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Abstract

This paper presents necessary and sufficient conditions for

a linear, time-invarlant (LTD system to be inside sector [a, b] in

terms of linear matrix inequalities in its state-space realization

matrices, which represents a generalization of similar conditions
for bounded _foo-norm systems. Further, a weaker definition

of LTI systems strictly inside sector [a, b] is proposed, and

state-space characterization of such systems is presented. Sector

conditions for stability of the negative feedback interconnection

of two LTI systems and for stability of LTI systems with feedback

nonlinearities are investigated using the Lyapunov function

approach. It is shown that the proposed weaker conditions for an
LTI system to be strictly inside a sector are sufficient to establish

closed-loop stability of these systems.

Introduction

Sector conditions for the stability of the feedback

intercormection of general input-output systems were introduced

in [1] and further expanded upon in [2,3]. These results were

developed in an abstractmathematical settingof generalinput-

output maps using operator-theoreticmethods. In thispaper

we firstpresent a state-spacecharacterizationof linear,time-

invarlant(LTI) systems inside sector[a,b], in terms of three

matrix relationsin itssystem matrices,which isreferredto as

the sector-boundednessiemma, sinceitrepresenta generalization

of the bounded realnesslemma for bounded Try-norm systems

[4.5]. Moreover. thisstate-spacecharacterizationof sector-

bounded LTI systems can be equivalentlyexpressedin terms of

linearmatrix inequalities,as shown in Theorem I. Using these

state-spacecharacterizations,analysisof sectorbounds on stable

LTI systems can be performed with algebraicRice.aftequations

as well as convex programming techniquesfor the solutionof

linearmatrix inequalities[6].Next, a new definitionisproposed

forLTI systems strictlyinsidea sector,which isweaker than the

correspondingdefinitioninprevious literature[I,2],and extends

the notion of strictbounded realness [4,5]as well as strict

positiverealness[7].State-spacecharacterizationof LTI systems

strictlyinsidea sectorispresentedinTheorem 2. The nextresult
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in Theorem 3 demonstrates that the weaker definition of systems

strictly inside a sector is adequate to establish sector conditions

for closed-loop stability of the negative feedback intercormection

of two LTI systems [1.2]. thus extending the previously available

results. Theorem 4 presents a similar extension for sector

conditions to guarantee stability of LTI systems with feedback

nonlinearities. Moreover, these results are established using

straightforward Lyapunov function techniques rather than the

abstruse operator theoretic methods. Sector conditions for closed-

loop stability are seen to be a generalization of the small gain

theorem, and the ensuing discussion shows that these conditions

may be used for synthesis of less conservative robust controllers.

as opposed to the small gain theorem-based controllers.

Before proceeding, we present the notation used in the

developments of this paper. Herm{M} is the Hermitlan part

of matrix M, that is. Herm{m} = ½(m + M*). where the

superscript * denotes the conjugate transpose of the matrix;

and M T is the transpose of the matrix, M. A stable linear

time-invarlant system, E, is represented in state-space form
as _ = Ax + Bu, Y = Cx + Du, where x E R n.

u E R m and Y E R m, with n > m. The square transfer

function matrix of _, is G(s) = C(sI - A)-IB + D, and

the quadruple [A, B, C, D] is a state-space representation of

G(s). G-(s) a_ GT(_s) = BT(_sI _AT)-1CT + DT;

thus, the quadruple [-A T, -C T, B T, DTI is a state-spac_

representation of G-(s). A square matrix transfer function. ¢(s)

is said to be parahermitian if ¢-(s) = ¢(s). The next section

discusses the conditions for sector boundextness of LTI systems.

