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such as dyslexia, anxiety/depression, obesity, hyper-
tension, osteoporosis, and asthma are often measured
on continuous scales in both research and clinical set-
tings (e.g., reading ability, personality scales, body
size/weight, blood pressure, bone density, bronchial
responsiveness). Although virtually any continuous
measure can be easily dichotomized and thus analyzed
using the available suite of discrete measure tests,
such (arbitrary) data transformations generally result
in wasted information and a subsequent loss of sta-
tistical power to detect genetic effects (Neale and
Cardon, 1992).

Recently, Fulker et al. (1999) developed an ex-
tension of a commonly used linkage analysis approach
for assessment of allelic association in quantitative
traits. This method, embedded in the context of vari-
ance components modeling, makes use of means and
variances between and within siblings to account for
linkage and association simultaneously. For association
assessments, this between/within pair model provides

INTRODUCTION

Recent efforts toward construction of a high-density
map of single nucleotide polymorphisms (SNPs) across
the human genome have generated high expectations
for identification of multifactorial trait loci (Risch and
Merikangas, 1996; Chakravarti, 1998; Kruglyak, 1999;
Lander, 1999). For complex diseases, a number of
family-based allelic association methods have been de-
veloped to accommodate SNP data while addressing
potentially confounding issues such as population
admixture, stratification and the combined effects of
linkage and association (Spielman and Ewens, 1996).
However, the development of analogous methods for
quantitative traits has lagged behind that for discrete
traits. This is unfortunate since many common disorders
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a direct test of gametic phase disequilibrium, i.e., al-
lelic association unconfounded by population sub-
structure (Abecasis et al.,2000). Although several other
family-based methods have recently been proposed for
quantitative trait studies (Allison, 1997; Rabinowitz,
1997; Xiong et al.,1998; Allison et al.,1999a; George
et al.,1999; Cardon, 2000), none shares all of the fea-
tures of explicit modeling of linkage, direct assessment
of population substructure, and flexible handling of
general family structures as does the variance compo-
nents approach.

As no test of association can distinguish causal
variants from alleles in linkage disequilibrium, perhaps
the most useful outcome of an association study is to
help guide the design of further genetic and biological
experiments aimed at identifying and characterizing eti-
ological variants. Given significant evidence for asso-
ciation at some locus, it would be useful to know what
type of markers (in terms of allele frequencies and
spacing/density) should be genotyped further, how
large the estimated effect size at the associated locus is,
or whether the associated allele may be the etiological
variant itself. The between/within variance components
model has a distinctive feature that can provide some
insight into these questions: namely, the model includes
separate parameters for linkage and association effects.
This parameterization differs from most discrete-trait
[e.g., TDT (Spielman et al.,1993)] and continuous-trait
approaches, which tend to model linkage and associa-
tion jointly and therefore evaluate the recombination
fraction, disequilibrium coefficient, and effect size in
a single combined test.

Because of the specific parameterization of the 
between/within model, positive evidence for associa-
tion results in decreased linkage parameter estimates
(Fulker et al.,1999; Abecasis et al.,2000). Consequen-
tly, in general, markers close to the QTL should be ac-
companied by larger association parameter estimates
and therefore smaller linkage estimates than those po-
sitioned more distant to the QTL. This relationship has
not been systematically explored, and it seems that
there is further information in the model to assist in
localization of etiological variants.

Here we evaluate the behavior of the association
and linkage parameters in the model of Fulker et al.
(1999). We show that the between/within pair model-
ing framework permits direct estimation of the pro-
portion of major locus additive genetic variance ex-
plained by disequilibrium between marker and QTL,
thereby providing indirect information about marker–
QTL distance that can assist in fine-mapping studies.
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We show that one of the likelihood-ratio tests used in
the original formulation of the model provides a means
to assess whether evidence for association suggests
complete vs. incomplete linkage disequilibrium be-
tween the marker and QTL. We also show that param-
eter estimates from models including vs. omitting as-
sociation effects can be used to construct estimates of
the minimum disequilibrium coefficient between alleles
at an observed marker and unobserved QTL. Finally, we
use the parameter estimates to delimit the permissible
frequency range of the unobserved QTL alleles.

