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The static deformation of gravitating elastic earth model is studied in 

some detail. It is found that the problem becomes well posed if we discard 

the stress-strain relation in the liquid core. A convenient formulation, in 

which derivative of density does not appear, is proposed in the liquid core 

by introducing a new variable. Static solutions obtained by the present 

theory are compared with dynamic solutions in which the liquid core causes 

no trouble. The differences between them are within 0.2%. The elastic de-

formation due to earth's rotation and the deformation of degree 1 modes 

induced by surface loads are also computed.

1. Introduction 

A peculiarity inherent in the equations for the elastic-gravitational equilib-

rium of a liquid core of the earth has long been noticed and discussed by 

several authors (TAKEUCHI, 1950; LONGMAN, 1963; JEFFREYS and VICENTE, 

1966). Recently Smylie and Mansinha reawoke interest in this problem by 

claiming that radial displacement for static deformation need not be con-

tinuous across the core-mantle boundary (SMYLIE and MANSINHA, 1971a, b). 

As DAHLEN (1971) points out, their arguments are self-contradictory. Thus, 

starting with a statement that equipotential surfaces, isobaric surfaces and 

surfaces of equal density are parallel in a liquid core, they have ended by 

denying it. On the other hand, the conventional treatment assumes the con-
dition of Adams-Williamson throughout the core, but according to the pre-

sent knowledge about the core as revealed by seismic waves it is unlikely that 

the liquid core of the real earth should strictly be in Adams-Williamson 
equilibrium. 

The present study is intended to reexamine the problem of static deforma-
tion of the earth. In the following section the equilibrium equations are 

studied in some detail for various cases, and integration schemes are proposed
for each case. Emphasis is placed upon the case μ(rigidity)=0, n≠0.
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2. The Equations of Equilibrium

We assume the earth to be a gravitating, isotropic, elastic sphere of radius 

a whose density and elasticity are variable only with depth. The equations 

of equilibrium for the deformed earth can be derived immediately from the 

equations for the free oscillation of the earth by setting the frequency equal 

to zero. There exist two distinct modes of deformation, corresponding to 

spheroidal and toroidal oscillations, but since tidal forces, as well as surface 

mass load, produce only the spheroidal modes of deformation, the toroidal 

modes will not be considered in this paper. 

We strictly follow the notation and formulation by TAKEUCHI and SAITO 

(1972, subsequently referred to as paper I) which are originally due to ALTER-
MAN et al. (1959). A modification has been made for the definition of y6. 

We define y6 by

We will see below that the new definition simplifies boundary conditions 

slightly.

In the following we discuss several cases separately.

2.1 General case (μ ≠0, n≧2)

The equations of equilibrium for n≧2 in a solid layer are derived by

setting in Eq. I(82) (see Appendix 1, equation numbers preceded by I refer

to equations in paper I), ω=0, A=C=2+2μ, F=λ, and L=N=μ, where

λ(r) and μ(r) are Lame's elastic modulus and rigidity, respectively. Although

not stated explicitly, these substitutions are to be understood whenever refer-

ence to paper I is made hereafter. 

For a moment let us suppose that earth's core is solid, then Eq. I(82) 

applies to the entire earth. It has six linearly independent integrations but 

three of them become infinite at the center. The three regular integrations for 

a given earth model will be obtained by assigning appropriate initial values to

yi(i=1,2,…,6) near the center and integrating Eq. I(82) upward. Necessary

formulas for initial value calculation will be found in Eqs. I(98)-I(103). 

An arbitrary solution is expressed by a linear combination of the three 

integrations thus obtained. Introducing a second subscript on yi in order to 

distinguish the three independent integrations, we write a solution as

(1)

Three constants of integration, Q1, Q2 and Q3, are determined by the surface 

boundary conditions.
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Tidal deformation. Let us first consider deformation due to a tidal 

potential

 (2)

The earth yields to the tidal force and undergoes redistribution of masses, 

which in turn gives rise to the perturbation in the gravitational potential.