Sector-Bounded LTI Systems

A memoryless, time-varying nonlinearity, ¢'(Y, t), is said
to be inside sector [a, b] if (_b- by)T(¢- ay) S 0 for all

v E W" [1]. Geometrically, these sector conditions imply that
the graph of the nonlinearity lies within a conical region in the

H TM x I_" input-output space for all time. t. For m = 1. Figure

1 shows a nonlinearity, _b(y, t), inside sector [a, b]; the graph of

¢(V, t) must lie in the shaded region within two lines of slopes

a and b. The concept of sector-boundedness extends to linear

time-invariant systems by defining an LTI system. E, to be inside

sector [a, b] if Herm{[G(jw) - al]*[G(jw) - hi]} < O, for all

w E H [10]. The Nyquist plot of an LTI system, inside a sector

[a, b]. b > a, lies within a circle in the frequency plane, whose



center is at [(a + b)]2, j0] and has a radius of (b - a)/2. Note

that a square, bounded, real system, that is, a system satisfying

[[ G(s) []_ < I, is inside sector [-1, 1]; and its Nyquist plot
lies within a unit circle eeomrnd at the origin" For example.

G(s) = 15/(s + 3)(s + 5) is inside sector [-0.4, 1.0] and its

Nyquist plot lies within the corresponding circle, shown in Figure

2. Note that IIG(s)lloo < 1. so that its Nyquist plot also lies

within the unit circle centered at the origin, as shown in Figure 2.

The bounded realness lemma [4.5] gives a state-space

characterization of _oo-norm bounded LTI systems; and these

conditions may equivalently be expressed as linear matrix

inequalities [11]. Theorem 1 below presents the extension of

these state-space characterizations to LTI systems inside sector

[a,b].

Theorem h Given a stable LTI system E : _ = Az +

Bu, y = Cz + Dn, where the quadruple [A, B, C, D] is a

minimal realization of the transfer function matrix. G(s) =

C(sl - A )-I B + D, the following statements are equivalent.

(i) Z is inside sector [a, b].

(ii) There exist real matrices P = pT > O, L lind W which

satisfy

PA + ATp = -cTc- LTL,

PB = cT(a l -- D) - LTw,

D T -a(D + D r ) + abI =D
_wTw_

where a = (a + b)/2.

(iii)There exists a real matrix P = pT > 0 which satisfies the

linear matrix inequality

cTc + PA + ATp PB - cT(ct I --D) ]
BTp-(oI -D)Tc DTD-a(D+D T)+ablj <- O.

The proof of this theorem is presented in the Appendix.

Note that, for a = -1 and b = 1. the conditions in

(ii) are equivalent to the bounded realness lemma [4.5]. and

the linear matrix inequality in (iii) corresponds to an LMI

condition for norm-bounded systems [6,11]. These state-space
characterizations of sector-bounded systems allow the use of

reliable numerical algorithms for solution of linear matrix

inequalities and algebraic Riccati inequalities, to determine

sector-bounds for a given LTI system from its state-space

realizations. The existence of a symmetric, positive definite

solution to the linear matrix inequality (LMI) of condition (iii)

may be established using convex programming techniques as in

[6]. Altermtely. if/_ = DT D-a(D + D r) +abl < O, the LMI

can be equivalently expressed as the algebraic Rieeati inequality

ATP+PA- [PB-cT( I-V)]k

[PB--CT(oLI-- D)]T.+cTc _ o,

using a Schur complements identity. Positive definite solutions of

this algebraic Riecati inequality may be obtained from a solution

of the corresponding algebraic Rice.aft equation and using the

results on comparativesolutionsof theseequations[II, 12].

For linear,time-invariantsystems, the notion of systems

strictlyinsidea given sectorin [i, 2] is more restrictivethan

necessary to establishcertainstabilityresults.Following the

approach in [4.5]forstrictlybounded realsystems and for strictly

positiverealsystems [7],we propose the followingdefinitionof

an LTI system to be strictlyinsidesector[a,b].

Definition:A stableLTI system. G(s), is said to be strictly

insidesector[a,b] if Herm{[G(jw) - oI]'[G(jw) - bI]} < O,

forall[,o[< oc.

This definition for systems strictly inside a sector is weaker

than that in previous literature [i. 2], which corresponds to
Herm{[G(jw) - aI]'[G(jw) - bl]} < -H, for all_ 6 a,

with e > 0. Note that,with a = -I and b = I, the new

definitionof LTI systems strictlyinsidesector[-i, I] reduces

to the conditienfor strict,bounded realnessof the system, that

is, 11G(s)[Ioo < 1. as in [4.5]; whereas, under the previous

definition, LTI systems strictly inside sector [-1, 1] corresponds

to LTI system satisfying IIG(s)IIo_ _< 1 - _, for c > o. For
s 1

example, a transfer function. '.+-_, is strictly inside sector [-1, 1]
with the new definition, but is not so under the previous definition.

