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SOME PROBLEMS IN THE TFORMULATION OF THE FQUATIONS FOR GAS/LIQUID FLOWS

L. van Wijngaarden

Technische Hogeschool Twente
Inschede The Netherlands

This paper i1s concerned with the formulation of hydrodynamic equations for two phase
flows. In particular stratified flow and bubbly flow are considered. Emphasis is laid
on those aspects whicl are associated with relative translational motion. The occurrence
of complex characteristics in separated flow models, the equation for relative motion
in bubbly flow, the effect of void fraction on virtual mass, are among the discussed
topics. Where possible, a comparison with experimental observation is included.

1. Introduction

1) e

N o
S —— Iistablished
S Dispersed flow |
10" M\"“‘a.. — —=— Questionable
S ~L- —
“ T~ T
~ ~— .l
~\
1| Wave
10% }- o —N z Annular flow - Bubble flow——-
X
Slug flow
104 Stratified flow
— .
Plug flow T
- : I | "
3 10 10} 1{(X)O L(H 0600

Figure 1: Plot for horizontal two phase flow. The horizontal coordinate is repre-
sentative for the ratio between mass velocities and the vertical coordi-
nate for the gas velocity. Since the function of the plot here is purely
qualitative, details are omitted, but can be found in Brodkey [1]

Gas/liquid flows occur in technology in a wild Also these maps cannot always be trusted, They
variety of appearance. Many attempts have been suggest that, once the average mass or volume
made to classify or categorise these, An example velocities are known, the topology of the flow

is shown in Figure 1 taken from the book by can be predicted. This is not always true.
Brodkey [1]. Regimes like bubbly flow, annular A counter example is furnished by the experiments
flow, stratified flow and so on, are shown in of Witte[2]where stratified flow and bubbly flow
dependence of the ratio between the mass flows (see Figure 2) occur at the two sides of a shock
of the two phases. This type of maps contains wave. Obviously the mass flow ratio is the same
areas where the territory is unlknown or almost at both sides, but the topology 1i1s not.

unknown.
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Figure Z2: A shock wave in a gas-
liquid flow with stra~
tified flow ahead of the
shock (at left in the
Fig./ and bubbly £low
behand the shock (at
the right in the Figure).
From Witte [2].

[

This lecture will be concerned with a number of
problems that arise when one tries to make mathe-
matical models which are able to predict the de-
velopment of gas/liquid flows. Various models
have been proposed in the course of time but al-
though a lot of work has bheen done, especially
over the last decade, the situation may still
adequately be described by what Batchelor [3]
wrote 1n 1972 about two phase systems '"There are
technical problems in abundance, intriguing ob-
servations, puzzling phenomena and some scraps
of theory about specific features, but not yet
the kind of secure foundations and body of theory
which turn a collection of particular problems

into a subject'. Ronald Panton [4]remarks, per-
haps less scholarlyphrased but certainly not less

clearly "I have always thought that two phase was
a lot like the field of turbulence, only worse'l.
However gas/liquid flow occurs in many a techni-
cal system, as for example a nuclear reactor,
Engineers and physicists who have to think about
the design and safety of nuclear reactors want to
know about the dynamic and thermal behaviour of
gas/liquid flow. And when secure foundations and
a firm body of theory are not available they, have
to work with whatever scrap of theory or other
information they can lay hands on. It is reason-
able to assume that given the variety of topolo-
gies in gas/liquid flows, in one representation
physical processes will be dominant which are
less dominant in others. Fquations allowing for
the dominating mechanisms are therefore expected
to be different for the different regimes shown
in Figure 1. The nuclear engineer would neverthe-
less like to be provided with a general set of
equations applicable to any type of flow. This
for two reasons : first he does not always know
from the outset what the topology in a particular
situation is or will be, and further, even if he
knows his topology may, for example by mass
transfer between the phases, change from one lo-
cation in a circuit to another.
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The theoretical models which have been used and
are still used are to a large extent based on
annular flow (for example [5], stratified flow,
generally speaking on separated flows. One hopes
that results developed, for example with strati-
fied flow in mind, will be valuable for other to-
pologies as well. A classical example is the
Lockhart- Martinelli relation for the frictional
pressure drop in gas/liquid flow through pipes
and ducts.,

There is at the present time not yet enough ex-
perience with the various mathematical models and
certainly there are not enough experiments done
to warrant a critical survey, including compari-
son with observation. Instead I propose to dis-
cuss a number of problems and difficulties which
turn up when one considers even the most simpli-
fied versions of equations for gas/liquid flows
in the separated flow model., As it will appear,
the unifying theme in these difficulties is re-
lative motion between the two phases. First of
all there is a difficulty in understanding what
is precisely meant by ''separated flow model" .
Physically the two phases are separated by an
interface, which is quite evident. The general
understanding is that when talking about "separ-
ated flow model" one thinks about a model in
which conservation equations for mass, momentum
and energy are written down for each of the two
phases separately. Another perhaps more appropri-
ate, term is '"two fluid model'., It is however not
obvious at all whether a system of equations can
be formulated for all kinds of topologies., I will
restrict to two extremes : stratified or amular
flow on one hand and bubbly flow on the other,

