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SOME PROPERTIES OF 6-DIMENSIONAL K-SPACES
By Kicoiro TAKAMATSU

§1. Introduction.

It is a well-known conjecture that a compact Riemannian manifold M with
constant scalar curvature R is isometric to a sphere if it admits a one-parameter
group of proper conformal transformations. One of the purposes of the present
paper is to prove that the above conjecture is true in a 6-dimensional compact K-
space without assuming that the scalar curvature is constant (cf. Theorem 5. 2).
We shall also prove that a 6-dimensional compact simply connected K-space is
necessarily isometric to a sphere if it admits a proper projective Killing vector (cf.
Theorem 5. 4).

To prove the so-called sphere theorems, we need sometimes the decomposition
theorems of conformal or projective Killing vectors in a Riemannian manifold. In
this respect, we have already the following theorems in Einstein spaces:

TaeoreM A. (Lichnerowicz [2]) If aen Einstein space M with non vanishing
scalar curvatuve admits an infinitesimal conformal wmotion defined by *, that
is, if we have Lw;:=20g;, p being a function, then the vector v* is decomposed
into

v=p"+{,
where p* is a Killing vector and { is a gradient vector defining an infinitesimal
conformal motion.

TuaeoreM B. (Yano [13]) If an Einstein space M with non vanishing scalar
curvature admits an infinitesimal projective motion v, that is, if we have Lu.{}}
=p,;0%+ 0:0% p; being a covector, then the vector v* is decomposed into

vr=p' {7,
wheve p* is a Killing vector and (' is a gradient vector defining an infinitesimal
projective motion.

In the present paper, we shall show that the decomposition Theorems A and
B hold in a 6-dimensional compact K-space which is not necessarily assumed to be
an Einstein space (cf. Theorem 5. 3 and 6. 2).

In §2, some properties of K-spaces are recalled and, in §3, some lemmas are
proved for the later use. In §4, we shall prove Theorem 4.1 which is useful in
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the proofs of other theorems. In §5, we shall study 6-dimensional K-spaces admit-
ting a proper conformal Killing vector and prove some theorems. In §6, we shall
study 6-dimensional K-spaces admitting a proper projective Killing vector and obtain
some results. In the last §7, some properties of extended almost analytic vectors
in a 6-dimensional compact K-space will be discussed and some results will be
obtained.

§ 2. Preliminaries.

Let M be an #n-dimensional (#>>2) almost Hermitian manifold with Hermitian
structure (F, ¢, i.e. with an almost complex structure tensor F,* and a positive
definite Riemannian metric tensor g¢;; satisfying

2.1 FiF}=-¢,
2.2 gul’ =g
Then, from (2.1) and (2. 2), we have

2.3 Fy=~F,,

where Fy=Figu.
In an almost Hermitian]manifold, we now define the following linear operators

W= @ FRES, 0= @ik EPE),

A tensor Ty (resp. T,%) is said to be pure in the indices j, ¢, if it satisfies
*03 Tap=0 (resp. *O§f To*=0),
and Ty (resp. 7% is said to be Aybrid in the indices j, 7, if it satisfies
O Tep=0 (resp. ORT,2=0).
Then we can easily verify the following properties:
If T is pure (resp. hybrid) in the indices j, i, then we have
FiT =F}Ty (resp. FiT)t=—F}TH).
If S7t is pure (vesp. hybrid) in the indices j, i, then we have
FiSt=F}St (resp. Fy/SP=—F;S™).

Let Ty be pure in the indices j,i. If St is pure (resp. hybrid) in the indices
7 i, then TS is pure (vesp. hybrid) in the indices j, i.