Theorems 3 and 4 show that the new (weaker) definition for

systems satisfying sector conditions in a strict sense is adequate

for stability results described therein. The following theorem

characterizesLTI systems strictly inside sector [a, b] in terms of

its state-space realization, and is proved in the Appendix.

Theorem 2: A stable LTI system E : i = Az + Bu, y = Cz +

Du, where the quadruple [A, B, C, D] is a minimal realization
of the transfer function matrix G(s) = C(sl - A) -_ B + D, is

strictly inside sector [a, b] if and only if there exist real matrices

p = pT > O, L and W which satisfy

PA + ATp = --cTc-- LTL,

PB = CT(o_ I -- D) - LT_4 r,

abI - a(D + DT) + Dr D = -wTw,

where a = (a + b)/2, and that the quadruple [A, B, L, W]

is a minimal realization of the transfer function V(s) =

L(sl - A)-IB + IV, which does not have transmission zeros

on the imaginary axis (that is,rank [V(jw)] = m, for all

I'I< _).

Stability Results

Negative feedbackintemonnectionofLTI systems,as shown

in Figure 3, areknown to be stableff the systems satisfycertain

sector eonditiuns given in [1-3].This resultis repeated here to

demonstrate that the weaker conditions to characterize systems

strictly inside a given sector are adequate for stability of the

closed-loop system, and to pmsemt a direct Lyaptmov function-
based proof for these results.

Theorem 3: Comider two stable. LTI systems El, i = 1,2,

with minimal state-space realizations. _, = A,z, + B,n,, y, =

C, zi + D,m, interconnectedin the standard negative feedback
configuration, shown inFigure 3. If _,1 is inside sector [a, b], with

b> 0> a.and is the=tor thentheorigin
is a Lyapunov stable equilibrium point of the closed-loopsystem.

If either Z_ or E_ satisfies the sector conditiom in a strict sense,

then the origin is an asymptotically stableequilibrium point.



A straightforward Lyapunov function based proof to

Theorem 3 is presented in the Appendix. Note that substituting

a = -1 and b = 1 in Theorem 3 leads to a small gain theorem

for stability of the feedback interconnection of LTI systems

shown in Figure 3. The importance of this result stems from the
fact that it can be used for less conservative robust controllers

as opposed to those based on the small gain theorem. While

characterizing uncertainty by the 7/_, norm of the uncertain

plant, the frequeoey response of the plant must lie within a

circle in the frequency plane, whose center must be at the origin.

Tighter bounds for the uncertainty can be achieved by allowing

the center of this circle to move along the real axis, as is provided

by the sector boundedness condition. With tighter bounds on the

uncertainty in terms of sector conditions, the result in Theorem 3

characterizes a larger set of compensators which provide robust

stability, and consequently leads to synthesis of less conservative

robust compensators. For example, by Theorem 3, stable closed-

loop system is achieved with feedback around the plant G(s) in

Figure 2, for all compensators, H(s), whose frequency response

is within the circle corresponding to sector [-1.0, 2.5]. This

circle is shown in Figure 4, along with a unit circle centered

at the origin, within which the frequency response must lie

to guarantee stability by the small gain theorem. Thus, sector

conditions for stability characterize a larger set of compensators

that provide closed-loop stability. Specifically, a compensator

H(s) = 15/s 2 + 4s + 8, whose Nyquist plot is shown in Figure

4, would lead to a stable closed-loop system by Theorem 3;

however, the small gain theorem cannot be used to establish

closed-loop stability. Synthesis of compensators within a given

sector [a, b] can be performed using techniques suggested in [113].

Another stability result in sector theory considers the

stability of linear systems with memoryless nonlinearities in the

feedback loop [13, 14]. Let a minimal state-space realization of

astableLTIsystembeE: _ = Az+Bu, Y =Cx+Du,

and let _P(Y, t) be a memoryless nonlinearity, which may be

time-varying. The problem is to obtain sufficient conditions

for the stability of the negative feedback interconnection of

the LTI system and the nonlinearity, as shown in Figure 5.