COMBINED LINKAGE/ASSOCIATION MODEL

The combined linkage/association model of Fulker
et al.(1999) is based on the standard biometrical model
of an observed trait value, yij , for the jth member in the
ith family as a function of an overall phenotypic mean,
µ, a major additive genetic effect, aij , background ge-
netic effects, gij , and random environmental effects, eij :

(1)

where the background genetic and environmental ef-
fects have mean zero. Let q1 and q2 represent alleles of
the QTL responsible for the major genetic effect with
frequencies p and q, respectively. In the absence of
dominance variation, aij = a for QTL genotype q1q1, aij =
0 for genotypes q1q2 and q2q1, and aij = −a for geno-
type q2q2, where a is the additive genetic value of the
QTL. Following standard quantitative genetics theory
(Falconer, 1981), the additive QTL contribution to the
phenotypic mean is a(p − q) and the additive genetic
variance of the QTL, Va, is 2pqa2. Our assumption of
no dominance variance is for simplicity of exposition
only. Approaches for modeling dominance effects in
the Fulker et al. (1999) model have recently been de-
scribed (Sham et al.,2000).

Given this standard biometrical model, the ex-
pected phenotypic variance for any family member is

(2)

where subscripts g and e represent residual familial
and nonshared family environment effects, respec-
tively. Let πijk represent the proportion of alleles shared
identical-by-descent (ibd) at the marker locus for indi-
viduals j and k in family i, and φijk represent the coef-
ficient of relationship between the same individuals.
The ibd sharing information may be derived from
marker-specific or multipoint applications (Kruglyak
and Lander, 1995). Also let σ2

a, σ2
g, and σ2

e represent
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variance parameters to be estimated, corresponding to
Va, Vg, and Ve, respectively. Then the expected vari-
ance/covariance of any two family members is

(3)

Note that the estimate of the additive genetic variance
is confounded with the recombination fraction between
the marker and QTL, shown as f(θ)σ2

a. In sibling pairs,
for example, the estimated component of vari-
ance attributable to a QTL is f(θ)σ2

a = [ + (1 − 2θ)2

(πijk− )]σ2
a (Amos, 1994). For simplicity of expression,

henceforth we use the term σ2
a to refer to f(θ)σ2

a. This
notation does not imply an assumption of θ = 0.

Under an assumption of multivariate normality,
σ2

a, σ2
g, and σ2

e are estimated by maximizing the log of
the likelihood of the data,

(4)

where c is a constant (Lange et al.,1976), Σi is the ex-
pected covariance matrix, yi the observed phenotype
vector, and ŷi the expected phenotype vector for fam-
ily i. Significance tests of the estimates are conducted
by maximizing log(L) without constraints on the pa-
rameters, log(L1), and comparing this likelihood with
models in which selected parameters are fixed at zero,
log(Lo). Asymptotically, the quantity 2[log(L1) − log(L0)]
is distributed as χ2 with degrees of freedom equal to
the difference in number of parameters estimated, al-
though violations of the multivariate normality as-
sumption and specific parameter boundary restrictions
can perturb this distribution (Hopper and Mathews,
1982; Allison et al.,1999b).