If Ty is pure in the indices j,i and S is hybrid in the indices j, i, then we
have
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TS =0,

These four properties will be often used in the sequel
If an almost Hermitian structure satisfies

2.4 ViFin+ViFi,=0,

where V7, denotes the operator of covariant differentiation with respect to Christoffel
symbols {%4} formed with g;;, then the manifold is called a K-space or a Tachibana
space. Thus, from (2. 4), we have easily

(2.5) 7,FJ =0

in a K-space.
Now, in a K-space, let Ry;* and R;;=R:;* be the Riemannian curvature and
Ricci tensors respectively. Then we have the following identities (cf. Tachibana

[71, 91

(2. 6) *O3V, Fyr =0,

2.7 FoiV U F P =Ry;—R*s,  or  VEF=F"R;—R%y;),
where Vt=g"*F, and R*;;=1/2)F*®RauiF;";

(2. 8) O?ibRabZO, O;};I)R*ab:()y
2.9 R*;=R*,,
(2. 10) ViFu(liF*)=Rji— R*z,

where F7*=F;¢'’; and
(2. 11) (ViFin)PFit = R— R*=constant >0,

where R=¢/*R;; and R*=g¢7'R*;;.
In a K-space, we have

_;_ V,R*=PIR*,,

(cf. Sawaki [4]). Thus we have
@.12) PH(Ru— R¥) =5 F(R—R%)=0,
because, in general, we have

1 )

- V,R=F'R;

in any Riemannian manifold.
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§3. Some lemmas.
In general, it is well-known that the differential form
R =K ;dx Ndz*
is closed in any almost Hermitian manifold, where
K ji=2R ;' Fi— F iV, Fys-T,Fy,

which is called the generalized Chern-form (cf. Tachibana [9]).
In a K-space, taking account of (2. 6) and (2. 10), we have

3.1 K ;i=F/(5R*.—R.),
from which, we have
LevmMAa 3. 1. In a K-space, the relation
(3.2 (Rji— R*;)(BR*7*— R7%)=0
holds.
Proof. Since, by (2.8), K 4 is hybrid and F*F7 is pure in indices j, , we have
(3.3) PF K =0,
from which, applying F?,
(3. 4) Fry R K i+ PR R =0,

In 3.4), as K; is closed and P*F7# is skew-symmetric with respect to all indices,
the second term vanishes. Hence, taking account of (2.7) and (3. 1), we get (3. 2).

LEMMA 3. 2. In a K-space, the velation
(3.5 R*;(RIt— R¥7%) = Ry ;14 O REI®
holds.
Proof. Since F*Ryj is hybrid and P'Fi* is pure in indices i, #, we get
(3.6) F% Ry junVEF =0,
from which, applying 7,
3.7 VF%0. Ry jun VO F 4 F¥3F, Ry jin» VU F i ¥ Ry s P F 0 =),
In the next step, from (2. 1), we have

(3.8) P{FJF")=0,
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from which, applying F%,
3.9 PA7eFy - Fh - PR - PEF R4 PR R PR FIFEFER S =),
On the other hand, since Rjin=0, we have
Rijin(PEFS ViR A PIFr PR - PR IR =3 R jon(PEFy PR =0,
from which and (2. 4),

RyjinVEEy - ViF" = — Ry jin VIF - VEF ™ + Ry jin VI - PRF
(3. 10)
=2RijinViF - VEF ™,

Moreover, by Ryjin;=0, we have
Rijin(FUV*PI R+ FOPE P F + FAPEP IR =31 Rypjom FUVR7F =0,
from which,

Rk]q,h(F”VkVIFLh)=Rkl;7,h(FthkV2Fz]—FLthV]FtZ)
3.11)
=2RkjthkaViF/.

Therefore, transvecting (3. 9) with Ry, and making use of (3.10) and (3. 11),
we get

_g-RkjithFL‘l VR = — 3Ry jsn VTR,

from which,
RijinV*Fy -VIF " =2Ry jsn "RV I,
or, by Ricci’s identity,
RijinV*Fp - ViF" = — Ry jun FM (W VI F —VIVEF )

3.12)
P Rkjih(Rkjih — RkﬁsF):iFsh)-

Thus, substituting (3. 12) into (3. 7), we have
(3.13) — Ry jin( R¥th — RIS FEF R+ BRI, Ry jin VEF Y 4+ F¥ Ry jin ViV F =0,

Since I*F* is skew-symmetric with respect to all indices and VR xj:,;=0 in (3. 13),
the second term of the left hand side vanishes., Thus (3. 13) becomes

