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Abstract 
In this article, we have introduced a new probability distribution having three parameters using half 
Cauchy family of distribution named half Cauchy extended exponential distribution. The statistical 
properties and characteristics of the proposed distribution like the hazard rate function (HRF), cumulative 
hazard function, and the probability density function (PDF), and the cumulative distribution function 
(CDF), quantile function and the skewness, kurtosis are provided. The parameters of the proposed 
distribution are estimated using the Cramer-Von-Mises (CVM) least-square estimation (LSE), and 
maximum likelihood estimators (MLE) methods. A real data set is analyzed to test the goodness-of-fit of 
the proposed distribution. It is found that the half Cauchy extended exponential distribution performed 
well as compared to some competing distributions. 
 

Keywords: Hazard function, extended exponential distribution, half Cauchy distribution, estimation 
method 
 

Introduction 

The exponential distribution (ED) plays a significant role in the modeling of survival and 

reliability data in applied statistics and probability theory. It has the memoryless property and 

is a particular case of the geometric and gamma distributions. In addition it can be applied for 

the study of the Poisson point processes. The ED has been widely utilized as a basis 

distribution during the past few decades to construct a more adaptable family of distributions. 

Researchers from several fields presented the ED's modifications and extensions , such as, 

Nadarajah and Kotz (2006) [26] have defined beta exponential, generalized exponential by 

(Gupta & Kundu, 2007) [13], Kumar(2010) [17] has presented Exponential extension(EE) 

distribution, the reliability estimation of the generalized inverted ED by (Abouammoh & 

Alshingiti, 2009) [2], Kumaraswamy exponential (Cordeiro & de Castro, 2011) [11], beta 

generalized exponential (Barreto-Souza et al., 2010) [5], an extension of the ED by (Nadarajah 

& Haghighi, 2011) [25]. Transmuted EE distribution has presented by (Merovci, 2013) [22], 

Gamma EE presented by (Ristic and Balakrishnan, 2012) [28], a novel exponential-type model 

with a bathtub-shaped failure rate function has been described by (Lemonte, 2013) [19]. It 

contains four functions: declining, rising, constant, and upside-down. Gomez et al. (2014) [12] 

and Louzada et al. (2014) [20] presented a novel extension of the ED known as the 

exponentiated exponential geometric. Kumaraswamy transmuted ED (Afify et al., 2016) [3]. 

Mahdavi and Kundu (2017) [21] have developed a new method for extension of the distribution 

by applying the ED. In the present, the Alpha power transformed extended exponential 

distribution has introduced by (Almarashi et al., 2019) [4] and a novel extension of the 

exponential distribution with various statistical properties has been introduced by (Hassan et 

al., 2018) [15].  The Type II half-logistic exponentiated exponential distribution was introduced 

by (Abdulkabir & Ipinyomi, 2020) [1]. Chaudhary and Kumar (2020) [7] has defined the 

extension of ED called the half logistic exponential extension distribution. Another extension 

of ED was presented by (Chaudhary et al. 2020) [8] named the truncated Cauchy power– 

exponential distribution.  
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The half-Cauchy distribution, a specific case of the Cauchy distribution, was used in this article by breaking down the curve at the 

origin to only take into account non-negative values. As an alternative to modeling spreading distances, Shaw (1995) [29] 

employed the half-Cauchy distribution with a strong tail because it can predict more frequent long-distance spreading occurrences. 

In addition, the half-Cauchy distribution is also used by (Paradis et al. 2002) [27] to model ringing data on tits having two species 

in Ireland and Britain. Chaudhary and Kumar (2022) [9] also introduced half Cauchy modified exponential distribution using half 

Cauchy family of distribution.

Let X be a non-negative random variable that follows the half-Cauchy distribution and its cumulative distribution function (CDF) 

can be expressed as  

 

𝑅(𝑥; 𝜃) =
2

𝜋
𝑡𝑎𝑛−1 (

𝑥

𝜃
) , 𝑥 > 0, 𝜃 > 0. (1) 

 

and the probability density function (PDF) corresponding to (1) is, 

 

 𝑟(𝑥; 𝜃) =
2

𝜋
(

𝜃

𝜃2+𝑥2
) , 𝑥 > 0, 𝜃 > 0.  (2) 

 