The means model of allelic association for sibling
pairs can be conveniently expressed in terms of gene
dosage (Abecasis et al.,2000). Let m1 and m2 represent
alleles of a diallelic marker with frequencies r and s, re-
spectively. Let cij represent the number of m1 alleles
(minus 1) at the marker for individual j in family i. For
ni siblings in family i, let bi = ∑jcij/ni and wij = cij − bi,
so that bi is the expectation of each cij conditional on fam-
ily data and wij is deviation from this expectation for off-
spring j. Positive values of wij indicate that an offspring
inherits more copies of allele m1 than expected, while
negative values refer to excess inheritance of allele m2.
The linear model proposed by Fulker et al. (1999) is

(5)ŷ b wij b i w ij= + +µ β β
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so that the overall QTL mean is partitioned into be-
tween- and within-family effects defined on the basis
of marker genotypes. Between-family effects may be
influenced by such factors as population substructure,
while within-family effects should reflect only gametic
phase disequilibrium. A test of βb = βw can be used to
evaluate evidence for population substructure. If βb =
βw, a more parsimonious expression of the model is

(6)

In all forms of this combined linkage/association
model, the association parameters may be tested for
significance while the standard variance parameters are
left free to vary.

CHANGE IN VARIANCE DUE TO 
ASSOCIATION

In the likelihood given in (4), the matrix ∑i is used
to model the expected variance of the residuals. When the
predicted trait vector, ŷi contains only the population mean
(as in a linkage-only model in which ŷi = µ for all i), the
quantity ∑i(yi − ŷi)′ (yi − ŷi) in (4) reflects the total phe-
notypic variance (i.e., Ve + Vg + Va). However, the bet-
ween/within model in (5) or (6) expresses each ŷi as a
function of the marker so that ∑i(yi − ŷi)′ (yi − ŷi) no
longer reflects the total phenotypic variance. To describe
∑i(yi − ŷi)′ (yi − ŷi), we require the variances and covari-
ance of the observed and predicted trait scores, yi and ŷi.

The variance of y is shown in (2).To determine the
variance of ŷ, it is convenient to consider “additive ge-
netic values” for the marker genotypes as α for geno-
type m1m1, 0 for genotype m1m2, and −α for genotype
m2m2 (at present, α is undefined; in the Appendix we
show that α = aD/rs,where D is the disequilibrium co-
efficient between m1 and q1). Then, as in the usual bio-
metrical model, the variance of ŷ is simply Vŷ = Vα =
2rsα2. The covariance between y and ŷ is Cy,ŷ =

, since aij and αkl are mean devi-

ates for y and ŷ, respectively (see the Appendix). When
allelic association between q1 and m1 is expressed in
terms of the haplotype frequency and the product of the
component allele frequencies, D = P(q1m1) − pr, the
probabilities of the joint marker–QTL genotypes can
be simply determined (Weiss, 1993). These frequen-
cies, together with the genetic values a and α for each
possible genotype pair, are given in Table I and can be
used to show that Cy,ŷ = 2rsα2 = Va.

Using these quantities, the variance described by
∑i(yi − ŷi)′ (yi − ŷi) in the between/within model is Vy +

P q q m m ai
ijkl

j k l ij kl( )∑ α

ŷ b w cij a i i a ij= + +( ) = +µ β µ β
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Vŷ − 2Cy,ŷ = Ve + Vg + Va − Vα. Thus, the linkage pa-
rameter in the between/within model provides an esti-
mate of the difference between the additive genetic
variance of the QTL and the variance of the QTL ex-
plained by association with the marker allele:

(7)

The relationship between Vα and Va is shown in
Fig. 1, where it can be seen that although the total es-
timated genetic variance is constant for all levels of dis-
equilibrium, Va decreases and Vα increases with dise-
quilibrium levels. That is, the total variance explained
by the between/within model is the same whatever the
level of disequilibrium, but it is partitioned into dif-
ferent parameters in proportion to the degree of asso-
ciation between the marker and QTL.