Time-varying. nonlinear closed-loop equations of this system are
_, = Ax - Be(V, t), y = Cz - D_,(y, t). Theorem 4 below

shows that under mild conditions on the nonlinearity, the new

definition of LTI systems satisfying sector conditions in a strict

sense is adequate to establish asymptotic stability of the closed-

loop system above.

Theorem 4: Consider the negative feedback interconnection of

a stable LTI system E : x = Az +Bu, y = Cz+ Du,

where the quadruple [A, B, C, D] is a minimal realization, and

a memoryless, time-varying, nonlinearity, ¢(V, t) (as shown in

Figure 5). If the nonlinearity, _b(y, t), is locally Lipsehitz in

V, uniformly Lipsehitz in t, and belongs to sector [a, b], with

b > 0 > a, then the origin is a Lyapunov stable equilibrium point

of the closed-loop system if E is inside sector [-{, -_]. If E

is strictly inside sector [-_, -_], then the origin is a globally

asymptotically stable equilibrium point of the closed-loop system.

The proof of this theorem is given in the Appendix. Note
that the conditions on the nonlinearity ¢,(y, t) are not very

restrictive and are needed for well-posed closed-loop system as

well. Moreover, global asymptotic stability of the closed-loop

is ensured when the nonlinearity satisfies the sector condition

for all y E R m. However. if the nonlinearity satisfies the sector

condition in some local neighborhood of the origin, then this

theorem guarantees (local) asymptotic stability about the origin.

Theorem 4 presents a direct approach to this problem rather

than applying loop transformations to convert sector [a, b] into

sector [0,_) nonlinearities [11, 12]. Similar to Theorem 3.

weaker constraints for LTI systems satisfying sector conditions

in a strict sense make these results more general than those

presented previously in the literature.

The results presented in this paper consider LTI systems

inside sector [a, b] with b > 0 > a. Corresponding results for a

larger class of sectors can be developed with a similar approach

[15]. For example, the negative feedback intercormection of an

LTI system, _1. inside sector [0, b], for b > 0, with another

LTI system, _2, such that (E2 + bl) is strictly positive real is

stable, as expected from [1,2].

Conclusions

A state-space characte,,ization of stable linear time-invarlant

systems inside sector [a, b] in terms of a sector boundndness

l_mma and linear matrix inequalities has been presented.

Moreover, weaker conditions for LTI systems to be strictly

inside a sector are introduced. These weaker conditions are

shown to be adequate for establishing sector conditions for

(1) stability of the negative feedback interconnection of LTI
systems, as well as, (2) the stability of LTI systems with sector-

bounded feedback nonlinearities. Furthermore. a straightforward

proof for these results is presented using the Lyapunov function

approach, in contrast to the operator-theoretic methods used in

previous works. Finally. it is argued, using the interpretation

of sector-boundedness of LTI systems in terms of circles in the

frequency plane, that less conservative robust controllers may

be synthesized with these results, as opposed to those based on

the small gain theorem.
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Appendix

Proof of Theorem l:

(i) => (ii): Note that $(s) =_ a-(s)G(s) - or[G(s) + G-(s)] +

abl, where or = (a + b)/2, is parahermitian. If the linear system

is inside sector [a, b]. then, by definition, $(jw) _< 0, for all
w E R. From the spectral factorization theorem [8, 9], there

exists a stable transfer function, V(s). with no transmission zeros

in the open right-baft plane, such that

,(s) = -V~(s)V(s). (I)

If the quadruple [At,BI, C1, DI] is a minimal realizationof

V(s), then [-A T, -C_, B_, D T] is a minimal realizationfor

V-(s), and a minimal realizationfor the product V-(s)V(s)

is given by

' \-C1 Da

Let Xx = X T > 0 be the observability grammian, that is. Xa

satisfies the Lyapunov equation

ATXa + X, Aa + C3CI = 0. (2)

[,o]Applying the state transformation X_ I ' another minimM

realization for the product V-(s)V(s) is given by

' e_ - CfD,/' (3)

(B_X: + D(Ca B_), DTD_].