Therefore we are interested to generate new distribution using half-Cauchy family of distribution. The generating family of 

distribution developed by (Zografas & Balakrishnan, 2009) [32] and CDF of family of distribution can be obtained as  

 

𝐹(𝑥) = ∫ 𝑟(𝑡) 
−𝑙𝑛[1−𝐺(𝑥)]

0
𝑑𝑡, (3) 

 

here 𝐺(𝑥) is the CDF of any baseline distribution and 𝑟(𝑡) is the PDF of any distribution. The family of half-Cauchy distribution 

whose CDF can be defined by using 𝑟(𝑡) as PDF of half-Cauchy distribution defined in (2) as 

 

𝐹(𝑥) = ∫
2

𝜋

𝜃

𝜃2+𝑡2
 

−𝑙𝑛[1−𝐺(𝑥)]

0
𝑑𝑡   

 

         =
2

𝜋
𝑎𝑟𝑐𝑡𝑎𝑛 (−

1

𝜃
𝑙𝑛[1 − 𝐺(𝑥)]) ;  𝑥 > 0, 𝜃 > 0 (4) 

 

The PDF corresponding to (4) can be expressed as 

 

𝑓(𝑥) =
2

𝜋𝜃

𝑔(𝑥)

1−𝐺(𝑥)
[1 + {−

1

𝜃
𝑙𝑜𝑔[1 − 𝐺(𝑥)]}

2

]
−1

; 𝑥 > 0, 𝜃 > 0 (5) 

 

The rest part of this article is organized as, In Section 2, the half Cauchy extended exponential distribution is defined and also we 

present the statistical properties of the proposed distribution such as survival function, probability density function, hazard 

function, cumulative distribution function, cumulative hazard function, quantiles, the measures of skewness based on quartiles and 

kurtosis based on octiles. In Section 3 the estimation of the parameters of the proposed distribution is carried out using the three 

widely used estimation technique namely maximum likelihood estimators (MLE), Cramer-Von-Mises (CVM) and least-square 

(LSE) methods. The application of the proposed model is presented in Section 4. Finally some concluding explanations are 

entered in Section 5.  

 

The Half Cauchy Extended Exponential (HCEE) distribution  

The extension of the exponential distribution has defined by (Joshi, 2015) [15] named it as extended exponential distribution. The 

CDF of extended exponential distribution is  

 

𝐺(𝑥; 𝛽, 𝜆) = 1 − 𝑒𝑥𝑝 (−𝛽𝑥𝑒−
𝜆

𝑥) ; 𝑥 > 0, (𝛽, 𝜆) > 0 (6) 

 

The PDF corresponding to (6) can be written as 

  

𝑔(𝑥; 𝛽, 𝜆) = 𝛽 (1 +
𝜆

𝑥
) 𝑒−

𝜆

𝑥 𝑒𝑥𝑝 (−𝛽𝑥𝑒−
𝜆

𝑥) ; 𝑥 > 0, (𝛽, 𝜆) > 0 (7) 

 

Substituting (6) and (7) in (4) and (5) we get the CDF of HCEE distribution, which is defined as 

  

𝐹(𝑥) =
2

𝜋
𝑎𝑟𝑐𝑡𝑎𝑛 {−

1

𝜃
𝛽𝑥𝑒−𝜆/𝑥} ; 𝑥 > 0, 𝛽, 𝜆, 𝜃 > 0.   (8) 

 

And the PDF of half-Cauchy exponential extension can be expressed as 

  

𝑓(𝑥) =
2

𝜋

𝛽

𝜃
(1 +

𝜆

𝑥
) 𝑒−𝜆/𝑥 {1 + (

1

𝜃
𝛽𝑥𝑒−𝜆/𝑥)

2

}
−1

  (9) 
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Reliability function  

The reliability function of HCEE is  

 

𝑟(𝑥) = 1 −
2

𝜋
𝑎𝑟𝑐𝑡𝑎𝑛 {−

1

𝜃
𝛽𝑥𝑒−𝜆/𝑥} , 𝑥 > 0, 𝛽, 𝜆, 𝜃 > 0. (10) 

 

Hazard rate function  

Hazard rate function of HCEE distribution with parameters (𝛽, 𝜆, 𝜃) is 

ℎ(𝑡) =
𝑓(𝑡)

1−𝐹(𝑡)
;  0 < 𝑡 < ∞  

 