Let ψd be the perturbation in the gravitational potential due to mass redis-

tribution, then the total perturbation in potential is ψ=ψt+ψd. Equation

I(16), which has been derived for ψd, applies also to ψ since ψt is harmonic

everywhere, Note that we define ψ=y5(r)Yn(θ,φ) inside the earth. Outside

the earth we assume

(3)

where kn is some constant to be determined. Actually kn denotes one of the 

tidal Love numbers because Love numbers hn, ln, and  kn are defined by

The potential should satisfy the following boundary conditions across 

the surface,

(4)

where the subscripts i and e refer to values just inside and outside the earth's

surface, respectively. Remembering (ψ)i=Y5(r)Yn(θ,φ), and making use of

Eqs. (2) and (3), we find that the surface boundary conditions for tidal de-

formation are as follows.

 (5)

After solving Eq. (5) for the three constants of integration, we can calculate 

displacements at arbitrary place by Eq. (1). In particular, we find
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(6)

Load defermation. Next we consider deformation due to a surface mass

load σnYn(θ,φ) per unit area. It exerts a normal stress, -g(a)σnYn(θ,φ),

across the surface of the earth, whence we should have y2(a)=-g(a)σn. In

addition, the load produces a potential

(7)

The total perturbation in potential is again given in terms of ψl and ψd, the

latter, in terms of load Love number k'n, being written as

(8)

Substituting these expressions into Eq. (4) and taking σn=(2n+1)/4πGa for

the sake of normalization, we find

Fig. 1. Static tidal deformation of Wang's earth model for n=2. y1 and y3
refer to the top scale and are given in unit of km/(km/sec)(km/sec)2.The arrows
indicate core-mantle boundary and inner core-outer core boundary.
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Fig. 2. Static load deformation for n=2.

(9)

The load Love numbers, k'n, h'n, and l'n, will be found by relations identical to 

Eq. (6). 

For later reference we put Eqs. (5) and (9) into a single equation

(10)

where σ'n=0 for tidal deformation and σ'n=1 for load deformation.

Sample solutions are given in Figs. 1 and 2. Since normalization factors 

have been so chosen that disturbing potentials become nondimensional, radial 

functions y1 and y3 have dimension of length/potential. Unit of y1 and y3 in 

these figures is, therefore, km/(km/sec)(km/sec)2. 

  Figures 1 and 2 are computed using Wang's earth model which has a 

liquid outer core (WANG, 1972). Treatment of liquid core will be discussed 
in Section 2.3. 

  2.2 Radial deformation (n=0) 

  Although a zero degree tidal potential has no physical meaning, a prob-
lem of uniform loading over the earth's surface makes sense. Pertinent
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differential equations are given in I(89). One of the integrations  yil(r) will be 

obtained starting from the following initial values.

(11)

In addition, the third equation in  I(89) has a trivial integration, y5(r)=constant. 

Thus, an arbitrary solution will be written as

(12)

Making use of the boundary conditions (9), we find

(13)

The vanishing of  k'0 is expected because  k'0 is proportional to the change in 

the earth's mass which should be conserved during deformation (see Eq. (26) 

below).

2.3 Liquid core case (μ=0, n≧2)

A difficulty arises in the system I(82) when μ=0 as in the liquid core of

the earth. This has long been noticed and discussed by several authors 

 (LONGMAN, 1963; JEFFREYS and VICENTE, 1966), and it has been customary 
to assume the condition of neutral equilibrium (Adams-Williamson condition) 
to prevail within the liquid core to circumvent this  difficulty  (TAKEUCHI, 

1950). The condition holds true only when the core is chemically homoge-

neous and it has adiabatic temperature gradients. However, such conditions 

are unlikely to be met in the actual core. 