(3. 14) FH Ry jn ViV F it = Ry jun( ¥ — RESFER ).
Thus, making use of (2.7), we have (3.5), from (3. 14).
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LEmMMA 3.3. In a K-space, the relation
(3. 15) (Rj—R* ;) (R~ R*1") =4 Ry, ;s O R*I4
holds.
Proof. Equation (3. 2) reduces to
(3.16) (Rj;— R* ;3 )(RIt— R*%) =4 R* (R — R*7%),

Substituting (3. 16) into (3. 5), we get immediately (3. 15).
We now put, for arbitrarily given constants a and b,

3. 17) Tkjih =Rkjih—a{gkh(Rji—'R*ji)_gjh(Rki—R*ki)

+ g5 Rin— R*e) — e R jn— R* j)} + bR — R*)(grng 7i— 9 in0xs)
and
(3.18) U jin =043 T jts.

Then we have
LemMA 3. 4. In a K-space, we have

Ul jin U*7% = R¥OLE Ry jus +2{(n_4)az—za}(Rji_R*ji)(Rﬁ"'R*ji)
3.19)
+{2a242b—4(n—2)ab+ n(n—2)b*(R— R*)y,
for arbitrary constants a and b.

Proof. First we have

a

Oz;IsLTkjts = Oi}iRkjts_ 7

{gan(R ji— R¥ 3i) — g jn(Ryi— R¥x.)

+g:((Rin— R*n)— g Rjn— R*jn)} -+ "21— {FFru(Ry—R* )

(3. 20)
— F)Fyj(Rig— R¥*u) + FogFp¥(Ris— R¥is) — FixFn’ (R s — R¥*55)}

+ ‘%‘ (R—R*)gingsi— 99— Fojlnp+ FiaFr;)
and, hence
Ui U7 = T O08 T jus
= R*OLE T jpo— ag™(RI — R*DOL T pis
3.21) + ag™(R¥ — R¥YO Ty jrs— ag’{(R¥* — R¥*™OL Ty jis
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+agH( R — R*MOM Tigug+ bR — R¥)gH g7 Ot T
—_ b(R —_ R*)gj"g“OﬁLTkjts.

Taking account of (2. 8) and (3. 20), we shall now calculate each term of the right
hand side of (3.21). The first term reduces to

R¥FPQ1 T 1
= R¥IROL Ry jis— —621_ {RIYR j;— R* )+ R¥*(Ris— R*11)
+ R¥*( Ry — R¥en) + RIM(R jp,— R* 1)} + —g— {R¥YR;:—R*y)

(3.22)
+ R Ry — R¥41) + R¥(Rigg— R¥4) + R¥¥(R,— R*,5)}

+ %— (R—R*)(2R—2R¥*)
=RFMOE Ryjrs—2a(R jy— R* ;) )( R — R*7)) + b(R— R*)2.
The second term reduces to
—ag" (R —R*")03 T s
= — L (RIS R Ry R* )+ L (RS~ R¥)(Rys— R¥ )

— (RS — R Rys— R 1) +(R— R¥)t—(RI — R¥¥%)(Rjy— R¥ 1))
(3. 23)

(R R Ry R+ (R R Ry~ R¥)
ab
~ 2 (R~ R¥—(R—R¥—(R—R*Y)

= (n_——zgaz;a (Rji—R* ;) (RI*— R*¥%) % {afF—(n—2)ab}(R—R*).

Since Tijin is skew-symmetric in the indices &,j and also i, %, the third, fourth
and fifth terms are all equal to the second term, that is,

—ag"( R — R¥9)0K Tejus=ag?™(R¥ — R¥)0U Tejes
(3. 24)
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= —ag?{(R¥" — R¥*™)O8 T jus = ag* (R — R*™)O5 T jts-
The last two terms are equal to each other and each of term reduces to

b(R— R*)g*" 4708 Tijis= ~b(R— R*)g7"¢" O T jis
(3. 25)

- {% —(—2)ab+ ﬁ(”;—z)bz}(ze—ze*)a

Substituting (3. 22), (3. 23), (3, 24) and (3. 25) into (3. 21), we have (3. 19).

