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SOME PROPERTIES OF ASYMPTOTIC QUASI-INVERSE
FUNCTIONS AND THEIR APPLICATIONS. II

UDC 519.21

V. V. BULDYGIN, O. I. KLESOV, AND J. G. STEINEBACH

Abstract. We continue to study properties of functions which are asymptotic (qua-
si-)inverse for PRV and POV functions. The equivalence of all quasi-inverses for POV
functions is proved. Under appropriate conditions, we derive the limiting behaviour of
the ratio of asymptotic quasi-inverse functions from the corresponding asymptotics of
their original versions. Several applications of these general results to the asymptotic
stability of a Cauchy problem, to the asymptotics of the solution of a stochastic
differential equation, and to the limiting behavior of generalized renewal processes
are also presented.

This is a continuation of Buldygin et al. [7]. For the sake of consistency we continue
the numbering of sections, results, and formulas.

8. Main properties and characterizations of POV functions

and their asymptotic quasi-inverses

The main results of this section (Theorems 8.1–8.4) show that the class of POV func-
tions is similar to the class of RV functions with positive index.

Proposition 8.1. Let f(·) ∈ F(∞) be a WPRV function and let f̃ (−1)(·) be an asymptotic
quasi-inverse function for f(·). Then,

1) if there exists a nondecreasing function h(·) such that f(·) ∼ h(·), then condi-
tion (2.2) for the function f̃ (−1)(·) holds, that is

(8.1)
(
f̃ (−1)

)
∗(c) = lim inf

t→∞

f̃ (−1)(ct)
f̃ (−1)(t)

> 1 for all c > 1;

2) if there exists a nondecreasing function h(·) such that f̃ (−1)(·) ∼ h(·), then con-
dition (8.1) holds;

3) if f(·) is a POV function, then f̃ (−1)(·) is a WPRV function;
4) if f(·) is a POV function, then f̃ (−1)(·) is a WPOV function.

Proof of Proposition 8.1. 1) Assume that condition (8.1) does not hold. Then there exist
a number c0 > 1 and a sequence of positive numbers {tn} such that tn → ∞ as n → ∞,
and

(8.2) lim
n→∞

f̃ (−1)(tn)
f̃ (−1)(c0tn)

= β ∈ [1,∞].
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Therefore, by Theorem 2.1, if β = 1, we have that

(8.3) 1 >
1
c0

= lim
n→∞

f
(
f̃ (−1)(tn)

)
f
(
f̃ (−1)(c0tn)

) = 1,

and, by the monotonicity of h(·), if β ∈ (1,∞], then

1 >
1
c0

= lim
n→∞

f
(
f̃ (−1)(tn)

)
f
(
f̃ (−1)(c0tn)

) = lim
n→∞

h
(
f̃ (−1)(tn)

)
h
(
f̃ (−1)(c0tn)

) ≥ 1,

since f(·) ∼ h(·). These contradictions prove assertion 1).
2) Assume that condition (8.1) does not hold. In view of assertion (8.2) and by the

monotonicity of h(·), we have

1 ≥ lim
n→∞

h(tn)
h(c0tn)

= lim
n→∞

f̃ (−1)(tn)
f̃ (−1)(c0tn)

= β ≥ 1,

since f(·) ∼ h(·). Thus β = 1 and (8.3) follows. This contradiction proves assertion 2).
3) Now, assume that f(·) is a POV function, but condition (7.1) of Lemma 7.1 does

not hold. Then, there exist a number γ ∈ (1,∞] and sequences of positive numbers {an}
and {un} such that limn→∞ an = 1, limn→∞ un = ∞, and

lim
n→∞

f̃ (−1)(anun)
f̃ (−1)(un)

= γ.

Consequently, by Proposition 3.1, we have

1 = lim
n→∞

anun

un
= lim

n→∞

f
(
f̃ (−1)(anun)

)
f
(
f̃ (−1)(un)

) > 1.

This contradiction proves assertion 3).
Assertion 4) follows from 1), 3) and Theorem 4.1, which completes the proof of Propo-

sition 8.1. �

Corollary 8.1. Let f(·) ∈ F∞ and f̃−1(·) be an asymptotic inverse function for f(·).
Assume that f̃−1(·) is a WPRV function. Then

1) if there exists a nondecreasing function h(·) which is asymptotically equivalent
either to f(·) or to f̃ (−1)(·), then condition (2.2) holds;

2) if f̃−1(·) is a POV function, then f(·) is a WPOV function.

Applying Proposition 8.1, Corollary 8.1 and Theorem 2.1, we get the following result.

Theorem 8.1. Let both f(·) ∈ F∞ and its asymptotic inverse function f̃−1(·) be measur-
able functions. Assume that there exists a nondecreasing function h(·) which is asymp-
totically equivalent either to f(·) or to f̃−1(·). Then, the following four conditions are
equivalent:

(a) f(·) is POV;
(b) f̃−1(·) is POV;
(c) both f(·) and f̃−1(·) are PRV;
(d) both f(·) and f̃−1(·) preserve the equivalence of functions and sequences.

With the help of Theorem 8.1, it is possible to prove a more precise version of Theo-
rem 6.2.
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Theorem 8.2. Let f(·) be a POV function and let the functions ϕ1(·) and ψ1(·) be as
defined in Lemma 6.1. Then

1) ϕ1(·) and ψ1(·) are asymptotically equivalent and are nondecreasing asymptotic
inverse functions for f(·). Moreover, each of these functions possesses the POV
property.

2) If a function q(·) ∈ F+ is such that ϕ1(s) ≤ q(s) ≤ ψ1(s) for all large s, then
q(·) is a WPOV function, being an asymptotic inverse function for f(·), and it
is asymptotically equivalent both to ϕ1(·) and to ψ1(·).