 Recently, SMYLIE and MANSINHA (1971a, b) reopened the problem by 

claiming that the radial displacement need not be continuous across the core-

mantle boundary in the case of static deformation. As DAHLEN (1971) points 

out, their arguments are physically untenable. We see no reasons to assume 

a jump discontinuity in the radial displacement across the boundary; such a 

discontinuity would results in cavitation at the boundary. 

   We would better return to the basic equations of equilibrium to clarify

the situation. When μ=0, the equations of equilibrium in the radial and

transversal directions and Poisson's equation can be written as
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Fig. 3. Rotational deformation and radial load deformation.

(14)

where X is the radial factor of dilatation and the dot stands for d/dr. To 

avoid confusion we deliberately omitted the stress-strain relation from the 

basic set of equations. We will see, however, that we are able to obtain a 

unique solution in the liquid core without specifying the stress-strain relation. 

 Differentiating the second equation in (14) and making use of the first, 

we obtain

(15)

and hence we have

(16)

Thus the potential (Y5) is decoupled from displacement when μ=0. Given a

density distribution, we might be able to integrate the above equation, as was 

done by TAKEUCHI (1950), provided that y5 is continuous everywhere within
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the core. However, one should remember that y5 is not necessarily continu-

ous. Instead y6 should be continuous where ρ has a jump discontinuity. This

gives rise to a difficulty unless the density varies continuously, because y1 can 
not be determined by Eq. (16) alone. 

Actually, however, we are able to circumvent this difficulty by intro-

ducing a new variable

(17)

where account is taken of the second relation in Eq. (14). The new variable

y7, which should not be confused with Longman's y7 (LONGMAN, 1963), is
everywhere continuous because y6, y2 and g are continuous even if density 

may have jump discontinuities. In terms of y5 and y7 Eq. (16) is rewritten 
in the standard form of first order differential equations

(18)

Now we are able to integrate y5 and y7 for any density model without know-

ing y1, starting from initial values

y5(r)=rn ry7(r)=2(n-1)rn. (19)

Boundary conditions at the core-mantle boundary. At the core-mantle
boundary, say, r=b, all the yi's except y3, should be continuous, but y1, y2

and, y6 can not be determined by Eq. (18). Only one of the three is independ-

ent for they are related to each other through the second equation in (14) 

and Eq. (17). Thus, once y1(b) is specified, all the remaining variables except 

y3 will be uniquely determined at the core-mantle boundary. Numerically 
we proceed as follows. We take y1(b) and y3(b) for constants of integration 

and decompose the boundary conditions into three independent sets:

set 1:

set 2:
(20)

set 3:

y333(b)=1



Some Problems of Static Deformation of the Earth 131

where the superscripts s and l refer to values in the mantle and in the liquid 

core, respectively, yl51(r) and yl71(r) are integrations of Eq. (18), and where 

those y8ij(b) of zero boundary value are not given explicitly. It is evident that 

any linear combination of the above three sets satisfies the continuity condi-

tions across the boundary. Thus, the boundary values of the three independ-

ent solutions within the mantle are completely specified by Eq. (20) and we 

are able to integrate the solutions upward. Complete solutions in the liquid 

core and in the mantle are given respectively by

with coefficients Q3j determined by Eq. (10). 

 Boundary conditions at the solid inner core-liquid outer core boundary. If 

the earth has a solid inner core, Eq. (18) is no more valid in the solid inner 

core. Instead we have to integrate Eq. I(82) as we have done in the mantle, 

and hence we have three independent solutions in the solid inner core. Since 

there is only one in the liquid outer core, we must reduce arbitrariness at 

the inner core-outer core boundary, say, at r=c Remembering that y34 (in 

this case superscript s refers to solid inner core) vanishes at the boundary, 

we have

(21)

The above equations determine the ratios of Q32/Q31 and Q33/Q31, and hence all 

the yi's at the boundary are determined except for a free multiplier Q31, which 

is to be determined by the surface boundary condition (10). 