In the first representation the region occupied
by the gas 1s singly connected, in the second one
this region is multiple connected. The equations
which are used most widely used in practice,

see e.g, refs, [4],[6] and [7], are certainly
more reminiscent of stratified flow than of
bubbly flow. In the subsequent sections we will
discuss some of the fluid dynamics in these con-
figurations, first when the two phases are not in
appreciable relative motion later on when they
are,

2,_Sound propagation through gas/liquid

flow at rest,

Bubbly flow,
Assuming that locally the pressure in the gas and

in the liquid is the same, that thermodynamic
changes in the bubbles are isothermal (isentro~
pic) and that locally the bubbles move with the
liquid, the sound velocity is (See e.g. the re-
view in [8] ) |

2 — (Y) y (2'1)
CO plai1-ui

where p denotes pressure p; the liquid density
and o the concentration of“gas by volume. This
emressign allows a simple intrepretation, In
Figure 3~ is shown a volume V of a bubbly suspen-
sionwhich we want to increase by an amount AV,
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Conservation of mass produces a Ap, which is
D1[1--:1)&V
A (2.2)

Taking the liquid as incompressible, the change
in volume 1is entirely due to expansion of the
gasbubbles. Let the number density of bubbles
with volume t, be indicated with n,. Then, for
isothermal chinges, .

INn.AT. + Apin.t. =
P 1 T1 P anl ©
or
Nn.AT.
& EH-P-——-I-}EH-T-}- = - %&}Z
P L. T, o )
1 1

which gives together with (2.2) the expression
(2.1) forzthe square of the speed of sound,

Writing c_ as dp/dp we obtain from (2.1) by inte-

gration

—E% . = const, (2.3)
ﬂltq“ﬁ)

which can be regarded as an equation of state and

which expresses the fact that, because the
bubbles move with the liquid, the mass of gas in
a mass of the suspension remains constant. More
complicated calculations are needed to find the
velocity of sound when relative motion between
bubbles and liquid is not inhibited.

For not too large o the sound velocity is, with
a purely inertial interaction between bubbles
and liquid, given by (Crespo [9], see also [8])

2 . (1+2o)p
Cf - plﬂ 1“1:1'. ] (214)

This is for spherical bubbles, For other shapes
the figure 2 in the nominator , which is associ-
ated with the virtual mass, is different.

Figure 3.

a)

h)

A volume V of a bubbly liquid expands with AV.
In a) bubbles move with the liquid, in b) they
are free to move with respect to the liquid.

The difference with the expression (2.1) for c2
may be explained by considering Figure 3b in
which again a volume change AV is produced now
however with relative motion,

The change in volume is now only partly due to
changes in bubble volume, the remainder is caused
by a net volume flow, into the considered volume,

ﬁVﬁVEniﬂti - aniTiﬁEi73J5§& dt

Here v, is the velocity of bubbles with number
densit% n,, dA is an surface element of the con-
sidered * volume and the time wise integration
is over the time that is involved in producing
the change AV of V.When viscous friction is ne-
gligible we have, see section 5, v.=3u, approxi-
mately. The integral then 1is .

- gz_rniT iv'E dVdt ~ ~2aAV,

Therefore
7 (1+20.) Zniix'i:i —Ep .

Combination with (2.2) gives (2.4), To produce a
certain AV a larger Ap (in absolute magnitude) is
needed now that bubbles may escape from the con-
sidered volume. The compressibility therefore has
become smaller and the velocity of sound corres-
pondingly higher. In most experiments carried out
in the laboratory to measure the propagation speed
of acoustic waves, o 1S Of th_e Order Of 5] -_Ee‘g
percent, The difference between ¢ in (2.7) and

C e in (2.4) is under those circunftances within
the experimental error. Most experimental data
have been compared with c_ and good agreement has
been found [8] for frequéncies well below the
resonance frequency of the bubbles. For frequen-
cies which are comparable with the resonance fre-
quency the pressure inside the bubbles differs
from the pressure in the liquid through the
inertia of the relative radial motion which mani-
fests itself macroscopically as wave dispersion.
The existence of two sound speeds means that re-
laxation effects occur in wave propagation. The
classical example is wave propagation through a
gas in which a chemical reaction takes place.
This type of flow is discussed in detail in the
two volumes ''Nonequilibrium Flow'' edited by
Wegener [10]. There are two sound speeds, one in
which the reaction is in equilibrium as the wave
passes, comparable to C s in our case, the other
in which the reaction 18 frezen as the wave
passes, comparable with c.. The tendency to relax
toward equilibrium.charac%erized by a relaxation
time T , say,has a diffusive etfect on wgves, the
diffusion coefflicient being equal to T(cf-c .