Knowing the actual basis of the linkage parameter,
σ2

a, helps to clarify some patterns under different condi-
tions of disequilibrium and marker/QTL allele frequen-

σ αa aV V2 = −

cies (Table II). When D = 0, σ2
a reduces to the typical

additive genetic variance of a QTL, but when the ab-
solute value of D is between 0 and Dmax (0 < uDu < Dmax),
the estimate is reduced by an amount that depends on D,
a, and the frequency of the marker alleles. Interestingly,
when disequilibrium is complete (uDu = Dmax), two dif-
ferent parameter estimates can arise. When the marker
and trait allele frequencies are unequal, the association
and linkage parameter estimates are indistinguishable
from the case where linkage disequilibrium is incom-
plete. Thus, it is not always possible to distinguish be-
tween complete and incomplete linkage disequilibrium
in this model. In contrast, when disequilibrium is com-
plete and the marker and trait alleles are equal, Va =
Vα = 2pqa2, and the σ2

a estimate in the variance compo-
nents model equals zero. In the latter case, all of the link-
age information is encompassed in the linear model, and
the association parameter provides an unconfounded es-
timate of the additive genetic value of the QTL, βw = a.

CANDIDATE GENE TEST

Given the relationship between the linkage and the
association parameters under different conditions of
disequilibrium, it is possible to construct a likelihood-
ratio test to assess whether association to a candidate
polymorphism is consistent with evidence for an etio-
logical variant of the trait. As shown in Table II, when
the marker is the QTL, the linkage parameter, σ2

a,
equals zero and the estimate of βw reflects the additive
genetic value of the QTL. Thus, given significant evi-
dence for association, situations in which σ2

a = 0 sug-
gest that the variant may be an etiologic mutation (or,
equivalently, a marker in complete disequilibrium with

Table I. Genetic Values (aij , αkl) and Joint Genotype Probabilities
for a QTL and Marker in Disequilibrium

QTL Marker
genotype genotype aij αkl Probability

q1q1 m1m1 a α (D+pr)2

q1q1 m1m2 a 0 2(D+pr)(ps−D)
q1q1 m2m2 a −α (ps−D)2

q1q2 m1m1 0 α 2(D+pr)(qr−D)
q1q2 m1m2 0 0 2[(D+pr)(D+qs)+(ps−D)(qr−D)]
q1q2 m2m2 0 −α 2(ps−D)(D+qs)
q2q2 m1m1 −a α (qr−D)2

q2q2 m1m2 −a 0 2(qr−D)(D+qs)
q2q2 m2m2 −a −α (D+qs)2

Fig. 1. Relationship between total additive genetic variance (dashed
line), additive genetic variance estimated in the presence of associ-
ation parameters (Va; squares), and additive genetic variance attrib-
utable to the marker through linkage disequilibrium with the QTL
(Vα; triangles).

Table II. Expected Values of Linkage and Association
Parametersa

Disequilibrium QTL/marker allele
level frequency E(βw) E(σ2

auβw)

Complete (uDu = Dmax) p = r a 0
Complete (uDu = Dmax) p ≠ r α Va − Vα

Incomplete (0 < uDu < Dmax) p ≠ r or p = r α Va − Vα

None (D = 0) p ≠ r or p = r 0 Va

a D is the disequilibrium coefficient between marker and QTL alle-
les; a represents the additive genetic value; α = aD/rs; Va = 2pqa2;
Vα = 2rsα2; QTL and marker allele frequencies are represented by
p and q and by r and s, respectively. All quantities of E(σ2

auβw) are
expressed under the assumption that θ = 0. When θ > 0, all values
in this column will decrease by a factor f(θ) as described by Amos
(1994).
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which is simply the χ2 statistic for testing D = 0 for 2n
gametes, divided by 2n (Weir, 1996). Given any value
of Vα/Va, the minimum D′2 consistent with Vα/Va oc-
curs when the allele frequencies of the marker and QTL
are equal. In this case, the denominator of this expres-
sion simplifies to pqrs = p2q2 = D2

max, so Vα/Va = D′2.
Thus, an absolute value of the minimum normalized
disequilibrium coefficient is readily available from the
parameter estimates as

(8)

In order to construct QTL allele frequency bound-
aries, we make use of the conditions that Dmax = ps if
p ≤ r and Dmax = qr if p ≥ r. In these situations, we can
rearrange the model parameters to obtain p = l/(l + ϕ/r2)
if p ≤ r and p = l − [l/(l + ϕ/s2)] if p ≥ r, where ϕ =
VaD