 Adams-Williamson condition. So far the problem is well posed in that the 

deformation field is determined uniquely. A difficulty arises when we intro-

duce the stress-strain relation in the liquid core. If the liquid core is com-

pressible, the normal stress is related to X by

y2=λX. (22)

Substituting this into Eq. (15) we get

solution to this equation is either y2=0 or ρg/2+ρ/ρ=0, the latter being the
'Adams-Williamson condition' that will prevail in a chemically homogeneous
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liquid layer of adiabatic temperature gradients. If such conditions are met 

in the liquid core, y2 is not constrained and the solution obtained by the 

scheme just described will remain unchanged. However, they are unlikely 

to be met in the actual core, and then our problem becomes overdeterminate 

because we have an additional constraint

(23)

at the core-mantle boundary and at the inner core-outer core boundary as 

well. We would be very fortunate if the four relations, relations in Eqs. (10) 

and (22), in three unknowns, Q31, Q32 and Q33, hold true simultaneously. That 

is why the Adams-Williamson condition has been assumed in the ordinary 

theory of earth tide and load deformation of the earth. 

 It is not necessary, however, that the condition be met throughout the 

liquid core. Note that Eq. (23) is called for only at solid-liquid boundaries. 

Thus, if we assume

where δ and ε are some constants, then y2 is not constrained to zero in these

layers and we can omit the continuity relation such as Eq. (23). One should 

note that the solution in the mantle, as well as y5 and y7 in the liquid core,

does not depend on the two parameters δ and ε, because the solution does

not depend on λ (see Eq. (16)). Therefore, we may take them as small as we

like, and in effect we neglect the stress-strain relation within a liquid layer. 

 As mentioned before, deformation field is not determined uniquely in 

the liquid core. The situation will remain the same even if we assume the 

Adams-Williamson condition. In particular, y3 is completely undetermined 

because a liquid particle can move about force free along an equipotential

surface. y1 and y2 are only constrained by the relation y2=ρ(9y1-y5). How-

ever, necessary informations about the deformation field will be derived from

y5 and y7.

2.4 Case n=1

 The degree 1 modes of deformation have been considered as 'prohibited' 

since they represented rigid translation of the earth. This is incorrect in the 

load deformation problem (FARRELL, 1972). For example, the melting of ice 

sheets could cause changes in the surface mass loads which might contain 

degree 1 harmonics when expanded into surface harmonic series , thus pro-
ducing the degree 1 modes of deformation. It necessarily shifts the center of 

the earth (r=0), but the center of mass of the earth will remain fixed with
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respect to space. The shift depends on the choice for the origin of coordi -
nates. We may refer to the center of mass of the earth plus loads

, or to the 
center of mass of the undeformed earth , but either choice will put a constraint 
on the solution. 

   An immediate integration of the fundamental differential equations will 

be obtained for the case n=-1. We find that

y1=y3=1 y5=g y2=y4=y6=0 (24)

constitute a solution for n=1. Evidently this solution represents a rigid 

translation of the earth. From the reciprocity theorem (Appendix 1) as ap-

plied between the solution (24) and an arbitrary solution, or directly from 
Eq. I(82), we can prove an identity

where yi(1≦i≦6) represents an arbitrary solution of Eq. I(82) for n=1.

Assuming, for the moment, that the earth's core is entirely solid, and inte-

grating the above equation from  r=0 to r, we obtain

(25)

Thus we have proved the consistency relation which FARRELL (1972) sug-

gested numerically (contrary to Farrell's inference the relation does not hold 
for dynamic case, see Appendix 2). The relation implies that among three

integrations only two are linearly independent. Therefore, a 3×3 linear

equation to determine three constants of integration becomes singular when 

n=1. It is evident, however, by comparing Eq. (25) and the surface bound-

ary conditions, Eq. (10), that if any two of the three boundary conditions 

are satisfied the remaining one is also satisfied. 

   The above consistency relation is valid even if the earth's core is liquid. 