          =
2

𝜋

𝛽

𝜃
(1 +

𝜆

𝑥
) 𝑒−𝜆/𝑥 {1 + (

1

𝜃
𝛽𝑥𝑒−𝜆/𝑥)

2

}
−1

[1 −
2

𝜋
𝑎𝑟𝑐𝑡𝑎𝑛 {−

1

𝜃
𝛽𝑥𝑒−𝜆/𝑥}]

−1

 (11) 

 

Reverse hazard function of HCEE  
The reverse hazard function of HCEE can be defined as 

 

𝒉𝒓𝒆𝒗(𝒙) =
𝒇(𝒙)

𝟏−𝒓(𝒙)
  

 

                =
2

𝜋

𝛽

𝜃
(1 +

𝜆

𝑥
) 𝑒−𝜆/𝑥 {1 + (

1

𝜃
𝛽𝑥𝑒−𝜆/𝑥)

2

}
−1

[
2

𝜋
𝑎𝑟𝑐𝑡𝑎𝑛 {−

1

𝜃
𝛽𝑥𝑒−𝜆/𝑥}]

−1

 (12) 

 

The various shapes of PDF and hazard rate function of HCEE(𝛽, 𝜆, 𝜃)with different values of parameters are shown in Figure 1. 

 

  
 

Fig 1: PDF (left panel) and hazard function (right panel) for fixed λ, and different values of β and θ. 

 

Cumulative hazard function (chf) 

The chf of the HCEE(𝛽, 𝜆, 𝜃)is defined as 

 

𝐻(𝑥) = ∫ ℎ(𝑦)𝑑𝑦
𝑥

−∞
  

 

= − 𝑙𝑜𝑔[1 − 𝐹(𝑥)]  
 

= − 𝑙𝑜𝑔 [1 −
2

𝜋
𝑎𝑟𝑐𝑡𝑎𝑛 {−

1

𝜃
𝛽𝑥𝑒−𝜆/𝑥}]  (13) 

 

Quantile function 

Let X be a positive random variable with CDF 𝐹(𝑥) then quantile function can be defined as 

 

𝑄(𝑢) = 𝐹−1(𝑢)  
 

 −𝛽𝑥𝑒−
𝜆

𝑥 + 𝜃 𝑡𝑎𝑛 (
𝜋𝑢

2
) = 0 ;  0 < 𝑢 < 1 (14) 

 

The random deviate generation for the HCEE(𝛽, 𝜆, 𝜃)is, 

 

−𝛽𝑥𝑒−
𝜆

𝑥 + 𝜃 𝑡𝑎𝑛 (
𝜋𝑣

2
) = 0 ;  0 < 𝑣 < 1  (15) 
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Skewness and Kurtosis  

The Bowley’s coefficient of skewness based on quartiles is, 

 

𝑆𝑘(𝐵) =
𝑄(3/4)+𝑄(1/4)−2𝑄(1/2)

𝑄(3/4)−𝑄(1/4)
, and 

 

Coefficient of kurtosis based on octiles defined by (Moors, 1988) [22] is 

 

𝐾 −𝑀𝑜𝑜𝑟𝑠 =
𝑄(0.875)−𝑄(0.625)−𝑄(0.125)+𝑄(0.375)

𝑄(3/4)−𝑄(1/4)
  

 

Parameter estimation 

Maximum Likelihood Estimation (MLE) 

Here, we have presented the ML estimators (MLE's) of the HCEE distribution are estimated by using MLE method. Let  

�̱�  =  (𝑥1, … , 𝑥𝑛) be a random sample of size ‘n’ from HCEE(𝛽, 𝜆, 𝜃) then the log likelihood function can be written as, 

 

ℓ(𝜆, 𝛽, 𝜃|𝑥) = 𝑛 𝑙𝑛 (
2

𝜋
) + 𝑛 𝑙𝑛 𝛽 + 𝑛 𝑙𝑛 𝜃 + ∑ 𝑙𝑛 (1 +

𝜆

𝑥𝑖
)𝑛

𝑖=1 −∑
𝜆

𝑥𝑖

𝑛
𝑖=1 −∑ 𝑙𝑛 {𝜃2 + (𝛽𝑥𝑖𝑒

−𝜆/𝑥𝑖)
2
}𝑛

𝑖=1    (16) 