′2/(2βw
2). Note that the quantity l/(1 + ϕ/r2) will be

smallest when D′ = 1, and similarly, 1 − 1/(1 + ϕ/s2)
will be largest when D′ = 1. Thus, setting D′ = 1 and
solving for p, the boundaries of the frequency of the
QTL allele associated with allele m1 are

(9)

Table III shows the QTL allele range according
to various marker allele frequencies and the propor-
tion of variance explained by linkage disequilibrium
between marker and QTL. Clearly, little information
is available concerning QTL allele frequencies when
the marker explains only a small amount of the QTL
variance. For example, when Vα/Va = .25, nearly all
QTL allele frequencies are consistent with the data un-
less the marker frequencies are extreme. Conversely,
when the variance explained by the marker is sub-
stantial, reasonably precise information is available.
In the case of Vα/Va ≥ .75, narrow QTL allele bound-
aries are implied by the observed marker allele fre-
quencies. Considered from a different perspective,
these ranges emphasize the restricted relationship be-
tween QTL and marker as a consequence of allele fre-
quencies. For example, a SNP with equifrequent alle-
les cannot explain 50% (or more) of the variance of a
QTL that has a minor allele frequency of .33 or less
(Table III). This type of QTL allele frequency infor-
mation could assist in fine mapping by focusing the
marker identification strategy and the genotyping bur-
den on only those markers that have likely allele fre-
quencies in the range of the QTL.
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identical allele frequencies). Comparison of a model
involving all free parameters θ(A) = (µ, βb, βw, σ2

a, σ2
g,

σ2
e), against a model in which σ2

a is set to zero, θσ2
a = 0 =

(µ, βb, βw, σ2
g, σ2

e), provides a 1-df test of residual ge-
netic variance after accounting for the disequilibrium
between the marker and QTL. Since σ2

a = 0 only if Va =
Vα (see Table II), a significant difference between the
models implies that σ2

a > 0 and Va ≠ Vα; i.e., the marker
and QTL are distinct. Conversely, a nonsignificant dif-
ference indicates that the marker and QTL are indis-
tinguishable. Fulker et al. (1999) used this likelihood-
ratio test in their simulations but did not explore its
properties with respect to parameter expectations.

DISEQUILIBRIUM AND ALLELE FREQUENCY
BOUNDARIES

Rejecting the model of identity between marker
and QTL may be useful for guiding fine-mapping as-
sociation studies, as it provides a specific means to dis-
tinguish markers in linkage disequilibrium from actual
QTLs. Still, there is further information in the param-
eter estimates that may assist in such endeavors. Con-
sider the standard linkage-only variance components
model involving parameters θ(L) = (µ, σ2

a, σ2
g, σ2

e) and
the full association model involving parameters θ(A) =
(µ, βb, βw, σ2

a, σ2
g, σ2

e). By independently fitting these
two models, we obtain estimates of Va, Vα, and βw that
can be compared to describe the genetic architecture of
the QTL. Let σ2

a(L) and σ2
a(A) reflect additive genetic

variance estimates from the linkage-only and full as-
sociation models, respectively. As shown above, σ2

a(L)
estimates Va = 2pqa2, σ2

a(A) estimates Va − Vα, and β w

estimates aD/rs. Thus, σ2
a(L) − σ2

a(A) provides an esti-
mate of Va = 2rsα2. Algebraic rearrangement of these
expectations yields the squared disequilibrium coeffi-
cient as D2 = V2

a pq/(2β2
wVa), which, as a proportion of 

the maximum disequilibrium, Dmax, is D′2 = (D/Dmax)2=
V2

a pq/2β2
wVaD

2
max. From the model parameter estimates,

all of the quantities needed to calculate this ratio are
available except the frequency of QTL alleles. In their
absence, we can still derive two useful pieces of in-
formation: (i) the absolute value of the minimum nor-
malized disequilibrium coefficient, D′; and (ii) the min-
imum and maximum QTL allele frequencies.