To show this we first mention that

is a solution of Eq. (18) when  n=1, where  Ql1 and  Ql2 are arbitrary constants. 

When the core is liquid down to the center the above solution applies to the 

center, and then  Ql2 should vanish because of the regularity condition. On 

the other hand, when the earth has a solid inner core,  y7 vanishes at the top 

of the inner core because of Eq. (25), and hence This proves  that  y7 is 

identically zero in a liquid layer and that Eq. (25) is valid throughout the earth.
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 Numerically we proceed as follows. We propagate first two solutions in 

Eq. (20) through the mantle to the surface using yl51(b)=-g(b) and yl71(b)=0 as 
initial values, and determine Q31=Ql1 and Q32 using any two of the three bound-

ary conditions. The remaining condition will be satisfied automatically be-
cause of the consistency relation. It remains the shift of the earth's center 
to be determined. 

 According to the well-known formula due to MacCullaugh (e.g., JEFFREYS 
and JEFFREYS, 1956, p. 543), the perturbation in the gravitational potential 

outside the earth can be written as

(26)

where

M: total mass of the earth

ΔM: perturbation in the mass of the earth

x,y,z: coordinates of the center of gravitation of the earth.

We see that ψd(a) of a n=1 deformation is proportional to the coordinates

of the center of gravitation. If we refer to the center of gravitation of the

undeformed earth, we should have ψd(a)=0. Remembering Eq . (7) and

ψ(a)=ψl(a)+ψd(a), we determine the remaining constant Q33 by

Fig. 4. Static load deformation for n=1 .
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y5(a)=Q31y351(a)+Q32y352(a)+Q339(a)=1 (27)

where Q31 and Q32 are already determined. A complete solution in the mantle

is given by y3i=ΣQ3jy3ij, y3i3 being solution (24) . In this formulation the dis-

placement at the center of the earth (r=0) is not always zero but its amount

is negligible; in the case shown in Fig. 4 the shift of earth's center is about

2×10-3 of the surface displacement.

 2.5 Rotational deformation 

 The potential for the centrifugal force due to earth's rotation is expressed 

by

(28)

where Ω=(Ωx, Ωy, Ωz) is the rotation vector. Each term except for the first

represents a harmonic function and the deformation due to such a potential 

can be computed by using the scheme described before.

The first term is exceptional in that it is not harmonic. Noting ψ=

ψr+ψd, we should solve

∇2ψ=4πGdiv(ρu)+2ΩΩ2

instead of the ordinary Poisson's equation. The equations become inhomo-

geneous. For the sake of normalization we take ΩΩ2=3/aa2, then the equations

to be solved are

(29)

Naturally the equations are identical to Eq. 1(89) except for the terms con-

taining 2r/aa2. A solution of these equations will be expressed in terms of a 

solution of homogeneous equations, i.e., a solution of Eq. 1(89), and a par-

ticular solution of Eq. (29). The former, yi1, will be obtained by the method
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discussed in Sec. 2.2, and the latter, yi2, by integrating Eq. (29) using initial 

values

(30)

A general solution is

(31)

Surface boundary condition for y6 is a little different from the one in the 

general case. We assume

(32)

and call k*0 'tidal Love number' for the rotational deformation. The remain-

ing two Love numbers, h*0 and l*0, will also be defined, corresponding to h'0

and l'0. By definition we have

(33)

This, together with y2(a)=0, determines the two constants, Q1 and Q2, in Eq. 

(31). Evidently, we get l*0=k*0=0, but we get a non-trivial value for h*0=
 g(a)yi(a). The vanishing of k*0 is also evident from Eq. (26) because the mass 
of the earth is conserved during deformation.

3. Discussion and Conclusion 

 Results of calculation for Wang's earth model (WANG, 1972) based on 

the present theory are shown in Figs. 1-4, and summarized in Table 1. Wang's 

model was chosen because it was intended to represent an average earth and 

because its parameter values are given in tabular form. All the computations 

were performed in double precision and using following units:

length: km
density: g/cm3
seismic velocity: km/sec.