As a result of this diffusive action © two
new types of shock waves are possible next to

the familiar one in which the reaction is absent.
These are the socalled partly and fully dispersed
shock in which over part of the shock and over
the entire shock, respectively,there is a balance
between nonlinear steepening on one hand and re-
laxation on the other. These shocks have been ob-
served by Noordzij [11], see also [12] in bubbly

mixtﬁres confirming the existence of two sound
speeds,
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In Figure 4 these shocks are shown. The partly
dispersed shock is indicated as B, the fully dis-
persed shock as (,whereas the type without re-
laxation effect is labelled with A,
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The oscillations present in type A and B but
especially in A are due to bubble cscillations.
These ,rather than dissipation, determine the
overall thickness of the type A shock., Both the
analytical and the experimental results discussed
in this section apply to disturbances in a two
phase mixture which is at rest, so that there are
no large relative velocities. For bubbly flow we
may conclude that analytical predictions on
acoustic waves and weak shock waves, are well
supported by experimental observations.

Stzgtified flow.

We consider a situation as in Figure 5 and write
down separate equations for each of the two pha-
SES,

gas,oX

Liquid (1.o()

Figure 5:Two phase flow with separated
phases with which in mind most
model equations are formulated.

Figure 4:

Three types of shocks in a bubbly flow, from [11],
In type A there is no relaxation.
B shows a party dispersed shock.

C shows a fully dispersed shock.
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We first ignore viscous forces between liquid and
gas, assume again that thermodynamic changes in
the gas are isothermal and that the liquid is in-
compressible., When the equations for the behavi-
our of the disturbances of the interface have to
be formulated, a two dimensional theory is in
order., One has to prescribe the condition of
equal pressure at the interface together with the
kinematical condition. The equations for gas/li-
quid flows are usually restricted to one dimen-
sional flow. The kinematical condition is equi-
valent to the continuity equation. Equal pressures
are prescribed in both phases. One should expect
that this is a reasonable approximation to the
true two dimensional situation for wave lengths
which are large with respect to the width of the
duct. In the absence of frictional forces between
the phases one camnot prescribe equal velocity
disturbances in the two fluids, because fluids of
different densities assume different velocities
when subjected to the same acceleration, Denoting
liquid and gas velocities with u and v respective-
ly,we have,

0 o _

'é'-E D](']...a) + D’l(1“u) ?}":SE = 0 » {2!5
oo ‘I:]_E 1Y _

P '+ o AP = 0, (2.0}



SOME PROBLEMS IN THE FORMULATION OF THE EQUATIONS FOR GAS/LIQUID FLOWS 203

dUl o
01(1-1:::',}-8*-%- + (1-~a) E% = 0, (2.7)
3V, 9p _

There 15 no equation of state p=p(p), so that we
cannot define a sound velocity as dp/de. We can

however compute the characteristics of (2.5)-(2.8)

since these give us the velocity with which dis-
continuities propagate. They are dx/dt =0 and

dx rp{etpl'i‘ﬁ—a)pgﬂlz

= - e s, * S .

. [ ]

The exact two dimensional problem has been ana-
lysed by Morioka and Matsui [}13]. They obtained
the dispersion relation for the velocity of pro-
pagation of pressure waves of small amplitude. In
the limit of long wave lengths their dispersion
relation reduces, as was anticipated above, to

(2.9). For ;:Jg/r:ml -c-:] the right hand side of (2.9)

reduces to * (p/e_)?, which is the sound veloci-
ty ¢_ of the gas.BI have not been able to find
expegiments pertaining to this situation, which
could verify this result, It seems physically
plausible that when the gas is not interrupted by
ligquid nor inhibited din its motion by that 1li-
quid, pressure disturhances travel approximately
with the speed of sound in the gas. While (2.9)
in stratified flow is the counterpart of (2.4)
for bubbly flow, we may also for stratified flow
look at the situation when viscous forces are so
large at the interface that ww.Then(2.5}and(2.6)
give directly (pu)/(1-o) = constant, which is
identical with (2.3) for bubbly flow. The sound
speed 1s accordingly given by (Z.1)., We conclude
therefore that in the limit of infinite viscous
forces at the interface the stratified flow and
bubbly flow models predict the same velocity of
sound ¢ . However the corresponding speeds for
negligiBl}r small viscous interaction are wide-
ly different.,

3, Stratified flow model with relative
velocities.

In many practical situations, fLor example the
flow of a gas/liquid mixture through a Laval
nozzle there is & significant difference between
the velocities of gas and liquid. It is natural
therefore that one has tried to extend the above
considerations to flows in motion with different
velocities, The most gimplified version of the
equations of motion, without transfer of mass and
momentum between the phases, then 1s in a two
fluid model (with stratified flow in mind}

D J .