Theorem 8.2 follows from Theorems 6.2 and 8.1, since every nondecreasing function
is measurable.

The next two theorems demonstrate that any function, which is an asymptotic quasi-
inverse function either for a POV function f(·) or for a function which is asymptotically
equivalent to f(·), is also an asymptotic inverse function for f(·) and a WPOV function,
and it is uniquely determined up to asymptotic equivalence. If this function is measurable,
then it is a POV function.

Theorem 8.3. Let f(·) be a POV function and let f̃−1(·) be an asymptotic inverse
function for f(·). If q(·) is an asymptotic quasi-inverse function for f(·), then

1) q(·) ∼ f̃−1(·) and q(·) is WPOV;
2) q(·) is an asymptotic inverse function for f(·).

Proof of Theorem 8.3. First, recall that, by Remark 3.2, f(·) ∈ F∞ and, by Theorem 8.2,
there exists a nondecreasing asymptotic inverse function for f(·) which is a POV function.

We have f(q(x)) ∼ x as x → ∞, since q(·) is an asymptotic quasi-inverse function
for f(·). By Proposition 8.1 and Theorem 2.1, f̃−1(·) is a WPOV function and thus
preserves the equivalence of functions. By definition, q(x) → ∞ as x → ∞, so

q(x) ∼ f̃−1(f(q(x))) ∼ f̃−1(x) as x → ∞,

that is, q(·) ∼ f̃−1(·). Moreover, either from above or from Proposition 8.1, we have that
q(·) is WPOV. Therefore assertion 1) is proved.

By assertion 1), q(f(x)) ∼ f̃−1(f(x)) ∼ x as x → ∞. This proves assertion 2). �

The next result complements Theorem 8.3.

Theorem 8.4. Let f(·) be a POV function. Then

1) there exists a continuous POV function f0(·), asymptotically equivalent to f(·)
and strictly increasing to ∞, for which the inverse function f−1

0 (·) is a continuous
POV function, strictly increasing to ∞;

2) f−1
0 (·) is an asymptotic inverse function for f(·);

3) if f̃ (−1)(·) is an asymptotic quasi-inverse function for f(·) and f̃ (−1)(·) ∼ q(·),
then q(·) is an asymptotic inverse function for f(·), q(·) is a WPOV function
and q(·) ∼ f−1

0 (·);
4) if h(·) ∼ f(·), then any asymptotic quasi-inverse function q(·) for h(·) is asymp-

totically equivalent to any asymptotic quasi-inverse function for f(·), q(·) is an
asymptotic inverse function both for f(·) and for h(·), and q(·) is a WPOV
function.

Proof of Theorem 8.4. Assertion 1) follows from Theorems 4.1 and 8.1.
Now we show that f−1

0 (·) is an asymptotic inverse function for f(·). Indeed,

f
(
f−1
0 (x)

)
∼ f0

(
f−1
0 (x)

)
∼ x as x → ∞,
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since f(·) ∼ f0(·). By assertion 1) and Theorem 8.1, the function f−1
0 (·) preserves the

equivalence of functions. Hence

f−1
0 (f(x)) ∼ f−1

0 (f0(x)) ∼ x as x → ∞.

Thus, assertion 2) is proved.
To prove assertion 3) we recall that any POV function preserves the equivalence of

functions (see Theorem 2.1). Hence f(q(x)) ∼ f(f̃ (−1)(x)) ∼ x as x → ∞, and q(·) is an
asymptotic quasi-inverse function for f(·). Thus assertion 3) follows from Theorem 8.3
together with assertion 2).

Now, let h(·) ∼ f(·) and let q(·) be an asymptotic quasi-inverse function for h(·).
Then f(q(x)) ∼ h(q(x)) ∼ x as x → ∞; that is, q(·) is an asymptotic quasi-inverse
function for f(·). By assertion 3), we get that q(·) is an asymptotic inverse function for
f(·), q(·) ∼ f−1

0 (·) and q(·) is WPOV. By Theorem 2.1, q(·) preserves the equivalence
of functions. Hence q(h(x)) ∼ q(f(x)) ∼ x as x → ∞, and q(·) is an asymptotic inverse
function for h(·). �

9. Limiting behaviour of the ratio of asymptotic quasi-inverse functions

The following theorem extends Theorems 8.3 and 8.4 to the case of WPMPV functions,
that is, functions satisfying condition (2.2). It demonstrates that every function, which is
an asymptotic quasi-inverse function either for f(·) or for any asymptotically equivalent
version of f(·), is an asymptotic inverse function for f(·), and that the asymptotic inverse
function for f(·) is uniquely determined up to asymptotic equivalence.

Theorem 9.1. Let f(·) be a WPMPV function. If f(·) ∼ f0(·) ∈ F
∞
ndec, and f̃−1

0 (·) is
an asymptotic inverse function for f0(·), then

1) f̃−1
0 (·) is an asymptotic inverse function for f(·) and f̃−1

0 (·) is WPRV;
2) if h(·) ∼ f(·), then any asymptotic quasi-inverse function q(·) for h(·) is asymp-

totically equivalent to any asymptotic quasi-inverse function for f(·), q(·) is an
asymptotic inverse function both for f(·) and for h(·), and q(·) is WPRV.