For a minimum D′ value, note that the proportion
of additive genetic variance explained by marker–QTL
association is

V
V

rs
pqa

rs aD rs
pqa

D
pqrsa

α α= = ( ) =2
2

2

2 2

2 2
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SIMULATIONS

A number of simulations were conducted to eval-
uate the QTL allele frequency and disequilibrium quan-
tities in a more practical setting. Following the biomet-
rical model in (1), a QTL having allele frequencies p =
.30 and q = .70 and explaining 25% of the phenotypic
variance was simulated in 200 families, each compris-
ing four offspring and both parents. Residual polygenic
and nonshared environmental effects accounted for 50
and 25% of the phenotypic variance, respectively. The
frequency of the marker allele (m1) in disequilibrium
with the increasing QTL allele (q1) was varied between
.10 and .90. For each marker allele frequency, disequi-
librium was induced in the parental generation accord-
ing to D′ coefficients of 1.0, .5 and .0. One thousand
simulations were conducted for all comparisons.

Figure 2 shows the average D′min values (with
standard deviations as error bars) calculated from ap-
plication of expression (8) to the simulated data. Al-
though there is substantial variability at all marker al-
lele frequencies, average D′min levels are always less
than the true value simulated, and only when the marker
and QTL allele frequencies coincide (r = .30) do the
average D′min values closely approximate the actual val-
ues. Thus, it appears that D′min does indeed capture the
desired information. It is noteworthy that the average
D′min values obtained in the absence of disequilibrium
(shown as filled circles in Fig. 2) are all greater than
zero. This deviation from zero reflects the fact that vari-

ance parameters (which define D′min in this case) are
constrained to be greater than or equal to zero (Searle
et al.,1992).

Simulation results for pmin and pmax are shown in
Fig. 3. Results obtained for the case of complete dise-
quilibrium are shown in the top panel, where it may be
seen that the true QTL allele frequency of .30 is
bounded quite tightly when the associated marker al-
lele is of a similar frequency (e.g., r = .25 − .35). While
this precision diminishes rapidly as the difference be-
tween QTL and marker allele frequencies increases,
even when r = .70, the data correctly indicate that the
associated QTL allele is not exceedingly rare. This out-
come is encouraging for studies that face the need for
detection of many new polymorphic sites. When dise-
quilibrium is more modest, as in the middle panel in
Fig. 3, markers with frequencies in the range of .20–.50
can still exclude extreme QTL allele frequencies. Of
course, when disequilibrium is absent, as in the bottom
panel in Fig. 3, QTL allele frequencies are of no use.
These simulation outcomes closely mirror the analyti-
cal results shown in Table III, emphasizing the re-
strictive relationships implied by disequilibrium levels
and marker/QTL allele frequency differences.

DISCUSSION

We have shown that when linkage disequilibrium is
apparent in the model of Fulker et al.(1999), the linkage

Table III. Permissible QTL Allele Frequencies as a Function of the Amount of Variance Explained by QTL–Marker Disequilibrium 
and the Allele Frequency of the Markera

Proportion of additive genetic variance explained by marker–QTL association

Marker allele
Vα/Va = .25 Vα/Va = .5 Vα/Va = .75 Vα/Va = .95

freq. (r) pmin pmax pmin pmax pmin pmax pmin pmax

.01 .003 .039 .005 .020 .008 .013 .010 .011

.1 .027 .308 .053 .182 .077 .129 .095 .105

.2 .059 .500 .111 .333 .158 .250 .192 .208

.3 .097 .632 .176 .462 .243 .364 .289 .311

.4 .143 .728 .250 .571 .333 .471 .388 .412

.5 .200 .800 .333 .667 .429 .571 .487 .513

.6 .273 .857 .429 .750 .529 .667 .588 .612

.7 .368 .903 .538 .824 .636 .757 .689 .711

.8 .500 .941 .667 .889 .750 .842 .792 .808

.9 .692 .973 .818 .947 .871 .923 .895 .905

.99 .961 .997 .980 .995 .987 .992 .989 .990

a pmin and pmax are the minimum and maximum possible frequencies of a QTL allele in linkage disequilibrium with a marker allele having fre-
quency r. Vα and Va are the additive genetic variance attributable to linkage disequilibrium between marker and QTL and the traditional ad-
ditive genetic variance, respectively.