== p1(1=a) + = p, (1-a)u=o, (3.71)
me-hlguv=0 (3.2}
3t Tg 0X | g ’ o

d - . o o4 (e VOB =
ot py (1-aju + 39X 01 (T-aJum+ (7 )y =0
(3.3)
3 o 2 gﬂ _
™ pgrxv + T ﬂguv + u’:}x 0, (3*4-)
Py o 2 -
(E}p ) Cga (SiJ)

Equation (3.5) specifies pg when p is known, 0

may be considered as constant, so (3.,1) - (3.4)
form a set of 4 equations for the 4 unknown
Quantities p, @, u, and v. They are partial diff-
erential equations of first order and belong to
the quasilinear type. Hence when at t=o the val-
ues of p, o, u and v are given the subsequent de-
velopment in space and time can be convenlently
computed with the method of characteristics.
Mith standard methods we find the characteristic
directions x of (3.1) - (3.4) to be given by

AN S o N
{ (A1) 5T G H (A=v) c:g}
pc
E_al.;& (3.6)
1

This equation has two real and two conflex roots,
which means that the system (3.1)+(3.4) is not
hyperbolic, Mathematically this means that the
Cauchy problem for these equations is ill-posed.
What this means can perhaps be illustrated in
the hest way with the example originally given
by Hadamard (see Garabedian [14]). Consider the
equation

32u + Bzu = o
ot aX

which has imaginary characteristics. The solu-
tion satisfying the initial conditions

u(o,x) = 0,

u{o,x) = -g-%—(o,x)mﬂsin nX
is _

u=n sinh nt sin nx.

When n -+ =, the value of uy(o,x} tends uniformly
to zero whereas u(t,x) oscillates between imboun-
ded limits. The solution therefore does not
depend continuously on the initial data. This 1is
meant by "ill-posed'". Many workers in two phase
{flow have found that the equations for the sepa~
rated flow model for_gas and liquids have com-
plex characteristics® Also for more sophistic-
ated versions of the equations than those given
above, this is in general the case. It 1s men-
tioned in Wallis's book [7].

X
No such problems arise in the flow of dusty

gases [15], [16].
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More recently it was the subject of a lively dis-
cussion [4] during the 5th International Heat
Transfer Conference at Tokyo in September 1974,
In a detailed survey by Lyczowski et al [6] it
was concluded that in general the characteris-
tics for the equations of motion in the separated
flow model are complex. Several proposalS have
been put forward to get around this situation,
which of course makes numerical computation a
hazardous enterprise. We mention here

1) An inspection of the effect of the various
terms in (3.1) - (3.4) shows that in some cases
(6], the characteristics become real when one
writes in the pressure terms in (3.3) and (3.4)
a/ax(1-a)p and 3/3x(ep) instead of (1-a)9p/ax
and «dp/9x. There is however no physical justifi-
cation for this modified terms. It is obvious
that in the situvation of Figure 5 the force on a

slice dx of the liquid is adp/9x and not 3/9x(ap).

Situations in which the latter term is the appro-
priate one are hard to Imagine.

ii) One may extend the equations (3.,1)-(3.4) with
additional terms in the right hand sides to re-
present transfer of mass and momentum. If these
additional terms do only include the dependent
variables, the characteristics are unchanged.
When they include first order derivatives the
characteristics are modified and might become
real, The view that such terms should be included
in a proper set of equations is taken by the Bel-
gian - French School as represented by Giot and
Fritte [17] and Bouré et al. [18].The equation
would surely model the real flow better when
transfer processes were included, A difficulty,
however, is that till thus far one has only been
able to do this in some empirical way, based on
experience, insight, but invariably with unlnown
constants and more or less ad hoc introduced
functional relationships., It is therefore open to
discussion what the value 15 of equations which
are necessarily very complicated and which con-
tain so many more or less guessed terms., But even
if transport processes could be represented more
accurately, and research in this direction is
badly needed, it seems unlikely that real char-
acteristics are obtained 1n general, Therefore,
in spite of the incompleteness of equations like
(3.1) - (3.4), we may worry about its complex
characteristics,

111) Although they were originally not developed
in comnection with the present problem, one
might mention here some models in which no com-
plex characteristics occur, These are the so call-
ed "drift models'', in which a relation is assum-
ed between the ratio of the velocities of the
two phases and one or more of the other dependent
variables., Examples are the models preposed by
Fauske [19] and Moody {201, especially in rela-
tion with critical flow in the throat of a con-
verging - diverging nozzle (Laval nozzle}. The
first takes at critical flow (Wv) proportional

{
to (pg/le;;, the second to (pg/ﬂlj1/.3

The physical basis for these assumptions is rather

shaky and they have,as Prof., Wallis told the par-
tlcli%ants n g chrlc.%hop on Iwo Phase Hlows regent-

ly,been yepudiated even by their authors. All the

available evidence, indicates that the character-
istics of the separated flow model are in general
complex. The question arises: Why is this so 7

It has been suggested during the 1974 Round Table
Discussion at Tokyo [4] that it has to do with
Helmholtz instability. This seems to be propable
indeed. The classical problem studied by Helm-
holtz [21] is the flow of two inmiscible, invis-
cid, incompressible liquids with different velo-
cities at the two sides of the interface. It
turns out that in the absence of gravity and
other forces, the interface is unstable with res-
pect to disturbances of any wavelength,

For long wave lerngths the problem considered by
Helmholtz becomes, as pointed out earlier approxi-
mately the one dimensional problem formulated in

the separated flow model. For short wavelengths
the behaviour in the two situations need not be
the same, because the dispersion which occurs in
the true two or threedimemsional situation is ab~
sent in the one dimensional approximation, It is
plausible therefore that the complex characteris-
tics reflect the instability of the interface
against disturbances of long weve lengths. Gravi-
ty, viscosity, surface {ension and other physic-
al mechanisms certainly affect the instability
but it is not likely that they may prevent in-
stability under all circumstances.