Proof of Theorem 9.1. First we show that f̃−1
0 (·) is an asymptotic quasi-inverse function

for f(·). Indeed,
f
(
f̃−1
0 (x)

)
∼ f0

(
f̃−1
0 (x)

)
∼ x as x → ∞,

since f(·) ∼ f0(·). Moreover, condition (2.2) also holds for f0(·), and, by Proposition 7.1,
f̃−1
0 (·) is a WPRV function, i.e. it preserves the equivalence of functions. Hence

f̃−1
0 (f(x)) ∼ f̃−1

0 (f0(x)) ∼ x as x → ∞,

which proves the first assertion of the theorem.
Now to prove assertion 2) we assume that h(·) ∼ f(·) and let q(·) be an asymptotic

quasi-inverse function for h(·). Then, f(q(x)) ∼ h(q(x)) ∼ x as x → ∞. Hence q(·) is
an asymptotic quasi-inverse function for f(·). By assertion 1) and Theorem 2.1, we have
that f̃−1

0 (·) is WPRV, thus preserves the equivalence of functions, and

q(x) ∼ f̃−1
0 (f0(q(x))) ∼ f̃−1

0 (f(q(x))) ∼ f̃−1
0 (x) as x → ∞.

Hence q(·) ∼ f̃−1
0 (·), which immediately implies q(f(x)) ∼ f̃−1

0 (f(x)) ∼ x as x → ∞.
Moreover, q(h(x)) ∼ q(f(x)) ∼ x as x → ∞, since q(·) is WPRV and, by Theorem 2.1,
preserves the equivalence of functions. �

The following results describe the relationship between the limiting behaviour of the
ratio of asymptotic quasi-inverse functions and that of their original functions.
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Corollary 9.1. Let f(·) be a WPMPV function. Assume that f(·) ∼ f0(·) ∈ F∞
ndec, and

that f̃−1
0 (·) is an asymptotic inverse function for f0(·). If, for some function x(·) ∈ F∞,

(9.1) lim
t→∞

x(t)
f(t)

= a for some a ∈ (0,∞),

then, for any asymptotic quasi-inverse function x̃(−1)(·) of x(·) and for any asymptotic
quasi-inverse function f̃ (−1)(·) of f(·), we have

(9.2) lim
s→∞

x̃(−1)(s)
f̃ (−1)(s/a)

= lim
s→∞

x̃(−1)(s)
f̃−1
0 (s/a)

= 1.

Corollary 9.2 (Buldygin et al. [5]). Let f(·) ∈ C∞
ndec and let f(·) satisfy condition (2.2).

If, for some function x(·) ∈ F∞,

(9.3) lim
t→∞

x(t)
f(t)

= a for some a ∈ (0,∞),

then, for any quasi-inverse function x(−1)(·) of x(·), we have

(9.4) lim
s→∞

x(−1)(s)
f−1(s/a)

= 1.

Corollary 9.1 and Examples 6.1 and 6.2 imply the following result.

Corollary 9.3. Assume f(·) ∼ f0(·) ∈ F∞
ndec, let f̃−1

0 (·) be an asymptotic inverse func-
tion for f0(·) and let f̃ (−1)(·) be an asymptotic quasi-inverse function for f0(·). If f(·)
is WPMPV and relation (9.1) holds for some function x(·) ∈ C

∞, then we have:

1) (9.2) follows both for x̃
(−1)
1 (s) = inf{t ≥ 0: x(t) ≥ s} and for

x̃
(−1)
2 (s) = sup{t ≥ 0: x(t) ≤ s};

2)

lim
s→∞

z(s)
f̃ (−1)(s/a)

= lim
s→∞

z(s)
f̃−1
0 (s/a)

= 1

for any function z(·) satisfying x̃
(−1)
1 (s) ≤ z(s) ≤ x̃

(−1)
2 (s) for all large s.

The case of POV functions. For POV functions we have more complete results com-
pared to those of Corollaries 9.1–9.3.

Theorem 9.2. Let f(·) be a POV function and let f̃ (−1)(·) be an asymptotic quasi-
inverse function for f(·). Assume that x(·) ∈ F(∞) and x̃(−1)(·) is an asymptotic quasi-
inverse function for x(·). Then, we have

1) for a ∈ (0,∞),

lim
t→∞

x(t)
f(t)

= a =⇒ lim
s→∞

x̃(−1)(s)
f̃ (−1)(s/a)

= 1;

2) if x̃−1(·) is an asymptotic inverse function for x(·), then, for a ∈ (0,∞),

lim
t→∞

x(t)
f(t)

= a ⇐⇒ lim
s→∞

x̃−1(s)
f̃ (−1)(s/a)

= 1;

3) if x(·) is a WPRV function, then, for a ∈ (0,∞),

lim
t→∞

x(t)
f(t)

= a ⇐⇒ lim
s→∞

x̃(−1)(s)
f̃ (−1)(s/a)

= 1;
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4) if (9.1) holds and x(·) is measurable, then x(·) is a POV function and, as an
asymptotic quasi-inverse function x̃(−1)(·) for x(·), we can take in 1) the function
x̃

(−1)
1 (s) = inf{t ≥ 0: x(t) ≥ s} as well as x̃

(−1)
2 (s) = sup{t ≥ 0: x(t) ≤ s};

5) if x(·) is measurable, then the relation (9.1) implies the relation

lim
s→∞

z(s)
f̃ (−1)(s/a)

= 1,

for any function z(·) satisfying x̃
(−1)
1 (s) ≤ z(s) ≤ x̃

(−1)
2 (s) for all large s.

The proof of Theorem 9.2 is an immediate consequence of Theorems 8.2, 8.4 and 2.1.

Zero and infinite limits of ratios. The following results discuss relationships between
the limiting behaviour of the ratio of asymptotic quasi-inverse functions in case the limit
of the ratio of the original functions equals 0 or ∞. In this situation, Corollary 9.1 can
be retained for zero and infinite limits, but with the additional condition that

(9.5) lim inf
s→∞

f̃−1(c0s)
f̃−1(s)

> 1 for some c0 > 1.