Differentiating (16) with respect to β, λ and θ, we get 

 
𝜕ℓ

𝜕𝛽
=
𝑛

𝛽
− 2𝛽 [∑ (𝑥𝑖𝑒

−𝜆/𝑥𝑖)
2
{𝜃2 + (𝛽𝑥𝑖𝑒

−𝜆/𝑥𝑖)
2
}
−1

𝑛
𝑖=1 ]  

 
𝜕ℓ

𝜕𝜆
= ∑ [(1 +

𝜆

𝑥𝑖
)
−1

+ 2 {𝜃2 + (𝛽𝑥𝑖𝑒
−𝜆/𝑥𝑖)

2
}
−1

(𝛽𝑥𝑖𝑒
−𝜆/𝑥𝑖)

2
− 1] (

1

𝑥𝑖
)𝑛

𝑖=1   

 
𝜕ℓ

𝜕𝜃
=
𝑛

𝜃
− 2𝜃 ∑ {𝜃2 + (𝛽𝑥𝑖𝑒

−𝜆/𝑥𝑖)
2
}
−1

𝑛
𝑖=1   

 

Solving 
𝜕ℓ

𝜕𝛽
=

𝜕ℓ

𝜕𝜆
=

𝜕ℓ

𝜕𝜃
= 0 for the β, λ and θ we get the ML estimators of the HCEE(𝛽, 𝜆, 𝜃) distribution. But normally, it is not 

possible to solve non-linear equations above so with the aid of suitable computer software one can solve them easily. Let 𝛩 =

(𝛽, 𝜆, 𝜃) denote the parameter vector of HCEE(𝛽, 𝜆, 𝜃) and the corresponding MLE of 𝛩 as�̂� = (�̂�, �̂�, �̂�) then the asymptotic 

normality results in, (�̂� − 𝛩) → 𝑁3 [0, (𝐼(𝛩))
−1

] where 𝐼(𝛩) is the Fisher’s information matrix given by, 

 

𝐼(𝛩) = −

(

  
 

𝐸 (
𝜕2𝑙

𝜕𝛽2
) 𝐸 (

𝜕2𝑙

𝜕𝛽𝜕𝜆
) 𝐸 (

𝜕2𝑙

𝜕𝛽𝜕𝜃
)

𝐸 (
𝜕2𝑙

𝜕𝛽𝜕𝜆
) 𝐸 (

𝜕2𝑙

𝜕𝜆2
) 𝐸 (

𝜕2𝑙

𝜕𝜆𝜕𝜃
)

𝐸 (
𝜕2𝑙

𝜕𝛽𝜕𝜃
) 𝐸 (

𝜕2𝑙

𝜕𝜆𝜕𝜃
) 𝐸 (

𝜕2𝑙

𝜕𝜃2
) )

  
 

  

 

In practice, we don’t know 𝛩 hence it is useless that the MLE has an asymptotic variance(𝐼(𝛩))
−1

. Hence we approximate the 

asymptotic variance by plugging in the estimated value of the parameters. The observed fisher information matrix 𝑂(�̂�) is used as 

an estimate of the information matrix 𝐼(𝛩) given by 

 

𝑂(�̂�) = −

(

  
 

𝜕2𝑙

𝜕�̂�2

𝜕2𝑙

𝜕�̂�𝜕�̂�

𝜕2𝑙

𝜕�̂�𝜕�̂�

𝜕2𝑙

𝜕�̂�𝜕�̂�

𝜕2𝑙

𝜕�̂�2

𝜕2𝑙

𝜕�̂�𝜕�̂�

𝜕2𝑙

𝜕�̂�𝜕�̂�

𝜕2𝑙

𝜕�̂�𝜕�̂�

𝜕2𝑙

𝜕�̂�2 )

  
 

|(�̂�,�̂�,�̂�)

= −𝐻(𝛩)
|(𝛩=�̂�)

  

 

where H is the Hessian matrix. 

