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Abstract: In this article, we focus on the theoretical properties of the foldover

design and the resulting combined design obtained by augmenting an initial design

by its foldover. We prove that there are 2p distinct ways to fold over a 2k−p

design. Optimal foldover plans are also discussed. We investigate the impact of

the inclusion of a blocking variable to the design. We show that the minimum

aberration foldover design with the presence of the blocking effect is the same as

the one without blocking.
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1. Introduction

Fractional factorial designs are widely used in engineering and scientific ex-
periments. One consequence of using a fraction of the full factorial design is that
some effects are confounded with others. Follow-up experiments may be needed
to break the confounding. A useful and simple strategy is to add a foldover
of the initial design by reversing the signs of one or more of its factors. Many
textbooks (e.g., Box, Hunter and Hunter (1978), Montgomery (2001), Neter,
Kutner, Nachishein and Wassserman (1996), Wu and Hamada (2000)) discuss
foldover techniques. Following the nomenclature in Li and Lin (2001), we refer a
foldover plan to a collection of columns (factors) whose signs are to be reversed.
The foldover design resulting from a foldover plan is also called a foldover. When
the initial design is augmented by its foldover, it is called a combined design.
Consider a design with k factors x1, . . . , xk. A standard strategy is to construct
a foldover design by reversing the signs of all factors. Such a foldover is called a
full-foldover, and its foldover plan is denoted by γ = {1, . . . , k}. It is well-known
that the full-foldover design is not effective for all designs. For example, the
design obtained by combining a resolution IV design and its full foldover is still
of resolution IV.

Foldover plans other than full-foldover have also been proposed in the liter-
ature. The sign-reversal of one factor was considered in Box, Hunter and Hunter
(1978), and Wu and Hamada (2000). Montgomery and Runger (1996) considered
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reversing the signs of one or two factors. Recently, papers by Li and Mee (2000)
and Li and Lin (2001) address the issue of an optimal foldover. The papers have
different emphases: the former provides a sufficient condition of the existence of
an alternative foldover that is better than the full-foldover for resolution III de-
signs; the latter aims to find the optimal foldover for a given fractional factorial
design.

In this article we explore the structures and properties of foldover designs.
In a 2k factorial design, denote the treatment combinations by k-dimensional row
vectors over the finite field GF (2). Consider a regular 2k−p fractional factorial
design A. To avoid trivialities, let A have resolution of at least III. It is well-
known (see, e.g., Cheng and Mukerjee (1998)) that A is given by R(C), where
C is a (k − p) × k matrix that is of full row rank over GF (2) such that no
two columns of C are proportional to each other, and R(·) stands for the row
space of a matrix. A factorial effect (i.e., a main effect or an interaction) can
be represented by a k-dimensional nonnull column vector over GF (2). Such a
factorial effect, say z, is a defining effect (that is, appears in the defining relation)
of A if and only if (Cheng and Mukerjee (1998))

Cz = 0. (1)

Now consider the foldover design Aγ , where γ is a foldover plan consisting of
columns whose signs are reversed. It can be easily seen that the combined design
is given by R(C∗), where

C∗ =

[
C

ξT

]
, (2)

and ξ is a k × 1 vector over GF (2) with ith element 1 if i ∈ γ, and 0 otherwise.
The remainder of the article is organized as following. Section 2 studies

some properties of the foldover plans for a 2k−p design. Section 3 investigates
the impact of the blocking factor. It is shown that the inclusion of the blocking
factor results in the change of the word length pattern of a combined design.
However, such a change does not alter the aberration comparisons of two com-
bined designs. Thus, the optimal foldover plans in terms of aberration criterion
that were obtained without considering the blocking effect (Li and Lin (2001))
are still optimal in the presence of a blocking factor. The conclusion and future
work are discussed in Section 4.

2. Properties of Foldover Plans

We now prove that there are 2p distinct ways to fold over a 2k−p design.
Note that the result is discussed in Li and Mee (2000) and Li and Lin (2001).
The former offers an informal argument, and the latter gives a rigorous but long
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proof. By using the notations introduced in the last section, we obtain a simple
and brief proof.

Theorem 2.1. For a 2k−p design with p generators, there are 2p distinct ways
to generate a foldover design.

Proof. Because the (k − p)× k matrix C has full row rank, there exists a p × k

matrix G over GF (2) such that the k × k matrix

[
C

G

]
is nonsingular. Denoting

the rows of G by gT
1 , . . . , gT

p , then ξ in (2) must be of the form

ξ = CT h+
p∑

j=1

mjgj , (3)

where h is a (k − p) × 1 vector over GF (2) and each mj is 0 or 1. By the
definition of G, it is clear from (2) and (3) that the distinct possibilities for
R(C∗) correspond to the 2p distinct choices of (m1, . . . ,mp). Thus, there exist 2p

distinct combined designs, or equivalently, there are 2p distinct ways to generate
a foldover design.

Note that when m1 = · · · = mp = 0 in (3), the foldover design is the same
as A itself. This trivial case is hereafter left out of consideration.

It is well-known that the combined design after foldover has only half the
words of the initial design. The following theorem gives a necessary and sufficient
condition for judging whether a word should be canceled or stay in the combined
design.

Theorem 2.2. Denote the combined design of A and its foldover design Aγ by
A∗, where γ is a foldover plan. Then a defining effect (or word) of A, say z,
stays in A∗ if and only if z has an even number of factors that are included in γ.