Substituting (3. 15) into (3. 19), we obtain

(8. 26) Usjin Uk = A(R j;— R* ;) (R7*— R*%) + B(R— R*)?,
with

3.27) A=2n—Da*—4a+ %,

(3. 28) B=2a?+2b—4(n—2)ab+n(n—2)b%

where a and b are arbitrary constants appearing in (3. 17).
If we consider the case A+#nB=0, then we have, from (3. 26),

LemMA 3.5. If, in a K-space, the arbitrary constants a and b satisfy the
condition A+nB=0, then we have

—R* -
(3. 29) UkjihUkjih=A<Rji_R*ji— R—nR—gji> <Rﬁ——R*ﬁ— R nR gﬂ).

We now note that there exist real numbers ¢ and b satisfying the condition
A+nB=0, if and only if »=6.

§4. Some theorems.

When »#=6, there exist constants ¢ and b, for example ¢=1/2, b=1/8, satisfying
A+nB=0. If we put #=6, a=1/2 and b=1/8, then we have, from (3. 29),
3

— R _ R*
UkjihUkjih:—T<Rji_R*ji— R 6R *M) <Rﬁ—R*”—R—6E—*gﬁ>

and hence

— R* _Rx
<Rji—R*ji—%gji> <Rﬂ—~R*ﬁ— R 6R gﬁ> =0,

from which, we have

THeOREM 4. 1. In a 6-dimensional K-space, we have
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R—R*
@1 Ry—R*;= 3 g i-

Next, we have

THEOREM 4. 2, (Gray [1]) There does not exist a A-dimensional K-space, which
is a Kdhler space.

Proof. In (3.27) and (3. 28), if we put =4, =1/8 and b=—1/16, then we get

1
A:——T, BZO.

Hence, from (3. 26) with =4, a=1/8 and b=—1/16, we have

Rj—R*3,=0,
and, transvecting with ¢%,
R—R*=0,
from which and (2. 11),
ViFin=0.

This means that our manifold is Kdhlerian [12].
We shall now prove some theorems concerning curvatures of K-spaces.

THroREM 4. 3. In a 6-dimensional K-space, the scalar curvaturve is a positive
constant.

Proof. Substituting (4. 1) into (3. 2), we have
4.2 %—(R—R*)(SR*—R)=O,
from which and Rx R*, it follows that
4.3 5R*—R=0.

On the other hand, by (2. 12), we have

V,R=V,R*,

Thus, taking account of (4. 3), we have

which means that R is constant. Moreover, since (4. 2) can be written as

5(R— R*)*=4R(R—R*)
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and R—R*>0 because of (2.11), we see R>0.

TueoreM 4.4. In an Einstein K-space, the scalar curvature is a positive
constant.

Proof. From (3. 2), we have
5(Rji— R*;)(RI — R*¥1y=4 R, Rit— R*¥%),

and, substituting R;;=(R/#)g;:,
(Ryi—R¥ )R~ R = 5% (R R¥)

Consequently, by virtue of (2.11), we have R>0.

THEOREM 4.5. In a 6-dimensional Einstein K-space, the gemevalized Chern-
form K vanishes.

Proof. From (3. 2), we have
(BR*ji— Ry BRI~ R)=4R(SR*'—R%)
and, substituting R;;=(R/6)g,i,

(5R*ji— Ry)(GR¥— R = % RGR*—R).

On the other hand, we have, from (4. 3),
5R*ﬁ—Rﬂ=0
Thus we have

Kji ———F]h(5R*hi_ha) =0.

§5. Conformal Killing vectors.
A vector ¢v* is, by definition, a conformal Killing vector if it satisfies
(5. 1) L9 =V Vv, =20q 5,

where _[, is the operation of Lie derivation with respect to o7, p being a scalar.
For a conformal Killing vector, we have already the following

THreorEM 5.1. (Sawaki and Takagi [6]) If a compact K-space M with con-
stant scalar curvature R of dimension n>2 such that

(5.2) Rﬁ—R*ﬂ=kgﬁ (k=constant)
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admits an infinitesimal nonhomothetic conformal transformation (i.e. conformal
Killing vector) L.9;:=20¢;, pconstant, then M is isometric to a sphere.