Proposition 9.1. Let f(·) ∼ h(·) ∈ F∞
ndec, let f̃−1(·) be an asymptotic inverse function

for f(·), and let f̃−1(·) ∼ q(·) ∈ F∞
ndec. Assume that x(·) ∈ F(∞), and let x̃(−1)(·) be an

asymptotic quasi-inverse function for x(·). If both conditions (9.5) and (2.2) hold, then
the following relations follow:

lim
t→∞

x(t)
f(t)

= ∞ =⇒ lim
s→∞

x̃(−1)(s)
f̃−1(s)

= 0;(9.6)

lim
t→∞

x(t)
f(t)

= 0 =⇒ lim
s→∞

x̃(−1)(s)
f̃−1(s)

= ∞.(9.7)

Proof of Proposition 9.1. First we prove that

(9.8) lim
c→∞

l(c) = ∞ and lim
c→0

r(c) = 0,

where

l(c) = lim inf
s→∞

f̃−1(cs)
f̃−1(s)

, r(c) = lim sup
s→∞

f̃−1(cs)
f̃−1(s)

.

Indeed,

l∞ = lim inf
c→∞

l(c) = lim inf
c→∞

l
(
c2

)
≥

(
lim inf
c→∞

l(c)
)2

= l2∞

and

l(c) = lim inf
s→∞

f̃−1(cs)
f̃−1(s)

= lim inf
s→∞

q(cs)
q(s)

.

The first relation in (9.8) follows from condition (9.5), since l(·) is nondecreasing in view
of q(·) ∈ F∞

ndec. The second relation is a consequence of the relation r(c) = 1/l(1/c).
By Proposition 7.1, the function f̃−1(·) preserves the equivalence of functions. Hence

we have

(9.9) 1 = lim
s→∞

f̃−1
(
x
(
x̃(−1)(s)

))
f̃−1(s)

= lim
s→∞

f̃−1
(
x
(
x̃(−1)(s)

))
x̃(−1)(s)

· x̃(−1)(s)
f̃−1(s)

,

since x(x̃(−1)(s)) ∼ s as s → ∞.
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Put a(t) = x(t)/f(t) for t > 0. It follows from the left-hand side of (9.6) that a(t) → ∞
as t → ∞, and hence

lim inf
s→∞

f̃−1
(
x
(
x̃(−1)(s)

))
x̃(−1)(s)

≥ lim inf
t→∞

f̃−1(x(t))
t

= lim inf
t→∞

f̃−1(a(t)f(t))
t

= lim inf
t→∞

q(a(t)f(t))
t

≥ lim inf
c→∞

lim inf
t→∞

q(cf(t))
t

= lim inf
c→∞

lim inf
t→∞

f̃−1(cf(t))
t

= lim inf
c→∞

lim inf
t→∞

f̃−1(cf(t))
f̃−1(f(t))

≥ lim inf
c→∞

lim inf
t→∞

f̃−1(ct)
f̃−1(t)

= lim
c→∞

l(c).

By (9.8),

lim inf
s→∞

f̃−1
(
x
(
x̃(−1)(s)

))
x̃(−1)(s)

= ∞,

and, in view of (9.9),

lim sup
s→∞

x̃(−1)(s)
f−1(s)

= 0.

This proves (9.6).
Relation (9.7) can be proved via a similar reasoning. �

For POV functions the latter result reads as follows.

Proposition 9.2. Let f(·) be a POV function, and let f̃ (−1)(·) be an asymptotic quasi-
inverse function for f(·). Assume that x(·) ∈ F(∞) and x̃(−1)(·) is an asymptotic quasi-
inverse function for x(·). Then the following relations follow:

lim
t→∞

x(t)
f(t)

= ∞ =⇒ lim
s→∞

x̃(−1)(s)
f̃ (−1)(s)

= 0;

lim
t→∞

x(t)
f(t)

= 0 =⇒ lim
s→∞

x̃(−1)(s)
f̃ (−1)(s)

= ∞.

If x̃−1(·) is an asymptotic inverse function for x(·), then

lim
t→∞

x(t)
f(t)

= ∞ ⇐⇒ lim
s→∞

x̃−1(s)
f̃ (−1)(s)

= 0;

lim
t→∞

x(t)
f(t)

= 0 ⇐⇒ lim
s→∞

x̃−1(s)
f̃ (−1)(s)

= ∞.

Proposition 9.2 follows from Proposition 9.1, Theorem 8.4 and Theorem 8.1.

Remark 9.1. Proposition 9.2 extends Theorem 9.2 and allows for considering a = 0 or ∞
in the limiting relations (9.1) and (9.2).

Limiting behaviour of the ratio of asymptotic quasi-inverse functions for RV
functions. For RV functions, Theorem 9.2 and Proposition 9.2 read as follows.

Corollary 9.4. Let f(·) be an RV function with positive index α, and let f̃ (−1)(·) be an
asymptotic quasi-inverse function for f(·). Assume that x(·) ∈ F(∞) and x̃(−1)(·) is an
asymptotic quasi-inverse function for x(·). Then, we have
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1) if

(9.10) lim
t→∞

x(t)
f(t)

= a ∈ [0,∞],

then

(9.11) lim
s→∞

x̃(−1)(s)
f̃ (−1)(s)

=
(

1
a

)1/α

∈ [0,∞].

Here and in the sequel, it is assumed that (1/∞) = 0 and (1/0) = ∞.
2) If x̃−1(s) is an asymptotic inverse function for x(·), then

lim
t→∞

x(t)
f(t)

= a ∈ [0,∞] ⇐⇒ lim
s→∞

x̃−1(s)
f̃ (−1)(s)

=
(

1
a

)1/α

∈ [0,∞].

3) If x(·) is a WPRV function, then relations (9.10) and (9.11) are equivalent.
4) If (9.10) holds and x(·) is measurable then, as a quasi-inverse function x̃(−1)(·)

for x(·), we can choose in (9.11) the function x̃
(−1)
1 (s) = inf{t ≥ 0: x(t) ≥ s}

as well as x̃
(−1)
2 (s) = sup{t ≥ 0: x(t) ≤ s}.