Proof. By (2), z is a defining effect of A∗ if and only if

Cz = 0 and ξT z = 0. (4)

Thus by (1), a defining effect z of A is also a defining effect of A∗ if and only if
ξT z = 0, i.e., if and only if z involves an even number of factors in common with
the set of factors that are in γ.

3. Blocking Effect on Foldover Designs

Because of the sequential nature of foldover designs, the first half and the
second half of a combined design can be seen as two blocks. If the blocking effect
is believed to be important, it should be considered when we select a design and
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analyze the data. In this section, we study the properties of foldover designs
when the blocking factor is included.

First, without loss of generality, assume that the blocking factor xb takes
value 0 for the initial design A and 1 for its foldover. Denote the combined
design including the blocking factor by Ab. Then Ab is given by R(Cb) where

Cb = [w,C∗]. (5)

Here C∗ is as in (2) and w is a (k − p + 1) × 1 vector with 0 in the first k − p

positions and 1 in the last position. The first column of Cb corresponds to the
blocking factor, and the other columns are associated with the treatment factors.

By (2) and (5), for any nonnull (k + 1) × 1 vector zb = (z0, z
T )T , z a k × 1

vector,
Cbzb = 0 if and only if Cz = 0 and z0 + ξT z = 0. (6)

By (1) and (6), zb = (z0, z
T )T is a defining effect of Ab if and only if z is a

defining effect of A and z0 + ξT z = 0. For a full foldover, each element of ξ is 1.
Thus, for an initial design A whose resolution is III or IV , the combined design
resulting from a full foldover is a resolution IV design when the blocking factor
is included.

The next theorem demonstrates that the inclusion of the blocking factor does
not change the comparison of two foldover plans in terms of the aberrations of
the resulting combined design.

Theorem 3.1. Consider two foldover plans γ and γ′. Denote the two resulting
combined designs without the blocking factor by A∗(γ) and A∗(γ′), respectively.
When the blocking factor is included, the two resulting combined designs are
denoted by Ab(γ) and Ab(γ′), respectively. Then A∗(γ) has less aberration than
A∗(γ′) if and only if Ab(γ) has less aberration than Ab(γ′).

Proof. By (1), (4) and (6), zb = [z0, z
T ]T has i nonzero elements and is a defining

effect of Ab if and only if either (i) z0 = 0, z has i nonzero elements and z is
a defining effect of A∗, or (ii) z0 = 1, z has i − 1 nonzero elements and z is a
defining effect of A but not of A∗. Thus, θi = βi + αi−1 − βi−1, where θi, βi

and αi are the numbers of defining effects involving i factors in Ab, A∗ and A,
respectively. The theorem follows immediately.

Theorem 3.1 shows that the blocking factor does not change the comparison
of the combined designs in terms of their aberrations. Note that many papers on
the foldover designs do not consider the blocking effect directly (e.g., Li and Mee
(2000), Li and Lin (2001)). In particular, Li and Lin (2001) provided a catalog
of optimal foldover designs using the aberration criterion of the combined design
without considering the blocking factor. By Theorem 3.1, these designs are still
minimum-aberration designs in the presence of a blocking factor.
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We conclude this section by considering the impact of the inclusion of the
blocking factor on certain partial foldover plans discussed in the previous sections.

1. If the sign of only one factor is reversed, then all words involving this
factor are multiplied by the blocking factor. The interaction effects represented
by those words are now confounded with the blocking effect. For example, if
the sign of factor x1 is reversed, the word x1x2x3 becomes xbx1x2x3. Hence,
the three-factor (3f) interaction x1x2x3 is confounded with the blocking effect.
Moreover, the 2f interaction x1x2 is confounded with x3xb. However, because
the blocking factor usually does not interact with other factors, x3xb is often
considered to be negligible. Therefore, if the initial design is of resolution III,
all 2f interactions involving x1 are cleared by the foldover. If the initial design
is of resolution IV, all 3f interactions involving x1 are cleared by the foldover.
Note that a 2f interaction is called clear if it is not aliased with any main effects
or other two-factor interactions (Wu and Chen (1992)). In our consideration,
we extend the definition to allow a clear 2f interaction to be confounded with a
two-factor interaction involving the blocking factor.

2. Suppose that the signs of two factors, say x1 and x2, are reversed. Then,
following the above discussion, all 2f interactions involving one of the two factors
x1 and x2 are clear. However, x1x2 may not be clear.

3. Suppose that we want to break the confounding between two 2f interac-
tions, say x1x2 and x3x4. By reversing the sign of x1x2x3x4, the word becomes
xbx1x2x3x4. Hence, x1x2 is confounded with xbx3x4, and x3x4 is confounded
with xbx1x2. Therefore, x1x2 and x3x4 are no longer confounded.

4. Concluding Remarks and Future Work

In Theorem 3.1, we do not distinguish words involving the blocking factor
from those not involving the blocking factor. Because the interactions between
the blocking factor and others are less likely to be active and often negligible,
Sitter, Chen, Feder (1997) argue that, for two words that are of the same length,
the one involving the blocking factor is less important than the one not involving
the blocking factor. It can be seen from the proof of Theorem 3.1 that the result
still holds for their aberration criterion. The theorem, however, may not hold for
some other criteria proposed recently for blocking designs (e.g., Chen and Cheng
(1999), Mukerjee and Wu (1999), and Cheng and Wu (2002)).

An interesting question raised by the associate editor is: can these results
be extended to s-level regular fractions, where s(≥ 2) is a prime or prime power?
It can be easily seen that there are 1 + {(sp − 1)/(s − 1)} distinct combined
designs—a generalization of Theorem 1. Other generalizations, however, are not
trivial and are currently under investigation.
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