Thus, from Theorems 4.1, 4.3 and 5. 1, we have immediately

THEOREM 5. 2. If a 6-dimensional compact K-space M admits a proper con-
Jormal Killing vector v*: _Lvg;=20g 5, 0 constant, then M is isometric to a sphere.

We have here the following decomposition theorem:

THEOREM 5. 3. In a 6-dimensional compact K-space, a conformal Killing vector
vt is decomposed into

(5.3) vi=pit g,
where Pt and q" are both Killing vectors.

Proof. In a compact K-space with constant scalar curvature R of dimension
n>2 which satisfies (5. 2), a conformal Killing vector »* is decomposed into

(6.9 v'=p'+y,

where p* is a Killing vector and 7 is a conformal Killing vector which is gradient
(cf. Sawaki and Takagi [6]). Thus, taking account of Theorems 4.1 and 4. 3, we
see that in a 6-dimensional compact K-space, in which the condition (5.2) is not
necessarily assumed, a conformal Killing vector ¢* is decomposed into (5. 4). If we
now put

(5.5) gi=—Fo,
then, applying /7 to (5.5), we have
(5.6) Vight Vigi=—(PIF 4 ViF Sy —(F Vi + FA0y).
Since P4y =pg’", we have, from (2. 3) and (2. 4),
Pigh+Pigi=0,

which means that ¢* is a Killing vector. Substituting »*=F,%q" obtained from (5. 5)
into (5. 4), we have (5. 3).

§6. Projective Killing vectors.

A vector ¢* is, by definition, a projective Killing vector if it satisfies

h 1 ,
Iv{j Z-}=Pj5'$+ﬁi5';: 0;= —n—l——leVTv )

ie., if it satisfies
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(6. 1) Vj%v”—l—Rm"v’:ij?-l- ‘015?
To prove Theorem 6. 2, we need

Lemma 6. 1. (Takamatsu [10]) In @ compact K-space M with constant scalayr
curvature R, if p* is a vector such that V,pi+V.p; is pure in j,i, and, if v, is @
vector such that r,=Vir for a certain scalar v, then we have

6. 2) S P99R judv =0,
M

where dv is the volume element of M.

THEOREM 6. 2. In a 6-dimensional compact K-space, a projective Killing vector
v* is decomposed into

(6.3) vi=pi+7,
where Pt is a Killing vector and v is a gradient projective Killing vector.

Proof. A K-space is orientable. Thus, from the theory of harmonic integrals,
we see that any vector »* can be decomposed into

(6. 4) vi=p*+1,

where 7,p*=0 and #* is a vector such that #*=F% for a certain scalar ». First of
all, we shall prove that F,p;+7,p; is pure in indices 7,i. If we put

Tji: Vypi + Vzpj +FJawa(Vapb + Vbﬁa):
then, we have

PU/TH) = 5 TuT /7 Ty

(6.5) = 71* TuT 7+ pIV Vit Vi) + DI E (VB ) Voot Vs pa)

+pj(ViFJa)sz(Vapb + pra) +ijquibVi(Vapb + pra)y
because

1 )

1 TaT =it V)V '+ F BV (Voo + Vs pa).

The third and fourth terms in the right hand side of (6.5) vanish, because F*F,?
=0 and FV'F,* is skew-symmetric in the indices @, b. Therefore, (6. 5) turns out
to be

6:6)  PPIT)= - TuT P Tt Fpy)+ FFT Tt Top).
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On the other hand, substituting (6. 4) into (6. 1), we have

6.7 Vil p" 4 ViV ir" 4 Ry i v" = p;0%+ 0407,
or
(6. 8) ViVa,pbzplgab_l‘paag_ViVarb—Rriabvr.

Making use of (6. 8), we have
(6 9) ViVan+ ViVbjba:szgab+[7a511;+.0b51&,“2‘7i‘7a7’b-

Transvecting (6. 7) with ¢/t and ¢}, we have respectively,

(6. 10) Vil pr+ Vil + Rent" =204,
and
6.11) Vil 4+ ViVir! — Rys0" =Tp;,

From (6. 10) and (6. 11), we have
Vv ps+ V0, pi=20;,—VWy;— R v+ T0;— ViV '+ R, j0"
(6. 12) )
—:9,01—27”7]-7';'.

