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Upper and lower bounds for the norm of solutions of systems of first 
order differential equations as well as theorems on global existence 
and boundedness and other useful results have recently been obtained 
by comparing solutions of the given system with those of a related 
(single) first order differential equation. This technique, which is 
essentially due to Conti [5] and Wintner [9], has been extended in 
scope by Brauer [2; 3] and Antosiewicz [ l ] to obtain many of the 
results for systems of differential equations referred to above. 

In this paper, which will appear in complete form elsewhere, we 
present a similar technique and using it obtain results for systems of 
integral equations of the form 

(1) x(t) = h(t) + f q(t- r)f(r, x(r))dr (t à 0), 
J o 

where h, ƒ are given vectors with n components, g is a given n by n 
matrix, defined on 0 ^ < / 0 , \x\ < <*>, for some / 0 > 0 (/o= + °° not 
excluded). The norm of any vector x with n components is defined as 
\x\ = X X i Ixi\ a n d the norm of the matrix q as | q\ — X)*./ | qa\. In 
order to keep the statements of theorems as simple as possible we re
strict ourselves to (1), which is itself sufficiently general to include 
many applications. I t is clear that our results can be modified to in
clude the more general system 

x(t) = hit) + f F(f, r, x{r))dr (t ^ 0), 
J o 

where F is a given vector. We note that some of our assumptions, 
e.g., in (2) below the continuity of ƒ with respect to t, can be relaxed 
with only minor changes in the proofs. 

Essentially the main results are the comparison theorems (Theo
rems 2.1, 2.2) in §2. In order to prove these it is necessary to develop 
for integral equations certain results on local existence without a 
uniqueness assumption, continuation of solutions, and existence of 
maximum and minimum solutions for (1) with « = 1. These are given 
in §1 and are, of course, generalizations of well known theorems for 
ordinary differential equations. In §3 the results and techniques of 
§2 are applied to deduce a general uniqueness result (Theorem 3.1), 

323 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



324 J. A. NOHEL [July 

Theorem 3.2 which gives general sufficient conditions for the con
vergence to a solution of the usual (Picard) successive approxima
tions, and more specific results on global existence and boundedness 
of solutions of (1) using the comparison theorem. I t should be pointed 
out that our results of §§2 and 3 require that the function w(t, r)} 

Theorem 2.1 below, satisfies a monotone condition with respect to r. 
In the corresponding results in ordinary differential equations, except 
for the analogue of Theorem 3.2, this requirement is not necessary. 
I t appears extremely unlikely that this condition can be dropped in 
the case of integral equations. Except for this restriction our results 
contain those mentioned above for ordinary differential equations as 
very special cases. 

1. I t will be assumed throughout that 

(2) h, f are continuous in t and (t, x) respectively for 0^t<to and 

0^t<t0, \x\ <co , 

(3) for any c, 0<c<* 0 , | g | G L [ 0 , c]. 

LEMMA 1.1 (LOCAL EXISTENCE). Let (2, 3) be satisfied and let 
0<a<to. Then there exists a number a, 0<a^a, such that (I) has at 
least one (necessarily continuous) solution onQ^tSot. If further for any 
A>0 there exists a constant K(A)>0 such that 

(4) | f(t, *0 - f(t, x2) | ^ K(A) | xx - x2\ ( | xi\ , | x2\ g A), 

then the solution is unique. 

The proof of existence is accomplished without using (4) by show
ing that the successive approximations {4>j} (compare with the Cara-
theodory existence theorem [4, p. 43] for ordinary differential equa
tions) 

<t>j(t) = * ( / ) (0 S tS a/j J = 1, 2, • • • ), 
(5) r <-a/> 

*;(*) = Kt) + q(t- a/j - r)f(r} ^{r))dr 
J o 

(a/j St ^ a, j = 1, 2, • • • ) 
form a family of continuous vector functions, uniformly bounded and 
equicontinuous on O^f^a where a is defined in terms of the quanti
ties 

m = sup | h(t) | , ikf = sup j f(t, x) | , 

Pif) = f | q(a) I dcr, 
J o 
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by the inequality MP(a)^m. Since P(0) = 0, P is continuous and 
nondecreasing, such an a exists. Then {<pj} contains a subsequence 
converging uniformly on [O, a]. This limit function is then shown to 
satisfy (1). Uniqueness, under the additional assumption (4), follows 
in the usual way; in fact, with (4) the usual (Picard) approximations 
converge uniformly to the solution on [0, a]. For a further discussion 
of the convergence of successive approximations and general unique
ness questions we refer to §3 below. 

The question of continuation of solutions of (1) is answered by 
means of the following result using the Cauchy criterion and Lemma 
1.1. 

LEMMA 1.2. Let (2, 3) be satisfied. Suppose that 0 is a solution of 
(1) existing on [0, ]8), jS^Jo. If |0(O| is bounded on [0, j8), 008") exists, 
and if j8 <to, the solution 0 may be continued to the right of j8. 