4, Bubbly flow wi.th'relative'velacitg.

Also in the case of bubbly flow with relative ve-
locities between the phases, we have a'two fluid"
model, The distinction with respect to the model
of the previous section is that it is possible,
at least in the simple case of spherical bubbles,
to represent more specifically some of the
physics of the dynamic interaction between the
gas and liquid., With a view to the different ve-
locities v of the gas and u of the liquid, we
have to distinguish between the material deriva-
tive pertaining to the gas and that pertaining to
to the liquid. We define therefore

l 3 o
7 T +u§"£ ; (4,1)

anc |
D J )
———— 22 g P Sttt
It ot v oX
Neglecting the contribution of the gas to the mass
mass and momentum flow we have

(4.2)

0
S (ma) + (1-a) 32 = o, (4.3)
du . 1 3p _
T T O (4.4
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When the bubbles do not break up, coalesce or dis-
solve, we have for their number density n

In 2V
7 T My T 9 (4.5)

which equation, together with the isothermal ass-
umption pt= const., yields

D
—]j-_-t-pﬁ +p0ﬁ""‘—= O, (4,6)

Mass and momentum conservation for the mean 1i-
quid velocity is given by (4.3) and (4.4), where-
as (4.6) may be interpreted as the mass conser-
vation equation for the gas. Tocomplete the set
of equations for p, o, v and u, we try to formu-
late the dynamic interaction between bubbles and
liquid . First we ignore frictional forces alto-
gether and consider the motion of a sphere in a
incompressible inviscid liquid. At first sight
one might think that this is largely covered in
the textbooks of classical hydrodynamics.Landau
and Lifshitz [22] , for example, write as equation
for the dynamic interaction

. pDu
FEm (v-u) = P1T BT (4.7)

where m is the virtual mass, and where the mass
of the sphere is neglected. We have written 5 in
order not to attach the meaning either of (4.1 or

(4.2) to this time derivative. As long as u is
uniform in space and depends only on time there
is no ambiguity in the interpretation of (4.7),
p/Dt is the same as either d/dt or D/Dt. As soon
as u 1s a function of both t and x, the textbooks
leave you alone and you have to find out for your-
selt. I have heard convincing arguments for each
of the forms which you obtain by interpreting
Du/Dt in (4.7) either as du/dt or Du/Dt. The pro-
blem is far from trivial however and time does
not permit to reproduce all the aspects here.
Without pretending that this is the last word
about this fascinating problem, I will stick here
to the form adopted in Prosperetti and Van Wiijn-
gaarden [23], in which p/Dt is /Dt at both sides
of (4.7). The argument for this boils down rough-
ly speaking to this: The liquid motion is incom-
pressible and governed by Laplace's equation for
the potential. This does not contain the time
which enters through the momentary value of u and
v alone. There is no time scale in the relative
motion and this is the same therefore as when the
particular relative motion was instantaneously
started from rest. When a sphere is placed with
centre in x_ and the liquid is accelerated to mo-
tion with p8tentia1 ¢ 1n the absence of the
sphere, the impulsive force exerted on the sphere
18 plm’)x—‘-x; (Van Wijngaarden [241], oT pqUT,

U being the velocity which the undisturbed velo-
city would have in x_. Since the sphere is mass-
less 1t cannot suppo?t any force and starts to
move instantaneously with such a velocity that the
the impulsive force generated by the relative

motion -m{v-u), cancels the impulsive force p.,ut.

1

This must be the case at any time whence at all
times the rate of change

D
BT m(v-u)

of the impulse of the relative motion must be
equal to the rate of change D

Dt
Apart from this interaction there is a viscous
force. If the Reynolds number of the relative
flow is large enough and if there are no surface
active agents in the liquid the flow remains
approximately described by the potential flow
around the bubble., The drag, in steady flow is
given by Levich PZ],!?S] as -127pa(v-u), obtain-
ed from calculation of the dissipation in the (po
tential} flow. Since this is instantaneously gen-
erated it might seem that this expression for the
drag holds good in unsteady flow as well. This 1is
not so however, The potential flow has a nonvan-
ishing shear stress at the interface with the
bubble, whereas the stress at this interface
should bhe zero. There is accordingly a boundary
layer for the stress and the diffusion of the in-
itial discontinuity in the stress must give rise
to a unsteady resistance term. This term has been
recently calculated by Chen |26] for impulsively
started flow. The timevarying part of the drag
15 as shown 1n Figure §” relatively small at a
Reynolds number of order 100 and we leave it
out therefore in the present discussion. The
equation for the relative motion becomes in this
way

Ut

B (V-u) = oyt %UE 127 (v-u) . (4.8)

In an unbounded liquid the virtual mass of a
sphere is %pl’r, which we shall adopt here, post-

poning a discussion of the effect of neighbour-
ing bubbles on m to section 5. With this value
for m it follows from (4.8) that for a rigid mass
less sphere v=3u in the absence of viscosity, a
result we used earlier in discussing the meaning
of Cp (cf. paragraph following eqn. 2.4).