Repeating thispro<zss with G(s), which has a minimal

realization [A, B, C, D], a minimal realization of the product

G-(s)a(s), is given by

ICo0_A r) (_xB'B-crD)
x

(BTX + DTc B T), DrD],

where X = X T > 0 ig the syrlllneffic positive definite

observability gmmmian of G(s), that is, X satisfies

ATx + XA + cTc = O. (4)

Therefore, $(s) has a minimal realization

,(a ' + cr(orl -- D)/'

(BTX -- (orl- D)Tc B T ), (5)

D TD - or(D + D T) +abe]

From (1), (3) and (5), we conclude (as in [14]) that there

exists a nonsingular matrix T such that

A, = T-I AT; B1 = T-1B

BTXI+DTCI= -[BTX-(_I-D)TC] T (6)

DTI DI = -[.'I'D-or(D+ D T) .+nb]]

Pmmultiplying (2)by T -T and postmuhiplyingby T -_ resultsin

(T -T ATTT)T -T X,T -T + T -r X1T-'(TA1T-')
(7)

= -T-TcTc:T -1"

Adding (4) and (7) leads to PA + ATp = -cTc - Lr L,

where P = X+T-TX1T -_, P = pT > O, and L = C_T -_.

Setting D = W, and rearranging the terms in (6) leads to the

other two relations in (ii).

(i) ._= (ii): Substituting G(jw) = C(jwl- A)-I B + D, in

_(j,_) = G'(./,,)G0_) - or[G0_,) + G'0,,)] + abl leads to

_(jw) = BT(--jwl -- A T)-'CTC(Jwl _ A)-1B +

B r (-jwl- AT)-acT(D--OrI) +

(D - orI)r C(jwI - A)-' B +

D TD -or(D + D T) +abI.

Using the matrix relations in (ii) leads to

O(jw)= _BT(_jwl_ AT)-'L TL(j_I- A)-aB

- BT(--jwI - AT)-'[PA + A TP](jwl- A)-'B

,: - AT) [,'B÷:w]
-- [B T P + W T L]C(jhOI- A)-'B + wTw.

Using the identity

B T (-jwI- AT) -1 (PA + A TP)(jwl - A)-'B =

- B rP(iwl - A)-'B- B T (-jwl- AT)-aPB,

and some algebraic manipulations lead to

O(jw) = -B r (-,wI - AT)-aL TL(j.d- A)-'B

- WTL(jwl- A)-IB _ wTw

-- -v'(jwW(j.,) _< 0



for all w E R, where V(jw) = L(jwI - A) -1 B + B r.

(ii) ¢_ (iii): This equivalence follows directly by noting that

cTc + PA + ATp PB- cT(aI -- D)BTp-(aI-D)TC DTD-a(D+D T)+abI ]

[ LTL LTW ]= -- wT L wT w <_ O.

Proof of Theorem 2:

If ,_(j_) < 0. for an I" t < _, then ¢(j,,) =
-V*(jw)V(3w). where V(s) = L(sI- a)-x B + W. as in

the proof of Theorem 1. Further, since ¢(jw) is negative definite

on the imaginary axis. V(jw) is full rank on the imaginary axis.

that is. it does not have transmission zeros on the imaginary

axis. Conversely. the proof of Theorem 1 shows that the sector-

boundedness lemma leads to ¢(jw) = -V*(jw)V(jw).

Since V(s) is full rank on the imaginary axis, @(jw) < 0, for

all Iw [ < oc. Further, it is always possible to select L such that

transmission zeros of V(s) are in the open left-half plane [8, 9].

Proof of Theorem 3:

Stability of the closed-loop system is demonstrated using the

foUowing Lyapunov functionV(za, x 2 ) = Va (z , ) - ab V2 ( x _) ,

where V,(z,) = zTP, z,, with P, = pS > 0 being a positive

definite matrix which satisfies the sector-boundedness lemma,

for i = 1,2. Note that since b > 0 > a. V(x_,x2) is a

positive definite function of xa and x2. Time derivative of

V(z,, z2) is 1>(z_, x2) = 1>a(za) - abe{x2). By Theorem

1. for i = 1,2, ff E, is inside sector [a,,b,], then there exist

matrices P, = p T > 0, L, and W,, which satisfy

P,A, + ASp, = -CSC, - LT L,,

P,B, = cT(a, I -- n,) - LTw,,

DSD,- cri(D, + D [) +a,b,l= -wTw,,

(8)

where oq = (a, + b,)/2. Consider 1_,(x,)