The Newton-Raphson algorithm to maximize the likelihood produces the observed information matrix. Therefore, the variance-

covariance matrix is given by, 

 

[−𝐻(𝛩)
|(𝛩=�̂�)

]

−1

= (

𝑣𝑎𝑟( �̂�) 𝑐𝑜𝑣( �̂�, �̂�) 𝑐𝑜𝑣( �̂�, �̂�)

𝑐𝑜𝑣( �̂�, �̂�) 𝑣𝑎𝑟( �̂�) 𝑐𝑜𝑣( �̂�, �̂�)

𝑐𝑜𝑣( �̂�, �̂�) 𝑐𝑜𝑣( �̂�, �̂�) 𝑣𝑎𝑟( �̂�)

) (17) 

 

Hence from the asymptotic normality of MLEs, approximate 100(1-b) % confidence intervals for β, λ and θ of HCEE(𝛽, 𝜆, 𝜃) can 

be constructed as, 
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�̂� ± 𝑍𝑏/2√𝑣𝑎𝑟( �̂�) , �̂� ± 𝑍𝑏/2√𝑣𝑎𝑟( �̂�) and �̂� ± 𝑍𝑏/2√𝑣𝑎𝑟( �̂�). 

 

where 𝑍𝑏/2is the upper percentile of standard normal variate. 

 

Method of Least-Square Estimation (LSE) 

The another method of estimation we have used is least-square estimation to estimate the unknown parameters β, λ and θ of 

HCEE distribution and can be calculated by minimizing 

  

𝑇(𝑋; 𝛽, 𝜆, 𝜃) = ∑ [𝐹(𝑋𝑖) −
𝑖

𝑛+1
]𝑛

𝑖=1

2

  (18) 

 

with respect to unknown parameters β, λ and θ. 

Suppose 𝐹(𝑋𝑖) denotes the CDF of the ordered random variables 𝑋(1) <  X(2) < … <  X(𝑛) where {𝑋1, 𝑋2, … , 𝑋𝑛} is a random 

sample of size n from a distribution function F(.). The least-square estimators of β, λ and θ say �̂�, �̂� 𝑎𝑛𝑑 �̂� respectively, can be 

obtained by minimizing 

 

𝑇(𝑋; 𝛽, 𝜆, 𝜃) = ∑ [
2

𝜋
𝑎𝑟𝑐𝑡𝑎𝑛 {−

1

𝜃
𝛽𝑥𝑖𝑒

−𝜆/𝑥𝑖} −
𝑖

𝑛+1
]𝑛

𝑖=1

2

; 𝑥 > 0, 𝛽, 𝜆, 𝜃 > 0.  (19) 

 

with respect to β, λ and θ. Differentiating (19) with respect to β, λ and θ we get, 

 
𝜕𝑇

𝜕𝛽
=
−4

𝜋𝜃
∑ 𝑥𝑖𝑒

−𝜆/𝑥𝑖 [
2

𝜋
𝑎𝑟𝑐𝑡𝑎𝑛{𝑀(𝑥𝑖)} −

𝑖

𝑛+1
]𝑛

𝑖=1 [1 + {𝑀(𝑥𝑖)}
2]−1  

 

𝜕𝑇

𝜕𝜆
=
4𝛽

𝜋𝜃
∑ 𝑒

−
𝜆

𝑥𝑖 [
2

𝜋
𝑎𝑟𝑐𝑡𝑎𝑛{𝑀(𝑥𝑖)} −

𝑖

𝑛+1
]𝑛

𝑖=1 [1 + {𝑀(𝑥𝑖)}
2]−1  

 
𝜕𝑇

𝜕𝜃
=

4𝛽

𝜋𝜃2
∑ 𝑥𝑖𝑒

−𝜆/𝑥𝑖 [
2

𝜋
𝑎𝑟𝑐𝑡𝑎𝑛{𝑀(𝑥𝑖)} −

𝑖

𝑛+1
]𝑛

𝑖=1 [1 + {𝑀(𝑥𝑖)}
2]−1  

 

where  𝑀(𝑥𝑖) = −
1

𝜃
𝛽𝑥𝑖𝑒

−𝜆/𝑥𝑖. 

 

Similarly the weighted least square estimators is computed by minimizing 

 

𝐵(𝑋; 𝛽, 𝜆, 𝜃) = ∑ 𝑤𝑖 [𝐹(𝑋(𝑖)) −
𝑖

𝑛+1
]𝑛

𝑖=1   

 

with respect to β, λ and θ. The weights wi are 𝑤𝑖 =
1

𝑉𝑎𝑟(𝑋(𝑖))
=
(𝑛+1)2(𝑛+2)

𝑖(𝑛−𝑖+1)
. Hence, the weighted least square estimators of β, λ and 

θ respectively can be obtained by minimizing, 

 

𝐵(𝑋; 𝛽, 𝜆, 𝜃) = ∑
(𝑛+1)2(𝑛+2)

𝑖(𝑛−𝑖+1)
[
2

𝜋
𝑎𝑟𝑐𝑡𝑎𝑛 {−

1

𝜃
𝛽𝑥𝑖𝑒

−𝜆/𝑥𝑖} −
𝑖

𝑛+1
]𝑛

𝑖=1

2

 (20) 

 

with respect to β, λ and θ. 