For the remainder of this section we restrict ourselves to the case 
n=l. Analogous to differential equations we have: 

DEFINITION. If there exists a continuous solution 0 M of (1) (n= 1) on 
some interval I f or t^O, such that every other continuous solution 0 on I 
satisfies 0(0 ^S0M(O> t€zl, then 0 M is called the maximum solution of 
(1) on I. 

The definition of the minimum solution <j>m is similar. The proof of 
existence of solutions 0M, 0m follows closely the one for differential 
equations [4, pp. 45-57]. 

LEMMA 1.3. Let (2, 3) be satisfied. Let n — \ and let a be chosen as in 
Lemma 1.1. Then the maximum solution 0 M and the minimum solution 
0m of (1) exist on [0, a]. 

I t is important to remark that the continuation result of Lemma 
1.2 applies to the solutions 0 M and 0W as well, in the sense that they 
may be continued as minimum and maximum solutions. 

2. Let there exist nonnegative functions H, Q, w such that for some 
/o>0 (£o= + °° not excluded): 

| h(f) | ^ H(t), | a(0 | ^ 0(0, | f(t, x) | S w(t, | * | ) 
(0 g / < to, | x\ < oo). 

The scalar "comparison* integral equation associated with system 

(1): 

(8) r(t) = H(t) + f Q(t- T)W(T, r(r))dr ( 0 | / < *0) 

plays an important role in what follows. 
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THEOREM 2.1. Let (2, 3) be satisfied. Let H be continuous on 0^t<to\ 
let QÇÏ.L on every finite subinterval of [0, to). Let w be continuous in 
(t, r) for QSKto, 0 ^ r < oo. Let w(t, r) be nondecreasing in r for each 
fixed t. For some b^to let rM be the maximum solution of (8) on 0^t<b. 
Then if <£ is a solution of (1), <j> can be continued to the right as far as 
rM exists and 

(9) | <Kt) | SrM(t) (0^i<b). 

In particular if / M ( 0 exists for 0^t< oo, one has global existence 
for solutions of (1). If in this case rM is bounded, all solutions of (1) 
have a bounded norm. 

We remark that our approach including the above comparison re
sult and the applications of §3 (except for the uniqueness theorem 
which is similar to ours) is quite different from that of Satö [lO], 
With more stringent continuity hypotheses the case n = 1 is con
sidered and the comparison theorem in [lO] is in fact an easy gen
eralization of the first part of Lemma 2.1 below, while here the com
parison is between the solutions of the system (1) and the maximum 
solution of the single equation (8). The notion of maximum (but not 
minimum) solution is introduced in [lO], using the comparison theo
rem proved there, with the result that under our assumptions of 
Lemma 1.3 above the maximum solution as defined in [lO] need not 
exist. The author in [lO] then compares his maximum solution of the 
single equation corresponding to (1) with solutions of a related inte
gral inequality. This leads to theorems quite different from ours; 
these do not lend themselves to the type of applications considered 
in the latter part of §3. 

The proof of Theorem 2.1 depends in part on a result which also 
has an analogue in differential equations; compare [6, p. 83]. 

LEMMA 2.1. Let H, Q, w satisfy the hypothesis of Theorem 2.1, and 
let rM be the maximum solution of (8) on 0^t<b^to. For each e^O the 
integral equation 

(10) KO = H(t) + e+ f Q(t- T)W(T, r(r))dr 
J o 

has (by Lemma 1.1) at least one solution (which need not exist on the 
entire interval 0^t<b). Choose one such solution for each e>0 and 
denote it and its continuation (as far as it exists—Lemma 1.2) by r(t,e). 
If € i>€ 2 ^0 then r(t, €i)>r(t, €2) for as long as they exist. Let 0</3<&. 
Then there exists an e 0 >0 such that each solution r(t, e), 0 â e < e 0 , 
exists on 0 ^ tS j3, and 
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lim r(*, €) = rM(t) (0 ^ t £ 0), 
e-K) + 

uniformly with respect to t. 

To prove the theorem let <f> be any continuous solution of (1) on 
some interval OSKc^P and let m(t) — \<t>(t)\. By Lemma 2.1 to 
prove part of the conclusion it suffices to show that m(t)^r(t, e), 
0^t<c, e sufficiently small. I t is then shown that the assumption 
of existence of values of /, 0 ^ 2 < c , such that m(t)>r(t, e) leads to a 
contradiction. For, if cr = glb[^; m(t)>r(t, e)], then by continuity 
m(or)=r((r, e) and m{t)^r{t} e), O ^ ^ c r . But then from (1, 7) and 
the monotonicity of w it follows after several estimates that m{a) 
<r(a, e) which contradicts the definition of a and proves (9) for 
O ^ K c . Application of Lemmas 2.1 and 1.2 permits continuation of 
(j> to [0, b) with m(t) <r(t, e), 0St<b, € sufficiently small. This com
pletes a sketch of the proof of Theorem 2.1. 