Next, substituting (6. 9) and (6. 12) into (6. 6), we obtain
(6. 13) Vi pIT )= % TuTH=2pI7 i +10p70,—2 P F S F 0P y7,.
The second and the fourth terms of the right hand side of (6.13) reduce respec-
tively, by virtue of Ricci’s identity, to
(6. 14) 29970, =205 — R*;i*r5) + 29V ) Vir* =2 pI R Svs+ 2 pIV; 0,
and
ijF]aFibViVbTa=ijJa’Fib(V1;Vb7’a_VbVira)
(6 15) = —PijaFibRibasys
= —2R*, 5 pl.
Thus (6. 13) becomes
(6. 16) Vi Tyo) = % TuTH—2Ry— R*p) pIr* =207V, Vi +10p0,.

Moreover, substituting (4. 1) and 7p,=V,;F* into (6. 16), we have

o 1 " ) *
(6.17) P T = - TaT# = i),
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from which, integrating (6. 17) over M,

(6. 18) S [% T, Tfi—prja]deO,
M

where a=((R—R*)[3)r+4p. Since Vilap’)=pFia+al,p*=pFa, (6. 18) becomes

(6. 19) S —i— T, T4 dp=0,
M

from which it follows that 7;=0, which means that F;p;+ 7, p; is pure in indices 1, +.
To prove that p* is a Killing vector, we put

Uyi=Vps+Vpj.

Then we have

o 1 o
(6. 20) VK o' Up)= =~ UpUT 07 Fi it Vo))
Substituting (6. 12) into (6. 20), we have, by virtue of (6. 14),

Vi Up)=— UpUT—2p 7 Vjri+-9p7p,

(6. 21) = o UpU¥ =297 Ry + 9 p0,— 270 i

UnU?* =27 R i+ (7 0) 2V (07 "),

Nll—* L\')ll—‘ m’w—l

from which, integrating (6. 21) over M,

1 y i
6. 22) S [7 UﬂUﬂ—zprﬁ]dmo.

M
Thus, making use of Lemma 6. 1, we have, from (6. 22),
1 y
S L v Usidv=0,
x 2
from which it follows that U;=0, which means that p* is a Killing vector.
In the last step, we shall prove that »* is a projective Killing vector. Substi-

tuting »*=p*+#* into (6. 1), we have
(6. 23) VlePh-i-RrjihﬁT—f'VjVﬂ’h—]"RrjihTT:pjﬁlf—l-pﬁ’}’,
but, since p* is a Killing vector, it satisfies

Vil p"+ R, ;i p"=0.
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Consequently, we have, from (6. 23),
ViVir™+ Ry "= p,0%+ pid},
which means that #* is a projective Killing vector.
To prove Theorem 6. 4, we need

TueoreM 6. 3. (Obata [3]) Let M be a complete simply connected Riemannian
manifold of dimension n. In order for M to admit a non-trivial solution p for the
system of diffevential equations

(6. 24) Vel joi+ c(2org it 00+ 0igr)=0,  c=constant >0,

it is mecessary and sufficient that M be isometric with a sphere S* of radius 1]/ ¢
in the Fuclidean (n+1)—space.

THEOREM 6. 4. If a 6-dimensional compact simply connected K-space M admits
a proper projective Killing vector v*, then M is isometric to a spheve.

Proof. By Theorem 6. 2, v* is decomposed into
V=77,
where 7* is a gradient projective Killing vector. Then #* satisfies

1
(6. 25) Vilire+ Rsjx? = 050+ 005ty 0i= - A

Transvecting (6. 25) with ¢’%, we have

(6. 26) ViV s+ R =2p4.