5) Moreover, if x(·) is measurable, then (9.10) implies the relation

lim
s→∞

z(s)
f̃−1(s)

=
(

1
a

)1/α

∈ [0,∞],

for any function z(·) such that x̃
(−1)
1 (s) ≤ z(s) ≤ x̃

(−1)
2 (s) for all large s.

10. Piecewise linear interpolations

and generalized renewal sample functions

In view of Section 9, some results of Buldygin et al. [5, Section 7] can be improved.
Before doing so, we briefly recall some necessary facts from [5].

Piecewise linear interpolations of sequences and functions. The continuous func-
tion

x̂(t) = ([t] + 1 − t)x[t] + (t − [t])x[t]+1, t ≥ 0,

is called the piecewise linear interpolation of the sequence {xn} = {xn, n ≥ 0}. The
sequence {xn} is called PRV (POV) if its piecewise linear interpolation is PRV (POV).
The continuous function

f̂(t) = ([t] + 1 − t)f([t]) + (t − [t])f([t] + 1), t ≥ 0,

is called the piecewise linear interpolation of the function f(·). Observe that f̂(·) is a
piecewise linear interpolation of the sequence {f(n)}.

Lemma 10.1 (Buldygin et al. [5]). (A) If a function f(·) is PRV, then f̂(·) is also
PRV, and f(·) ∼ f̂(·).

(B) If a function f(·) is POV, then f̂(·) is also POV, and f(·) ∼ f̂(·).

Lemma 10.2 (Buldygin et al. [5]). Let {xn} and {cn} be two sequences with cn > 0 for
large n. Then for all a ∈ [0,∞],

lim
n→∞

xn

cn
= a ⇐⇒ lim

t→∞

x̂(t)
ĉ(t)

= a.
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Generalized renewal sample functions. For a given function x(·) ∈ F(∞), two gen-
eralized renewal sample functions fx(·)(·) and lx(·)(·) are defined as follows:

fx(·)(s) = inf{t ≥ 0: x(t) ≥ s}, lx(·)(s) = sup{t ≥ 0: x(t) ≤ s}
for s ≥ max{0, x(0)}; if 0 ≤ s < x(0), then we put fx(·)(s) = lx(·)(s) = 0. If the function
x(·) is measurable, then one more generalized renewal sample function τx(·)(·) for the
function x(·) is defined as follows:

τx(·)(s) = meas({t ≥ 0: x(t) ≤ s}) =
∫ ∞

0

I(x(t) ≤ s) dt

for s ≥ max{0, x(0)}; if 0 ≤ s < x(0), then we put τx(·)(s) = 0. Here I(A) is the indicator
function of a set A.

These three generalized renewal sample functions have a natural “physical” interpre-
tation. The number fx(·)(s) can be interpreted as “an instant of first exit” of the values
of the function x(·) from the set (−∞, s), or as “an instant of first visit” of the values
of the function x(·) to the set [s,∞). Similarly, the number lx(·)(s) can be interpreted
as “an instant of last visit” of the values of the function x(·) to the set (−∞, s]. The
number τx(·)(·) can be interpreted as “the total time spent” by the values of the func-
tion x(·) in the set (−∞, s]. There are other possibilities for defining generalized renewal
sample functions, but we will focus our attention only on the functions fx(·)(·), τx(·)(·)
and lx(·)(·) introduced above.

Note that the latter functions are nondecreasing and that, for s ≥ 0,

fx(·)(s) ≤ τx(·)(s) ≤ lx(·)(s).

If x(·) ∈ C(∞), then fx(·)(s) = min{t ≥ 0: x(t) = s}, s ≥ x(0), and the function fx(·)(·)
is a quasi-inverse function for x(·). If x(·) ∈ C∞, then lx(·)(s) = max{t ≥ 0: x(t) = s},
s ≥ x(0), and the function lx(·)(·) is also a quasi-inverse function for x(·). If x(·) ∈ C∞

ndec,
then the functions fx(·)(·), τx(·)(·) and lx(·)(·) coincide. Otherwise they are different.

If x(·) is a PRV function and x(·) ∈ F
(∞), then, by Lemma 6.1, the function fx(·)(·)

is an asymptotic quasi-inverse for x(·). If x(·) is a PRV function and x(·) ∈ F∞, then,
similarly, both the function fx(·)(·) and the function lx(·)(·) are asymptotic quasi-inverse
functions for x(·). If x(·) is a PRV function and x(·) ∼ h(·) ∈ F∞

ndec, then, by Corol-
lary 6.1, all three functions fx(·)(·), lx(·)(·) and τx(·)(·) are asymptotic quasi-inverse func-
tions for x(·). Finally, if x(·) is a POV function, then, by Theorem 6.1, all three functions
are asymptotically equivalent and are asymptotic inverse functions for x(·). These facts
enable us to apply the results of the above sections to study the asymptotic behaviour
of generalized renewal sample functions.

10.1. Generalized renewal sample functions for sequences. Consider a real-valued
sequence {xn} = {xn, n ≥ 0} with x(0) = 0. The generalized renewal sample functions
for the sequence {xn} are defined as follows:

f{xn}(s) = min{n ≥ 0: xn ≥ s}, l{xn}(s) = max{n ≥ 0: xn ≤ s},

τ{xn}(s) =
∞∑

n=1

I(xn ≤ s),

for s ≥ max{0, x(0)}; if 0 ≤ s < x(0), then we put f{xn}(s) = l{xn}(s) = τ{xn}(s) = 0.
Sometimes the notation r{xn}(·) will be used for any of the generalized renewal sample
functions defined above.