and association parameters have a simple relationship that
provides extra information about the underlying QTL. In
contrast to most other family-based association ap-
proaches, which evaluate only whether or not a marker
allele is associated with variability in a trait (and thus do
not directly assist in the design of further experiments),
this information could help determine whether additional
markers should be examined, what allele frequencies they
should have, and how large a region they should cover.

In fine-mapping studies of multifactorial traits, one
of the many problems that must be overcome is that of
defining a mutation. Naturally, evidence for association,
however strong, does not imply etiology effect so other
factors must be used to draw conclusions. The likelihood-
ratio test proposed here can be used to distinguish QTLs
from other associated markers. Rejecting a model of
QTL/marker identity indicates that the associated allele
is not the etiological variant or that there are multiple
mutations in the QTL, and therefore, cloning research
should proceed further. However, rejecting QTL/marker
identity may require large samples, owing to the de-
pendence on linkage effects in this test. Consequently,
this approach is well suited to the evaluation of candi-
date polymorphisms in a data set for which linkage evi-
dence has been obtained. Careful consideration of the
linkage/association patterns, especially in the context of
successive markers, may facilitate selection of appropri-
ate markers or functional experiments for further study.

Additional problems in fine-mapping studies of
multifactorial traits concern the optimal marker density
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and allele frequencies. Regarding the former, some
have argued (Kruglyak, 1999) that markers must be
spaced extremely close together in order to have any
chance of highlighting complex trait loci, although real
data suggest that the distances are likely to be region-
specific (Keavney et al.,1998; Nickerson et al.,1998;
Rieder et al., 1999). Regarding the latter, it has been
proposed that common diseases imply that the under-
lying mutations are also common (Cargill et al.,1999;
Halushka et al.,1999), although others contend that this
is not likely to be the case (Weiss, 1996; Terwilliger

Fig. 2. Average D′min values obtained from simulations of disequi-
librium in small nuclear families. The simulated QTL explains 25%
of the phenotypic variance and has increasing allele frequency p =
.30. Residual genetic and environmental effects were simulated to
account for 50 and 25% of the phenotypic variance, respectively. The
three lines show the results for simulated D′ levels of 1.0 (triangles),
.5 (squares), and .0 (circles). Standard deviations of 1000 D′min lev-
els calculated according to expression (8) are shown as error bars.

Fig. 3.Average minimum and maximum QTL allele frequencies ob-
tained from 1000 simulations of small nuclear families. The three
panels show complete disequilibrium (top), D′ = .50 (middle), and
no simulated disequilibrium (bottom). The properties of the QTL
are as described in the text and in the legend to Fig. 2. The average
minimum and maximum QTL allele frequencies derived according
to expression (9) are shown as filled circles and open squares, re-
spectively. Average pmin and pmax values are shown ±1 SD for all
simulations conducted.



and Weiss, 1998). Regardless of one’s viewpoint, the
best evidence for both of these issues will come from
empirical data for each trait studied. From this per-
spective, empirical estimates of linkage disequilibrium
levels and trait allele frequencies for any trait are de-
sirable. We have shown here that the variance compo-
nents framework lends itself to such estimates. In par-
ticular, estimates from models including vs. excluding
association effects indicate the minimum level of dise-
quilibrium between a marker and QTL, as well as the
boundaries of the possible allele frequencies of the QTL.