 

Method of Cramer-Von-Mises estimation (CVME) 

The Cramer-Von-Mises estimators of β, λ and θ are obtained by minimizing the function 

 

𝐾(𝑋; 𝛽, 𝜆, 𝜃) =
1

12𝑛
+∑ [𝐹(𝑥𝑖:𝑛|𝛽, 𝜆, 𝜃) −

2𝑖−1

2𝑛
]𝑛

𝑖=1

2

  

 

=
1

12𝑛
+∑ [

2

𝜋
𝑎𝑟𝑐𝑡𝑎𝑛 {−

1

𝜃
𝛽𝑥𝑖𝑒

−𝜆/𝑥𝑖} −
2𝑖−1

2𝑛
]𝑛

𝑖=1

2

 (21) 

 

Differentiating (21) with respect to β, λ and θ we get, 

 
𝜕𝐾

𝜕𝛽
=
−4

𝜋𝜃
∑ 𝑥𝑖𝑒

−𝜆/𝑥𝑖 [
2

𝜋
𝑎𝑟𝑐𝑡𝑎𝑛{𝑀(𝑥𝑖)} −

2𝑖−1

2𝑛
]𝑛

𝑖=1 [1 + {𝑀(𝑥𝑖)}
2]−1  

 
𝜕𝐾

𝜕𝜆
=
4𝛽

𝜋𝜃
∑ 𝑒−𝜆/𝑥𝑖 [

2

𝜋
𝑎𝑟𝑐𝑡𝑎𝑛{𝑀(𝑥𝑖)} −

2𝑖−1

2𝑛
]𝑛

𝑖=1 [1 + {𝑀(𝑥𝑖)}
2]−1  

 
𝜕𝐾

𝜕𝜃
=

4𝛽

𝜋𝜃2
∑ 𝑥𝑖𝑒

−𝜆/𝑥𝑖 [
2

𝜋
𝑎𝑟𝑐𝑡𝑎𝑛{𝑀(𝑥𝑖)} −

𝑖

𝑛+1
]𝑛

𝑖=1 [1 + {𝑀(𝑥𝑖)}
2]−1  
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Where  𝑀(𝑥𝑖) = −
1

𝜃
𝛽𝑥𝑖𝑒

−𝜆/𝑥𝑖. After solving non-linear equations 
𝜕𝐾

𝜕𝛽
= 0,

𝜕𝐾

𝜕𝜆
= 0 𝑎𝑛𝑑 

𝜕𝐾

𝜕𝜃
= 0 simultaneously we will get the 

CVM estimators. 

 

Application to Real Dataset 

The data given below represents the fatigue life of 6061-T6 aluminum coupons cut parallel to the direction of rolling and 

oscillated at 18 cycles per seconds (cps) which consists of 101 observations with maximum stress per cycle 31,000 psi. This data 

set was originally analyzed by (Birnbaum & Saunders, 1969) [6]. 

 

70, 90, 96, 97, 99, 100, 103, 104, 104, 105, 107, 108, 108, 108, 109, 109, 112, 112, 113, 114, 114, 114, 116, 119, 120, 120, 120, 

121, 121, 123, 124, 124, 124, 124, 124, 128, 128, 129, 129, 130, 130, 130, 131, 131, 131, 131, 131, 132, 132, 132, 133, 134, 134, 

134, 134, 134, 136, 136, 137, 138, 138, 138, 139, 139, 141, 141, 142, 142, 142, 142, 142, 142, 144, 144, 145, 146, 148, 148, 149, 

151, 151, 152, 155, 156, 157, 157, 157, 157, 158, 159, 162, 163, 163, 164, 166, 166, 168, 170, 174, 196, 212  

 

By utilizing R software (R Core Team, 2020) [31] of the optim () function, we have calculated the MLEs of HCEE distribution by 

maximizing the likelihood function (16). We have obtained the value of Log-Likelihood is l = -458.5402, �̂�=29.6600, 

�̂�=1018.6973 and �̂�=1.8073. We have depicted the graph of profile log-likelihood function for the parameters β, λ and θ in Figure 

2 and found that the ML estimates can be calculated uniquely. 