If limn→∞ xn = ∞, then all its generalized renewal sample functions are well defined
for s > 0. If the sequence {xn} is strictly increasing, then these three functions coincide.
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Otherwise they are different and, for all s > 0,

(10.1) f{xn}(s) ≤ τ{xn}(s) ≤ l{xn}(s).

Along with the generalized renewal sample functions for a sequence {xn} we will con-
sider generalized renewal sample functions for its piecewise linear interpolation. Assume
limn→∞ xn = ∞ and let x̂(·) be the piecewise linear interpolation for {xn}. It is clear
that, for all s > 0,

(10.2) f{xn}(s) − 1 ≤ fx̂(·)(s) ≤ f{xn}(s) and l{xn}(s) ≤ lx̂(·)(s) ≤ l{xn}(s) + 1.

From Lemmas 10.1–10.2, inequalities (10.1)–(10.2), Theorem 9.2 and Proposition 9.2,
we now get the main result of Section 10.

Theorem 10.1. Let p(·) be a POV function, let p̃(−1)(·) be an asymptotic quasi-inverse
function for p(·), and let {xn} be a sequence such that limn→∞ xn = ∞. Then, for any
generalized renewal sample function r{xn}(·) and any a ∈ (0,∞), the following implica-
tions hold:

lim
n→∞

xn

p(n)
= a =⇒ lim

s→∞

r{xn}(s)
p̃(−1)(s/a)

= 1;

lim
n→∞

xn

p(n)
= ∞ =⇒ lim

s→∞

r{xn}(s)
p̃(−1)(s)

= 0;

lim
n→∞

xn

p(n)
= 0 =⇒ lim

s→∞

r{xn}(s)
p̃(−1)(s)

= ∞.

For RV functions, Theorem 10.1 reads as follows:

Corollary 10.1. Let p(·) be an RV function with positive index α, let p̃(−1)(·) be
an asymptotic quasi-inverse function for p(·), and let {xn} be a sequence such that
limn→∞ xn = ∞. Then, for any generalized renewal sample function r{xn}(·), the fol-
lowing implication holds:

lim
n→∞

xn

p(n)
= a =⇒ lim

s→∞

r{xn}(s)
p̃(−1)(s)

=
(

1
a

)1/α

,

where a ∈ [0,∞] with (1/∞) = 0 and (1/0) = ∞.

11. Applications

In this section, we discuss several applications of the general results above. Most of
the examples are taken from probability theory; however, we start with one taken from
the theory of differential equations.

11.1. Asymptotic stability of a Cauchy problem. Consider the Cauchy problem

(11.1) dµ(t) = g(µ(t)) dt, µ(0) = b > 0,

t ≥ 0, where g(u), u > 0, is a positive continuous function such that the problem (11.1)
has a unique solution for all fixed b > 0. We say that problem (11.1) is asymptotically
stable with respect to the initial condition if

(11.2) lim
t→∞

µb1(t)
µb2(t)

= 1,

for all positive b1 and b2, where µb(·) is a solution of problem (11.1) with initial condi-
tion b.

Note, for example, that problem (11.1) is not asymptotically stable with respect to the
initial condition, if g(u) = u, u > 0, while it is asymptotically stable for g(u) = ur, u > 0,
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with r < 1. Observe also, that a solution reaches infinity in finite time, if g(u) = ur,
u > 0, with r > 1, so that we do not discuss this case.

Conditions for the asymptotic stability of problem (11.1) can easily be obtained from
the results of Section 9. Indeed, given b > 0, consider the function

(11.3) Gb(s) =
∫ s

b

du

g(u)
, s ≥ b,

and note that Gb(·) is a strictly increasing and continuous function, and it is the inverse
for µb(·). Put G(·) = G1(·).

Proposition 11.1. Let g(·) be such that, for any given b > 0,

(11.4)
∫ ∞

b

du

g(u)
= ∞.

If G(·) satisfies condition (2.2), i.e.

(11.5) G∗(s) = lim inf
s→∞

(∫ cs

1

du

g(u)

/∫ s

1

du

g(u)

)
> 1 for all c > 1,

then problem (11.1) is asymptotically stable with respect to the initial condition.

Proof of Proposition 11.1. By condition (11.4), one has that lims→∞ Gb(s) = ∞ for any
b > 0. Hence Gb1(·) ∼ Gb2(·) for all b1, b2 > 0. Moreover, by conditions (11.5) and (11.4),
the continuous and strictly increasing to infinity function Gb(·) is WPMPV for any b > 0.
Thus, by Theorem 9.1, (11.2) holds, since the function µb(·) is the inverse function
for Gb(·). �

Condition (11.4) excludes the possibility of explosions (that is, the solution does not
reach infinity in finite time under this condition). Note that the function g(u) = u, u > 0,
satisfies condition (11.4), but does not satisfy condition (11.5). Observe also, that, by
Corollary 7.1, under condition (11.4) the function µb(·) is PRV if and only if condi-
tion (11.5) holds.

Remark 11.1. Below are three sufficient conditions for g(·) to satisfy the conditions of
Proposition 11.1, namely either

(1) 0 < infu>0 g(u), supu>0 g(u) < ∞; or
(2) g∗(c) < c for all c > 1, and condition (11.4) holds; or
(3) g(·) is an RV function with index α ∈ (−∞, 1).