Both of these quantities are useful in fine-map-
ping applications; the former for helping to determine
what genetic distance must be saturated with markers
to ensure coverage of the QTL, the latter to guide se-
lection of markers that most closely match those of the
QTL (and therefore maximize both the statistical
power and the likelihood that a marker will be an eti-
ologic variant). Moreover, the between/within model
can be readily extended to allow for multiple alleles,
such as microsatellites, or multiple nearby polymor-
phisms, such as specific haplotypes (Fulker et al.,
1999; Abecasis et al., 2000). For these assessments,
one can either test each allele/haplotype separately in
a series of association models or evaluate all alleles
simultaneously by including a separate pair of be-
tween/within parameters for each variant. The serial
approach is fully consistent with the present deriva-
tions of pmin, pmax, and D′min, in that the QTL fre-
quencies and disequilibrium estimated refer to any trait
variant associated with the specific marker allele ex-
amined. In the simultaneous-alleles approach, inter-
preting pmin and pmax is less obvious, but since the vari-
ance model is unchanged, the estimate of D′min should
still provide information on QTL location.

We note that our approach for calculating D′min,
pmin, and pmax [see Eqs. (8) and (9)] could be improved.
The method requires parameter estimates from two
nested models applied to the same data. It would be
preferable to reparameterize a single model to specify
these effects directly, thereby providing a mechanism
to estimate the effects and calculate their standard er-
rors. We do not see an obvious reparameterization of
the model, however, and are left with the approximate
solutions presented here. Bootstrapping or other re-
peated sampling techniques applied to the two models
involved could provide information about the distribu-
tion of the boundary estimates. Although the perform-
ance of such resampling procedures remains unex-
plored, we might expect that while estimates from
individual markers will vary (as shown in our simula-
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tions), obtaining convergent estimates from multiple
markers would represent rather compelling evidence
for both disequilibrium level and trait allele frequen-
cies. This information could be quite useful for as-
sessment of the pattern of linkage disequilibrium across
multiple loci in the context of evolutionary modeling
or multipoint/haplotype estimation.

APPENDIX

The value of α can be derived in terms of genetic
parameters using the conditional disequilibrium prob-
abilities

which are simply rearrangements of the disequilib-
rium coefficient D = P(m1q1) − pr. Consider the av-
erage effect of the QTL conditional on any marker
genotype mimj as γQTL′ = ∑ij P(qi, qj mk, ml)aij,

where aij is used as in (1). In the absence of domi-
nance variance, akl = 0 when k ≠ 1. Thus,

and

.

When the marker is the QTL (e.g., in an assessment of
a specific mutation), r = p and D = pq, and these
expressions are equivalent to the “breeding value” in

γ QTL m m 1 1 1 2 2 1 2 2P q m P q m a P q m P q m a

a D
r

p p D
s

a q D
r

D
s

q

a p q Da
rs

s r

1 2
= ( ) ( ) − ( ) ( )

= +( ) −( ) − −( ) +( )
= −( ) + −( )

γ

γ

QTL

QTL

m m 1 1 2 1

m m 1 2 2 2

1 1

2 2

P q m a P q m a a D
r

p

a q D
r

a p q Da
r

P q m a P q m a a p D
s

a D
s

q a p q Da
s

= ( ) − ( ) = +( )
− −( ) = −( ) +

= ( ) − ( ) = −( )
− +( ) = −( ) −

2 2
2

2

2 2
2

2

2

2

m mk l

P q m D r p

P q m q D r

P q m p D s

P q m D s q

1 1

2 1

1 2

2 2

( ) = +

( ) = −

( ) = −

( ) = +



classical quantitative genetics terminology, though not
centered around the population mean. Using any of
these breeding values and their genotype relationships,
γq1q1= 2sα or γq1q2= (s − r)α or γq2q2= −2rα (Falconer,
1981), solving for α gives

which is the quantity noted by Fulker et al. (1999) to
be the expected value of the association parameter, βw.
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