Radial functions, yi, are normalized so that disturbing potentials become
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Yn(θ,φ) at the surface. The present results compares well with previous re-

sults (e.g., LONGMAN, 1966; FARRELL, 1972). 

An objection that might be raised against the present theory will be that 

we have discarded the stress-strain relation in the liquid core, although we 
are not claiming that the relation breaks down in a liquid layer (elasticity of 

the core is taken into account for radial deformation). The equations of 

equilibrium, Eq. (14), are of course of primary importance in equilibrium 

theory; any deformation fields must satisfy those equations in the first place 

whatever the constitutive law may be. With the relative importance of Eq. 

(14) and the stress-strain relation (22) in mind, we have tried to solve Eq. (14) 
first, and succeeded. It turned out in consequence that Eq. (22) was just not 

required to construct relevant solution in the liquid core. We must emphasize, 

however, that the present solution is identical to the conventional one if the 

liquid core actually follows the Adams-Williamson equation. Compare Eq. 

(20) with Longman's equation (20) (LONGMAN, 1963). 
 Another reasoning for the present theory is based on a belief that an 

arbitrary earth model should be in equilibrium state in response to external 

force. This belief is partly supported by the fact that deformation field is 
always determined uniquely in dynamic cases. To see if the dynamic solution 

approaches to the static solution as frequency decreases, semidiurnal tide and 

load problems are solved. In terms of Love numbers the differences between 

dynamic and static solutions are within 0.2% (Table 1). Figure 5 shows radial 

solutions for semidiurnal tide. These curves are almost identical to the solu-
tions shown in Fig. 1 in the mantle. This agreement is not a priori evident 

because if we had assumed the Adams-Williamson condition in the liquid 

outer core, density structure would be different for the static case and the 

agreement would not be justified. Rugged feature of y3 in the liquid core is 

not unexpected because y3 need not be continuous there.

Table 1. Tidal and load Love numbers for Wang's earth model.
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Fig. 5. Semidiurnal tidal deformation for n=2. The unit for y2 is 0.1g/cm3.

Rotational deformation is computed for the first time (Fig. 4). It consists 

of an almost uniform extention in the mantle and a linearly increasing ex-

tensioninthecore.Munk and MacDonald referred to the term ΩΩ2rr2/3 in

Eq. (28) as a potential leading to a purely radial deformation that consists of 

a contraction near the center and an extension in the outer part of the earth 

 (MUNK and MACDONALD, 1960, p. 25). But their reference to Love's solu-
tion seems inappropriate; the effect of self-gravitation was not included in 

Love's solution (LOVE, 1934, p. 143). 

 Displacement due to the diurnal rotation amounts to 0.7km at the 

surface. In other words, the mean radius of the earth word be shorter by 

0.7km than the present length if the earth were not rotating.

 All the computations in this study were performed on HITAC 8700/8800 at the Computer 

Centre, University of Tokyo.

Appendix 1. Reciprocity Theorem

Let yi1 and yi2 be two arbitrary integrations of Eq. I(82)
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I(82)

then an identity

holds. This is another expression of the well-known Betti's reciprocity theorem.

Appendix 2. Consistency Relation for Dynamic Case

A solution that represents rigid translation in dynamic case (ω ≠0, n=1)

is given by

y1=y3=1 y2=y4=0 y5=g-ωω2r y6=-3ωω2.

If we apply the reciprocity theorem to this particular solution and an arbitrary 

solution for n=1, we obtain

Strictly speaking, the 3×3 matrix that results from Eq. (9) is not singular

for finite ω, since any linear combination of y2, y4 and y6 does not vanish

identically. But numerically the matrix may become singular for small ω.

Incidentally, if the boundary condition (9) is substituted the above relation

is reduced to y5(a)=1, which is consistent with Eq. (27) as it should be.
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