= _T(A_P,+ P,A,)_, + u,_B,_P,_,+
first two relations in (8) leads to

= irp,_:,+ r,p,x,
xT p, Biu,. Using the

f;,(_,) = -xTLTL,.,-.TtTw,_,- _TwSL,.,

xT cT c, x, xT cT D,u, 7" r- - -u, D, C,x,

Adding and subtracting uTw,rw, u, for "completing the

square," using the last relationship in (8) and some algebraic

manipulations, results in

?,(_,) = -[L,_, + W,u,]r[L,_, + W,u,]

- (y, - b,u,)r(_, - a.u,)

With these expressions for 1>a(x_) and _ (x2), the time derivative

of the Lyapunov function V(x,, x2) becomes

1>(_,, _) = -(Laxa +W_u,)T(Lax_+Waua)

- (va - bua)r(U, - a_a)

+ ab(L_x2 +W2u2)T(L2x2 +I4_u2)

+ _b(_ + u_/a)r(v_ + u2/b)

Usillg u2 -- y, and u, : --Y2 as implied by the negative

feedback intereonnection, ab (y2 + u2/a)r(y2 + u2/b) =

(ya - bua )T (ya -- au, ). Therefore.

1>(x_, z2) = -(Lax, +WlUl)*(LlXa + WlUl)

- (-_b)(L2_ + W_u_)'(L::2 + W_u_)

< O.

(9)
Thus. the origin is a Lyapunov stable equilibrium of the closed-

loop system.

When one of the system satisfies the sector conditions in a

strict sense, asymptotic stability of the closed-loop is proved using

LaSalle's Invariant Set Theorem [13, 14]. Suppose E2 is strictly

inside sector [-{, -_]. We demonstrate, by contradiction, that

z, = x: = 0 is the only trajectory for which 1>(xa, x2) = 0. If

V (x,, x2) = 0, then (9) implies that y_ = L2x2 + W_u: = O.

If u: # 0, then it has to be an exponentially decreasing function

of time. since transmission zeros of r_(s) are in the open left

half plane. Stability of the linear systems and the minimality

of their realizations imply that xa and z2 are exponentially

decreasing functions of time, leading to 1> (x_, z_) < 0, which

is a contradiction. Thus. the origin is an asymptotically stable

equilibrium point of the closed-loop system. A similar argument
holds ff Ea satisfies the sector conditions in a strict sense.

Proof of Theorem 4:

Consider a Lyapunov function, V(x) = rTPx, where

p = pT > 0 is a symmetric positive definite matrix which

satisfies the sector-boundexlness lemma in Theorem 1. From the

proof of Theorem 3, we get

1> (x) = -[Lz + Wu]T[Lx + Wu] - (Y + ula)T (y + u/b)

(1o)

Since the nonlinearity, ¢(y,t). is inside sector [a, hi,

(_--by)T(¢--ay) < O, for all y. The negative

feedback condition implies that u = -¢. Thus. we have

(u + by)T(u + ay) <_ O, or. (y + u/a)r(y + u/b) >_ O. Thus.

from (10) we have 1)"(x) _< O, and the origin is Lyapunov stable.

If _ satisfies the sector conditions in a strict sense, and

I> (_) = 0, then z = 0 is the only possible trajectory of the

system, by a contradiction argument as in Theorem 3. Thus,

by the Invariance Theorems in [14], the closed-loop system is

asymptotically stable.



¥(Y)

4

Figure 1. Memorylcss Nonlinearity Inside Sector [a,b].
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Figure 2. Nyquist Plot of G(s) = 15/(s+3)(s+5)

Inside Sector [-0.4, 1.0].
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Figure 4. Nyquist Plot of H(s) = 15/(P2 + 4s + 8)
Inside Sector [-1.0, 2.5].
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Figure 3. Negative feedback interconnection of two

LTI systems, E_ and E2.

Figure5. Absolute stabilityframework, withnonlinearity,¥, in

negative feedback about an LTI system, E.