On the other hand, we have, by Ricci’s identity,

Vilay="ryr,

=Vl — Ri,’rs
=Tpu+Ri'rs.

Consequently, (6. 26) becomes

(6. 27) S5p1+2Rys7*=0.

Transvecting Fw/F* with (6. 25), we have

F PRV + Bl F* Ryt = Fedl F 03050+ Fil F* pig jn,
from which,

(6. 28) —2R*rt=py,
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because of V=", and F/F"Ryr'=—2R*,r'. Adding the both sides of (6. 27)
and (6. 28), we have

(6. 29) 4pp+ 2Ry — R¥)r=0.
Substituting (4. 1) into (6. 29), we have

R—R*

(6. 30) dpit =3

#,=0,

Applying 7P, to (6. 30), we have, by virtue of (2.12),

—R*

R—R
(6. 31) Vijpi+ 19

V ]CV ]'7’120.
Moreover, interchanging ¢ and % in (6. 25) and adding the equation thus obta-
ined to (6. 25), we get

2V V=200~ 0:0x+ prg i,
or
20V 7. =201 s+ 09k 04z

Substituting the last equation into (6. 31), we obtain
R—R*
(6. 32) ViVs0i + o1 (Zowg i+ pigit pagr)=0.

Thus, by Theorem 6. 3, we see that M is isometric to a sphere,

§7. Extended contravariant almost analytic vectors.

In an almost complex manifold M, a vector »* is called an extended contra-
variant almost analytic vector if it satisfies, for a scalar 2,

(7' 1) IvF]L'*_/?F]TNrLl?}L:O,

where N, is the Nijenhuis tensor, that is, N,;'=F,(0:F7—0.F8)— 3 0: 5 —8,Fb),
(cf. Sawaki and Takamatsu [5]). If 1=0, then ¢* is a usual contravariant almost
analytic vector (cf. Tachibana [7]).

When M is a K-space, for an extended contravariant almost analytic vector »*
corresponding to 1=—1/4, we have, from (7. 1),

(7. 2) Vjvi—F]an,bVavaO,

where v;=¢;07 (cf. Sawaki and Takamatsu [5]). Concerning an extended contra-
variant almost analytic vector in a K-space, we have proved in [11] the following

Lemma 7.1, In a compact K-space, an extended contravariant almost analytic
vector 1", for a constant 2 such that —3j/4=21=0, Ax —1/4, satisfies
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(7.3) Vv + R =0,
and can be decomposed into
(7. 4) vi=p" 1t

wheve V,p*=0 and r* is a vector such that r*=V'r, r being a certain scalar. Move-
over, for the vectors p* and r*, we have respectively

(7.5) *O%Wep*+ 7 p*)=0,
and
(7 6) YLZF]'i: 0.

We shall now prove the following

THEOREM 7. 2. In a 6-dimensional compact K-space, an extended contravariant
almost analytic vector v* for a constant 2 such that —3/4=1=0, Ax—1/4, is neces-
sarily isometric.

Proof. From (7.6), we have
vV F v Fit=0,
which reduces to
7.7 7Ry — R*3)=0,
by (2.10). We have, from (4.1) and (7. 7),

R—R*
6

rsri=0,

from whicn, 7;=0. Consequently, we have, by virtue of (7. 3),
=7
Thus, by F*=0 and (7. 3), we find that »* is a Killing vector.
To prove Theorem 7.4, we need

THEOREM 7.3. (Sawaki and Takagi [6]) Let M be a compact K-space of
dimension n>2 such that

1
n—1

RjizR*ji.

If M admits an extended contravariant almost analytic vector v* for 2=—1/4, then
M is isometric to a sphere.

Thus, from Theorems 4.5 and 7. 3, we have immediately
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THEOREM 7. 4. If a 6-dimensional compact Einstein K-space M admits an ex-
tended contravariant almost analytic vector v* for A=—1/4, then M is isometric to
a sphere.
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