 

   
 

 
 

Fig 2: Profile log-likelihood function of the parameters β, λ and θ. 

 

We have presented the graph of P-P plot and Q-Q plot in Figure 3 and it is found that the HCEE distribution fits the data very 

well.  
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Fig 3: The P-P plot (left panel) and Q-Q plot (right panel) of the HCEE distribution. 
 

Using MLE, LSE and CVE method we have displayed the estimated value of the parameters of HCEE distribution and their 

corresponding negative log-likelihood, and AIC criterion in Table 1.  

  
Table 1: Estimated parameters, log-likelihood, and AIC 

 

Method of Estimation �̂� �̂� �̂� LL AIC HQIC 

MLE 29.6600 1018.6973 1.8073 -458.5402 923.0805 926.2565 

LSE 0.5322 1003.1930 0.0364 -458.5627 923.1254 926.3014 

CVE 0.8713 1023.0540 0.0514 -458.5380 923.0760 926.2520 

 

The KS, W and A2 statistic with their corresponding p-value of MLE, LSE and CVE estimates we have presented in Table 2. 

 
Table 2: The KS, W and A2 statistic with a p-value 

 

Method of Estimation KS(p-value) W(p-value) A2(p-value) 

MLE 0.0642(0.7999) 0.0758(0.7177) 0.6866(0.5697) 

LSE 0.0632(0.8141) 0.0764(0.7138) 0.6840(0.5719) 

CVE 0.0650(0.7866) 0.0758(0.7179) 0.6888(0.5679) 

 

  
 

Fig 4: The Q-Q plot (right panel) and Histogram and the density function of fitted distributions (left panel) of estimation methods MLE, LSE 

and CVM of HCEE distribution. 

 

In this section, we have illustrated the applicability of HCEE distribution using a real dataset used by earlier researchers. To 

compare the fit of the proposed model, we have taken the following six distributions. 

 

i) Chen distribution 

The probability density function of Chen distribution is presented by (Chen, 2000) [9] as 
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𝑓𝐶𝑁(𝑥; 𝜆,  𝛽) = 𝜆 𝛽  𝑥
𝛽−1 𝑒𝑥

𝛽
𝒆𝒙𝒑 {𝜆 (1 − 𝑒𝑥

𝛽
)}  ; (𝜆,  𝛽) > 0,  𝑥 > 0. 

 

ii) Exponential Extension (EE) distribution: NHE 

The density of exponential extension (EE) distribution (Nadarajah & Haghighi, 2011) [24] with parameters α and λ is 

 

𝑓𝐸𝐸(𝑥) = 𝛼𝜆 (1 + 𝜆𝑥)
𝛼−1  𝑒𝑥𝑝{1 − (1 + 𝜆𝑥)𝛼}  ; 𝑥 ≥ 0,  𝛼 > 0,  𝜆  > 0.  

 

iii) Modified Weibull (MW) 

The modified Weibull (MW) distribution was introduced by (Lai et al., 2003) [17] with probability density function (pdf) 

 

𝑓𝑀𝑊(𝑥) = 𝛼(𝜆 + 𝛽𝑥)𝑥
𝜆−1 𝑒𝑥𝑝( 𝛽𝑥 − 𝛼𝑥𝜆𝑒𝛽𝑥 ; (𝛼𝛽𝜆) > 0, 𝑥 > 0  

 

iv) Generalized Exponential (GE) distribution 

The probability density function of generalized exponential distribution (Gupta & Kundu, 1999) [13]. 
 

𝑓𝐺𝐸(𝑥; 𝛼,  𝜆) = 𝛼 𝜆 𝑒
−𝜆 𝑥{1 − 𝑒−𝜆 𝑥}

𝛼−1
 ; (𝛼,  𝜆) > 0,  𝑥 > 0. 