Asymptotic behavior of the solution of a stochastic differential equation. Now,
consider a stochastic differential equation

(11.6) dX(t) = g(X(t)) dt + σ(X(t)) dW (t), X(0) = 1,

t ≥ 0, where W (·) is a standard Wiener process and both functions g(·) and σ(·) are
positive and continuously differentiable. Theorem 1 in Keller et al. [14] states that, under
certain conditions on g(·) and σ(·) (denoted (A1)–(A4) there), one has

(11.7) lim
t→∞

G(X(t))
t

= 1 a.s. on
{

lim
t→∞

X(t) = ∞
}

,

where G(·) = G1(·) is as defined in (11.3). Moreover, Theorem 2 in Keller et al. [14]
states that, under some extra conditions,

(11.8) lim
t→∞

X(t)
µ(t)

= 1 in probability on
{

lim
t→∞

X(t) = ∞
}

,
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where µ(·) is the solution of the deterministic problem (11.1) with initial condition

µ(0) = 1.

Observe that condition (11.4) is contained in conditions (A1)–(A4) of Keller et al. [14].
Moreover, under conditions (A1)–(A4), X(·) is almost surely sample continuous.

As already mentioned, µ(·) is the inverse function for G(·), and therefore relation (11.7)
and Proposition 7.1 imply the following extension of (11.8) to the case of almost sure
convergence.

Proposition 11.2. Let g(·) be such that conditions (A1)–(A4) of Keller et al. [14] and
condition (11.5) hold. Then,

lim
t→∞

X(t)
µ(t)

= 1 a.s. on
{

lim
t→∞

X(t) = ∞
}
.

Consider generalized renewal processes for the stochastic processes X(·) which are
constructed according to the generalized renewal sample functions for functions (see
Section 10). Let

FX(·)(s) = inf{t ≥ 0: X(t) ≥ s}, s > 1,

the first time the stochastic process X(·) crosses the level s, let

LX(·)(s) = sup{t ≥ 0: X(t) ≤ s}, s > 1,

the last time the process X(·) visits the set (−∞, s], and let

TX(·)(s) = meas({t ≥ 0: x(t) ≤ s}) =
∫ ∞

0

I(X(t) ≤ s) dt, s > 1,

the total time spent by the process X(·) in (−∞, s].

Proposition 11.3. Let g(·) be such that conditions (A1)–(A4) of Keller et al. [14] hold.
Then,

(11.9) lim
s→∞

RX(·)(s)
G(s)

= 1 a.s. on
{

lim
t→∞

X(t) = ∞
}

,

for any generalized renewal process RX(·)(·) ∈ {FX(·)(·), TX(·)(·), LX(·)(·)}.

Proof of Proposition 11.3. By Examples 6.1–6.2, the processes FX(·)(·) and LX(·)(·) are
almost surely quasi-inverse for X(·) on {limt→∞ X(t) = ∞}, since X(·) has almost surely
continuous sample paths. Then, by Proposition (11.2), we have

1 = lim
t→∞

t

G(X(t))
= lim

t→∞

FX(·)(t)
G

(
X

(
FX(·)(t)

)) = lim
t→∞

FX(·)(t)
G(t)

almost surely on {limt→∞ X(t) = ∞}. Thus

lim
t→∞

FX(·)(t)
G(t)

= 1 a.s. on
{

lim
t→∞

X(t) = ∞
}

.

Similarly one can prove that

lim
s→∞

LX(·)(s)
G(s)

= 1 a.s. on
{

lim
t→∞

X(t) = ∞
}

.

To complete the proof, we note that almost surely on {limt→∞ X(t) = ∞} we have
FX(·)(t) ≤ TX(·)(t) ≤ LX(·)(t), for all t > 1. Thus (11.9) is proved. �
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11.2. Sojourn times for general counting processes. Let (ν(t), t ≥ 0) be an integer-
valued stochastic process such that a.s. its trajectories are step functions, continuous
from the right at every point t ≥ 0. Assume that ν(·) ∈ F∞ a.s. and

lim
t→∞

ν(t)
f(t)

= 1 a.s.,

where f(·) ∈ F
∞. Consider the compound stochastic process X(·), generated by ν(·)

and defined as

X(t) =
ν(t)∑
i=1

Xi, t > 0,

where {Xi, i ≥ 1} is a sequence of independent, identically distributed random variables.
If the mean µ = EX1 exists and is positive then, by the strong law of large numbers,

(11.10) lim
t→∞

X(t)
f(t)

= lim
t→∞

X(t)
ν(t)

· lim
t→∞

ν(t)
f(t)

= µ a.s.

Observe that a.s. the trajectories of the process X(·) are also step functions, con-
tinuous from the right at every point t ≥ 0. Hence, these trajectories are measurable.
Moreover, by (11.10), X(·) ∈ F∞ a.s.

Consider the three generalized renewal processes FX(·)(·), TX(·)(·) and LX(·)(·) as
given in Proposition 11.3. From relation (11.10) and Theorem 9.2, we get the following
result on the asymptotic behaviour of these generalized renewal processes.

Proposition 11.4. Let f(·) be a POV function and let f̃ (−1)(·) be an asymptotic quasi-
inverse function for f(·). Then, for any generalized renewal process

RX(·)(·) ∈
{
FX(·)(·), TX(·)(·), LX(·)(·)

}
,

we have

(11.11) lim
s→∞

RX(·)(s)

f̃ (−1)(s/µ)
= 1 a.s.

Example 11.1. An example of a process ν(·) satisfying the above properties is given by
a (not necessarily homogeneous) Poisson process with a nonnegative intensity function
λ(t), t ≥ 0, such that

(11.12)
∫ α

0

λ(t) dt < ∞ for all α > 0, and
∫ ∞

0

λ(t) dt = ∞.

Put f(t) =
∫ t

0
λ(s) ds, t > 0.

Below are three sufficient conditions on λ(·) ensuring the POV property for f(·),
namely either

(1) 0 < infs≥0 λ(s), sups≥0 λ(s) < ∞; or
(2) condition (11.12) holds, cλ∗(c) > 1 for all c > 1, and lim infc↓1 λ∗(c) ≤ 1; or
(3) λ(·) is an RV function with index α ∈ (−1,∞).

