is also the minimax prediction for Y when of the underlying common 

distribution of the X's and Y's it is assumed only that the variance is bounded. 
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