 

v) Weibull Extension Model: 

The probability density function of Weibull extension (WE) distribution (Tang et al., 2003) [32] with three parameters (𝛼, 𝛽, 𝜆) is 

 

𝑓𝑊𝐸(𝑥; 𝛼,  𝛽, 𝜆) =   𝜆𝛽  (
𝑥

𝛼
)
𝛽−1

𝑒𝑥𝑝 (
𝑥

𝛼
)
𝛽

 𝑒𝑥𝑝 {−𝜆𝛼  (𝑒𝑥𝑝 (
𝑥

𝛼
)
𝛽

− 1)}  ;   𝑥 > 0  

 

𝛼 > 0, 𝛽 > 0 and 𝜆 > 0  

 

vi) Exponentiated Weibull Distribution (EW) 

The probability density function (PDF) of exponentiated Weibull distribution (EW) (Mudholkar & Srivastava, 1993) [23] is  

 

𝑓𝐸𝑊(𝑥) = 𝛼𝛽𝜆𝑥
𝛽−1 𝑒𝑥𝑝(−𝛼𝑥𝛽) {1 − 𝑒𝑥𝑝(−𝛼𝑥𝛽)}

𝜆−1
 ; 𝑥 > 0  

 

We have illustrated the Akaike information criterion (AIC), Bayesian information criterion (BIC), Corrected Akaike information 

criterion (CAIC), and Hannan-Quinn information criterion (HQIC) for the evaluation of the applicability of the HCEE 

distribution, which are displayed in Table 3.  

 
Table 3: Log-likelihood (LL), AIC, BIC, CAIC and HQIC 

 

Model LL AIC BIC CAIC HQIC 

HCEE -458.5402 923.0805 930.9258 923.3279 926.2565 

EW -458.7600 923.5201 931.3654 923.7675 926.6961 

EE -460.8964 925.7928 931.0231 925.9153 927.9102 

GE -463.7324 931.4648 936.6951 931.5873 933.5822 

WE -466.0029 938.0058 945.8512 938.2532 941.1818 

Chen -467.0598 938.1196 943.3499 938.2421 940.2370 

MW -469.4255 944.8511 952.6964 945.0985 948.0271 

 

We have displayed the graph of goodness-of-fit of HCEE distribution and some selected distributions are in Figure 5. 

 

  
 

Fig 5: The Histogram and the density function of fitted distributions (left panel) and Empirical distribution function with estimated 

distribution function (right panel) of HCEE distribution. 
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To compare the goodness-of-fit of the HCEE distribution with other competing distributions, we have also displayed the value of 

Kolmogorov-Simnorov (KS), the Anderson-Darling (AD) and the Cramer-Von Mises (CVM) statistic in Table 4. It is observed 

that the HCEE distribution has the minimum value of the test statistic and higher p-value thus we conclude that the HCEE 

distribution gets quite better fit and more consistent and reliable results from others taken for comparison. 

 
Table 4: The goodness-of-fit statistics and their corresponding p-value 

 

Model KS(p-value) AD(p-value) CVM(p-value) 

HCEE 0.0642(0.7999) 0.0758(0.7177) 0.6866(0.5697) 

EW 0.1105(0.1698) 0.1762(0.3190) 0.9031(0.4121) 

EE 0.1226(0.0959) 0.3927(0.0753) 2.3444(0.0600) 

GE 0.1066(0.2014) 0.3112(0.1257) 2.0724(0.0840) 

WE 0.1174(0.1234) 0.3796(0.0817) 2.5899(0.0446) 

Chen 0.1102(0.1718) 0.2960(0.1386) 2.0769(0.0835) 

MW 0.1107(0.1682) 0.3691(0.0871) 2.5820(0.0450) 

 

Conclusion 

In this article, a new distribution named half Cauchy extended exponential distribution is presented. A broad study of some 

statistical characteristics of the new distribution like the derivation of precise expressions for its hazard rate function, survival 

function, the quantile function and skewness and kurtosis are presented. Three well-known estimation methods namely maximum 

likelihood estimation (MLE), Cramer-Von-Mises estimation (CVME), and least-square estimation (LSE) methods are used to 

estimate the parameter and we found that the MLEs are relatively better than LSE and CVM methods. The curves of the PDF of 

the proposed distribution have shown that it can have various shapes like increasing-decreasing and right skewed and flexible for 

modeling real-life data. Also, the graph of the hazard function is monotonically increasing or constant or reverse j-shaped 

according to the value of the model parameters. The applicability and suitability of the half Cauchy extended exponential 

distribution has been evaluated by considering a real-life dataset and the results exposed that the proposed distribution is much 

flexible as compared to some other fitted distributions. 
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