To obtain a lower bound for solutions of (1) requires the following 
change in assumptions. In place of H in (7) assume the existence of 
a function if* such that Q^H*(t) S \ h(t) | , 0 g / <t0. The comparison 
equation which is used in place of (8) is 

(11) p(0 = # * ( * ) - ( 'Q(t - r)w{T, P(j))dT. 
J o 

THEOREM 2.2. Let the hypothesis of Theorem 2.1 be satisfied with Ü* 
in place of H and assume that w is nonincreasing in p for each fixed t, 
O ^ K / o . For some b^to let pm(t) be the minimum solution of (11) on 
0^t<b. Then whenever pm(t) ^ 0 , and a solution 4> of (1) exists, |<K0| 
^pm(t). 

Obvious changes in Lemma 2.1 are required as well. 

3. The methods of §2 give the following general uniqueness result 
which includes the uniqueness statement of Lemma 1.1. 

THEOREM 3.1. Let Wbe a continuous nonnegativefunction on 0^t<t0y 

r ^ O , and let W be nondecreasing in r for each fixed t; W(t, 0) = 0 . For 
each 0<b^to let p{t) = 0 be the only solution of the integral equation 

r{t) = f \q(t - r) \ W(T, r{r))dr (0 g K i). 
J o 

Let (2, 3) be satisfied and assume that 

| ƒ(*, *l) - ƒ(*, 002) | S W(t, | X! - X2 I ) (0 g t < b) | Xi I , I X2 | < oo). 

Then there exists at most one solution of (1) on 0^*t<b. 
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I t is well known that for differential equations uniqueness itself 
does not imply convergence of the Picard successive approximations, 
see [4, pp. 53-54]. However, the hypotheses of a general uniqueness 
theorem, which are similar to those in Theorem 3.1 and include the 
monotone requirement on W, are sufficient to insure this. I t is an 
open question even for differential equations whether the monotonic-
ity requirement can be removed. Another application of our method 
yields a criterion for the convergence of successive approximations. 

THEOREM 3.2. Let the hypothesis of Theorem 3.1 be satisfied and let a 
be as in Lemma 1.1. Then the successive approximations 

</>o(0 = 0, <t>k+1{t) = h(t) + f q{t- r)f{r, <t>k{r))dr 
J 0 

converge to the {unique) continuous solution ej>{t) of (1), uniformly on 
[0, a]. 

Without the uniqueness assumption of Theorem 3.1, the successive 
approximations can be shown to have a uniformly convergent subse
quence which, however, need not converge to a solution. 

As a direct application of Theorem 2.1 we have the following more 
explicit results. Suppose that |h{t) | , \q{t)\ are uniformly bounded on 
0 ^ t < 00. Then we may choose H, Q in (7) as 

(12) H{t)f Q{t) = K (0 S t < co), 

for some constant K>0. The comparison equation (8) is now equiva
lent to the scalar differential equation 

(13) / - Kwif, r) (r(0) = K,' = d/dt). 

Clearly every existence and boundedness theorem for (13) may be 
translated, via Theorem 2.1, into a similar result for solutions of (1). 
We refer to Brauer [3] for several such theorems regarding (13). For 
the application of Theorem 2.1 to integral equations the monotone 
requirement for w must be retained. A typical example is the follow
ing analogue of Wintner's result [o] for differential equations. 

THEOREM 3.3. Let (2, 3, 7, 12) be satisfied with £0= + °°. Let w{t, r) 
= \{t)6{r) ( 0 ^ £ < o o , 0^r<<*>) and let d be nondecreasing. If 

JK du/d{u) = + co then all continuous solutions of {1) exist on [0, co). 
If further fç\{s)ds< °o all continuous solutions of {1) are bounded on 
[0, co). 

Other cases of interest may be cited by means of different choices 
of iJ, Q, in (7). For example in a nonlinear problem in nuclear reactor 
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theory (see [7; 8] where the linear problem is considered) h, q in (1) 
are such that H, Q may be taken as 

(14) H(t) = Kxt + K2, Q{t) = Kxt, KhK2>0, 0 g * < co. 

This choice makes (8) equivalent to the second order problem 

(15) r" = Kiw(t, r) (r(0) = K2, f'(0) = Kx\ 0 S t < » ) 

which is more involved than (13). I t can be shown that if w(t, r) 
= L(r), 0 ^ < o o and if 

/

00 / /» 8 \ - 1 / 2 

lKi+ J L(<r)dA ds = + oo, 
then all solutions of (15) exist for 0 ^ / < oo. Thus in this case if L is 
nondecreasing and (14) holds, Theorem 2.1 gives global existence for 
solutions of (1). 

Finally, it is hoped that by this method we may obtain other results 
for integral equations, e.g. the case when (8) is not equivalent to a 
differential equation, approach to limits and stability of solutions by 
exploiting the fact that the right hand side of (8) defines a positive 
operator on the space of continuous functions. 
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