Sojourn times for stationary sequences. Consider a random sequence {Xn, n ≥ 0},
X0 = 0, and define generalized renewal processes as follows:

F{Xn}(s) = min{n ≥ 0: Xn ≥ s}, s > 0,

L{Xn}(s) = sup{n ≥ 0: Xn ≤ s}, s > 0,

T{Xn}(s) =
∞∑

n=1

I(Xn ≤ s), s > 0.
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Any of the above generalized renewal processes will be written as

R{Xn}(·) =
(
R{Xn}(s), s > 0

)
.

Let {ξn, n ∈ Z} be a strongly stationary, real-valued random sequence such that
E|ξ0| < ∞ and E(ξ0|S∞) = η a.s., where S∞ is the σ-algebra of shift invariant events.
Then

lim
n→∞

Xn

n
= η a.s.,

where X0 = 0, and Xn =
∑n

k=1 ξk, n ≥ 1.
Hence, by Corollary 10.1, the following proposition holds.

Proposition 11.5. Let {ξn, n ∈ Z} be a strongly stationary sequence satisfying the above
conditions, and let Xn =

∑n
k=1 ξk, n ≥ 1. Then the following asymptotics hold:

1) for any generalized renewal process R{Xn}(·), one has

lim
s→∞

R{Xn}(s)
s

=
1
η

a.s. on {η > 0}.

In particular, if P{η > 0} > 0, then

lim
s→∞

P

{
R{Xn}(s)

s
< u

∣∣∣ η > 0
}

=
P{η > 1

u}
P{η > 0} ,

for any u > 0 such that 1/u is a point of continuity of the distribution function
of the random variable η.

2) for any generalized renewal process R{|Xn|}(·), one has

(11.13) lim
s→∞

R{|Xn|}(s)
s

=
1
|η| a.s. on {|η| > 0},

In particular, if P{|η| > 0} > 0, then

lim
s→∞

P

{
R{|Xn|}(s)

s
< u

∣∣∣ |η| > 0
}

=
P{|η| > 1

u}
P{|η| > 0} ,

for any u > 0 such that 1/u is a point of continuity of the distribution function
of the random variable |η|.

3) if lim supn→∞ |Xn| = ∞ a.s. on {η = 0}, then

lim
s→∞

F{Xn}(s)
s

= ∞ a.s. on {η = 0}.

Example 11.2. Let {ξn, n ∈ Z}, be a stationary Gaussian random sequence with

Eξ0 = µ ∈ R

and spectral function G(λ), λ ∈ [−π, π], continuous for all λ 	= 0. Assume that

σ2
0 = lim

λ↓0
(G(λ) − G(−λ)) > 0.

Then η = E(ξ(0)|S∞) is a Gaussian random variable with Eη = µ and var(η) = σ2
0 .

Therefore, 1/|η| is an almost surely positive random variable with density

q(u) =
1√

2πσ0u2

(
exp

{
−(1 − uµ)2

2σ2
0u

2

}
+ exp

{
−(1 + uµ)2

2σ2
0u

2

})
, u > 0.

Hence, by statement 2) of Proposition 11.5, for any generalized renewal process R{|Xn|}(·),
relation (11.13) holds and

lim
s→∞

P

{
R{|Xn|}(s)

s
< u

}
= P

{
|η| >

1
u

}
=

∫ ∞

1/u

q(u) du,

for any u > 0.
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11.3. Sojourn times for Gaussian Markov sequences. Let {Xn, n ≥ 1} be a zero-
mean, real-valued Gaussian Markov random sequence with σ2

n = EX2
n > 0, n ≥ 1, and

rn,n+1 	= 0, n ≥ 1. Here rk,n denotes the correlation coefficient between Xk and Xn, that
is, rk,n = E(XkXn/σkσn). Gaussian Markov sequences are characterized by the relations

rk,n = rk,mrm,n, 1 ≤ k ≤ m ≤ n;

see Feller [8]. By these formulas, one has

r1,n =
n−1∏
m=1

rm,m+1 	= 0, n ≥ 1;

thus the limit |r|1,∞ = limn→∞ |r1,n| always exists with |r|1,∞ ∈ [0, 1].
Moreover, every Gaussian Markov sequence {Xn, n ≥ 1} satisfies the following recur-

rence relations:
X1 = σ1w1, Xn = anXn−1 + bnwn, n ≥ 2,

where an = (σn/σn−1)rn−1,n, b2
n = σ2

n(1−r2
n−1,n), n ≥ 2, and {wn, n ≥ 1} is a sequence of

independent, identically distributed, zero-mean normal random variables with Ew2
n = 1.

It is clear that the sequence

Y1 = X1, Yn =
Xn

a2 · · · an
=

σ1Xn

σnr1,n
, n ≥ 2,

is a Gaussian martingale.
Assume that |r|1,∞ 	= 0. Then, by Doob’s theorem, the martingale {Yn} converges

almost surely, since

sup
n≥2

E|Yn|2 =
σ2

1

|r|21,∞
< ∞.

Therefore,

lim
n→∞

Xn

σn
= η a.s.,

and

(11.14) lim
n→∞

|Xn|
σn

= |η| a.s.,

where η is a standard normal random variable. Hence, by (11.14) and Theorem 10.1 we
have:

Proposition 11.6. Let {Xn, n ≥ 1} be a zero-mean Gaussian Markov sequence satisfying
the conditions above. Let p(·) be a POV function and let p̃−1(·) be an asymptotic inverse
function for p(·). Assume that σn = p(n), n ≥ 1. Then, for any generalized renewal
process R{|Xn|}(·) (see Proposition 11.5), one has

lim
s→∞

R{|Xn|}(s)
p̃−1(s/|η|) = 1 a.s.
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