Phen viscosity is included there appears to be a
characteristic time T, given by

Mol
| 8a , (4'9)

fr —
¢

which it takes the liquid to slow down a faster
moving bubble., Together with (4.4) and (4.5), the
above relation (4.8) gives

D OV o -2a(v-u)d =
w7 a(v-u) + a(v-u) g= = 2o (V-ules

9 ofv-u) (4.10)

_ 20, 3
p]i'l—ai DX T °

The equations for our two fluid model now are
(4,3), (4.4), (4.6) and (4.10) for the dependent
variables o, p v and u., It is usefull to look
once more at the analogy with gasdynamic flow
with a chemical reaction. A lucid analysis of
tﬁlai_il type of flow has been given by Broer in

10 |
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The flow is governed by the usual equations for
conservation of mass momentum and energy. In ad-
dition there 1s an equation which describes
the behaviour of ¢, a parameter that determines
the chemical composition, Broer [10] uses as
this rate equation

‘dj_ _ q-qO
dt T

(4.11)

Here q, is the equilibrium value of q for given
pressure and density. Substituting solutionsof
the form exp(ilkx - wt) in the linearized equat-
ions, two sound speeds are found, the equili-
brium sound speed and the frozen sound speed.
We mentioned earlier the analogy between c_ and
c.in (2.1) and (2.4) on one hand and thes&

o speeds at the other. We may,pursuing the an-
alogy further, compare (4.10) with the rate equ-
ation (4.11). The reaction parameter is the gas
velocity v, the equilibrium value of v is the
liquid velocity u. In the gasdynamic problem the
characteristics are for finite T, u + Cpey U be-
ing the gas velocity.With a view to the analogy
we may expect the''frozen''sound speed cg(in 2.4)to
appear in the characteristics direttions of the
system (4.3), (4.4) , (4.6) and (4.170) . As
Prosperetti and Van Wijngaarden [23] found, this
15 the case indeed, Moreover they found all four
characteristics to be real, in contrast to the
situation in stratified flow, which was discussed
in the previous section. For small values of
(v-u)/ cg, the characteristics can be obtained

al

analytically and are
dx dx
F=v, Tov- 22 vy (4.12)
dx o.B

In these relations g and & are of unit order and
depend weakly on o, It is interesting to make a
further simplification and consider the case
where o is small. Then the characteristics are
v, and 3 (v+tu) + c.. In nonequilibrium gasdyna-
mics the c.harac"fer{stics are the particle velo-
city v and the directions v + Cr We could ex-
pect, as outlined earlier, the Occurrence of c
in the characteristics for bubbly flow but it
comes as a bit of surprise that the convective
part is for small ¢, just the arithmetic mean of
u and v, Calculations carried out at CalTech by
Lees and Kubota (private communication) have
shown that in case bu/Dt in (4.7) is interpre-
ted as du/dt the characteristics corresponding
with the ones in the first line in (4.12) become
complex. There 1s therefore good reason to try
and find out what the correct form of (4.7) is,
in other words what the correct form of the equ-
ation of motion of a body in a nomumiform acce-
lerated flow is.

Cem]garison with exPeriment.

A good experiment to verify some of the predic-
tions of a two fluid theory for bubbly mixtures,
is the flow through a de Laval nozzle. A few ex-
eriments of this type have been reported 127]
28] . The work by Muir and Eichhorn [27] gives'{:he
most detailed information and has been used there-
fore more than once by others as a yardstick for

theoretical results. These are concerned

_ mostl
with one aspect of the dynamics with the neglegt
of others, and therefore comparison with experi-

ment should be done with caution.
Muir and Eichhorn measured void f£raction,

pressure,bubble velocity and liquid velocity a-
long their converging diverging nozzle,

Figure 6 shows the observed pressure in the
throat as a function of the void fraction in the
reservolr , together with the result following
from homogeneous fluid theory (v=u}. Apparently
the latter is lower, Their are two effects in the
real flow which could cause this difference, the
relative radial velocity of the bubbles and the
relative translational velocity.

UK MO,
)
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L
- —"l-'IIL PREDICTED BY HOMOGENEOUS
0 MIXTURE THEORY REF (7}
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Figure 6. Bubbly flow through a Laval
nozzle: Pressure in throat as
measured by Muir and Eichhomn
and as following from homogene~
ous theory. B, is void fraction
in Teservoir.

Baum [28| attributed the difference to relative

radial velocity (dispersion). His point is that
since the time necessary for a bubble to pass
the converging - diverging part of the nozzle is
comparable to the natural period of oscillation
of a bubble, the pressure in the bubble cannot
follow immediately the pressure of the liquid.



SOME PROBLEMS IN THE PORMULATION OF THE EQUATIONS FOR GAS/LIQUID TLOWS 2a7

There may also be, however, an effect of the re-

lative translational motlion. This has not been 1in-

vestigated. There is certainly a need for more
experiments of this type. Figure 7 shows another
result from the paper by Muir and Eichhorm [27].

'.'JI-#.I.‘-_.-P“‘ Mokt g
Q U,*llﬂ vELGEITY l

B Uy -uMTER VELOCITY
\ X U AN MIXTURE VELOZITY

a0 4 ~a ~VELOCITY OF SOQUKD IN
HOMOAEKEOUS MIXTUAES
Uy -tilAR MIXTURE VELOCITY

120 4 ASSUNING T, -0.838, )|

M,u LFT/SEC )

0 -4

80 -

Figure 7. Liquid velocity, gas velocity
and sound velocity measured by
Mulir and Iichhorn in throat of
Laval nozzle, o, on the horizon~
tal scale 1s theé void fraction
in the throat.

Shown are experimentally determined values of o,
p, V, u and C 1n the throat of the nozzle,under
circunstances ‘when supersonic flow exists in the
diverging part. Under critical conditions the
characteristic velocity in the throat is zero
and it i1s therefore tempting to compare these
results with what is predicted by the character-
istics. They should give reasonably accurate re-
sults, when dispersion effects are weak.
Prosperetti and I [23] could not resist this temp-
tation. Under critical conditions (dx/dt = o) the
following relationship is given by the theory

o8
s
l 2& ‘ \
Ve (V=U)

0
Upon inserting in this relation the measured
value of a, v and u, a ¢_ results., This calcula-
téd value was comparcd in [23] with the experi-
mentally obtained one, that is to say the value
which follows from (2.1) for the measured p and
o, with vy = 1, The relative difference between
measured and calculated ¢_ is of the order of 10%
which 1s quite satisfacto%y. In conclusion of
this section we might say that the two fluid model
of bubbly flow has been developed further than
the corresponding one for stratified flow. Though
for bubbly flow there are not many experimental
results available, there are some at least,
For stratified flow reliable experimental data
are virtually absent,

i

2 2 2
Cg = sc, = U { 1+ (v=-u)

| 5. Virtual mass and pressure in a two
phase fTuid., - e

In the final section of this lecture I wani to
discuss two more problems which have to do with
the understanding of two phase [lows with vrela-
tive motion. The first is about the virtual mass,
In equation (4.8) we used the virtual mass %DlT
of a sphere in an unbounded liguid. It is to
be expected that a particle when accelerated in
the presence of many other particles, will poss-
ess a virtual mass which 1s different from the
value in an infinite liquid. In the formulation
of equations for liquid-gas or solid=-liquid mix-
tures the virtual mass plays an important r8le
and it is therefore of some interest to investi-
gate the effect of boundaries in the flow, in
particular those formed by neighbouring parti-
cles, Consider, as a simple example a sphere
(radius a ) which starts to move with velocity v
in the centre of a larger sphere (radius b),
filled with liquid, Figure 8,

Figure 8: A sphere of radius a 1s accele-
rated to velocity v in the
centre of a sphere, with radius
b, filled with liquid.

In an unbounded liquid the kinetic energy of the
liquid is, 7 being the volume of the test sphere

T = } DTVZ

whence the virtual mass 1s m, = Inpt, In the en-
closure of the sphere with radius b, the kinetic
energy associated with the motion of the small
sphere is [29)

T =} VZ 1741}-**1)“3 )
o o

The apparent inertia of the small sphere is now

m, (224 bs) / (bs-asj. The"'concentration'' by
volume o of the small sphere in the big one 15
3.5

a"/b”, whence

1+20
o 1-o

H

(5.1)

m Il




258 L. VAN WIJNGAARDEN

This value was used by Zuber (30| as an estimate
for the virtual mass of spherical particles sus-
pended in a liquid with density p. Since it 15
difficult to see how a large sphere approximates
the effect of neighbouring spheres in a suspen-
sion, not much can be sald at this point of the
accuracy of (5.1) for a suspension of spherical
particles. lLet us consider the potential for the
. ; s A -

tlow depicted in Figure 8. With f:FElJ/bB this

is, see 29

3 5
b o= - EE”&%)EE - % (rcosg + iﬁgwsﬁ—)n (5.2
AN 2r

The first term on the right hand side is the
famillar potential for a sphere moving with velo-
city v in an wnbounded liquid. The sphere dis-
places liquid and in order to maintain zero
volume flow there is a back flow in the liquid
with average velocity -ve/(1-a). The potential of
this uniform backflow 1is given by the second
term on the right hand side of (5.2). The third
term represents the additional dipole induced by
the backflow in the centrxe of the small sphere.
Tt happens that (5.2) satisfies also the boun-
dary condition on the large sphere but this would
not be so when the centre of the small sphere
were not coinciding with that of the large
sphere, The virtual mass m can be found either
by calculation of the kinetic energy of the 1li-
quid or by calculation of the impulsive force
which is necessary to generate the motion from
rest and which is equal to m v. By making use
of Bernoulli's Theorem we obtain

mv = f¢ dA
where dA is a surface element on the sphere. From
the above relation (5.1) 1s obtained again. When
used for a suspention of spheres in a liguid,
(5.7) involves the neglect of the images of the

test sphere 1in all other spheres., Otherwise said,

only the boundary condition on the test sphere is
satistied, not the boundary condition on neigh-
bouring spheres. To satisfy the latter, the
interaction between spheres in a potential flow
has to be calculated, Till thus far this is only
possible for two spheres. This allows the cal-
culation of the virtual mass of a sphere in a
dilute mixture, correct in the first order of «.
For interactions involving more than two par-
ticles contribute to order «”. When we have a
well stirred suspension consisting of spheri-
cal bubbles of the same radius, the calculation
of the interaction leads for the virtual mass
to (Van Wijngaarden [24] )

m (1+2.78) + 0(a”). (5.3)

m

To the same occuracy (5.1) gives m-'-'mg( 1+3a) .

This means that the estimate (5.1) is not bad,

which is due to the fact that numerically the
effect of the images of the test sphere in other
spheres 1s apparently small with respect to the
displacement effect involved in (5.1). The rela-
tion (5.3) was used in 23 for the calculation
of the critical velocity in a converging - diver-
ging nozzle. In a real mixture of liquid and gas
bubbles, the bubbles are not perfectly spherical,
nor are they all of the same size. It would be
desirable therefore to extend theoretical work
on interactions to nonspherical particles or
bubbles and also to investigate for, e.g. spheri-
cal particles, the effect of a distribution of
different radii . In the latter case a severe com
plication 1s the change in the probability distri-
bution due to relative veloclity bhetween the Phases,

The second problem of this section concerns the
concept of pressure in a gas - liquid flow, In
the equations of motion discussed in section 4,
the pressure p_ in the gaseous phase is taken
equal to the aVerage pressure p in the liquid . In
some loose way one feels that they are almost
equal but, of course, that is not enough when
one wants to construct reliable equations of o~
tion. For a bubbly f{low, the effect on the
stress distribution caused by the bubbles is
known ( see Batchelor [31]) when there is no
appreciable relative translational motion. The
mixture may be considered as a hoirogeneous New-
tonian fluid with a shear viscosity u=u.(1+u)
and a bulk viscosity 4u,/3e (afo). The p‘r-'l‘ssure
in the liquid has a wnique wmeaning and can, if
necessary, be related to the pressure inside
the gas bubbles, Vhen the phases have appreciable
relative velocity, the situation is not clear at
all and here is another problem which needs to
be investigated. Apart from viscous effects,
inertial effects are a cause for pressure diffe-~
rences between liquid and gas. To indicate of
what kind these effects are, let us consider a
well stirred bubbly flow, with average gas velo-
city v, average liquid velocity Uy The volume
flow 1s supposed to be known

U, = (1-—&)[_{1 +oav, (5.4]

Again we assume that the relative motion can, a-
approximately, be described by potential theory,

Figure 9.

In practice the pressure 1s usually measured
with pressure transducers mounted in the wall
of the duct in which the flow occurs. The quanti-
ty measured 1s the average pressure <p» in the
liquid, which enters as p in the momentum equa~
tion,
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The relation between <p» and p_ is of the form,
apart from viscous effects, 5

o
{p:’hpg, = 1:212 o+ i (Ir H_}‘

{lq.l. -i-l»-;zu by, (5.5
where 4 18 a representative bubble tadius and k
k, are constants of unit order. This relation
cdn be made plausible for spherical bubbles at
small oo In a steady flow the averape pressure
<p> can be related to the potential ¢, describ-
ing the flow relative to U by

pr=c - o, < (V-1 )%

1 O M

where ¢ is the Bernoulli constani . AL small o
the averaging can be restricted to considering
Jjust one bubble in each realisation of the
mixture. Then ¢ can be simplified to the poten-
tial associated with the motion of a sphere

moving with relative velocity v - R
-t

a

(5 & [_.;F ]

3

v ) Lot

v, - U = b = V “nWﬂwEwwm m.u-w:
b=y { ;,12

Carrying out the averaging over all Space occu-
pied by liguid, we obtain

<p>=CeLap (‘E--LJ_G]% (547)

The Bernoulli constant can be, approximately,

determined from the condition that at the inter-
tace of gas and liquid the pressure p must equal
pg apart from surface tension. This means that

averaged over the surface of a bubble

_ 20 8
Pyurs = Py~ 5 (5.8

The pressure p on the surface follows, again
approximating V¢ - _LI{_} by Ve, from

?
}‘:_ :;1](\)"“"“ )()

yhip (Vo= (y-l
Praf ]{ ( e

Averaging over the surlace of a sphere gives
with (5.8)

P ~ )
Ll ]
C: .-l -y Ny i" \‘f “[I

I g a P LY --»n)

or with help of (5.4) and (5.7)

"
y ', -y — __:_' J }
g ¢ | 1

which is of the form (5.5). There are two
celffects: For a single huhhlo the pressure "at in-
finity" is larger than (p - lofa).This gives
rise to the term with ]i.1,w11c.h is } for a sphere
but much less for oblate shapes. The sccond
effect is that the average pressure is less than
the pressure "'at infinity" for a single hubble,

2
s R = e b0 ) (v~ ) "*ifll(‘v’”l
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