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SOME PROPERTIES OF FACTORIZABLE HOPF ALGEBRAS

H.-J. SCHNEIDER

(Communicated by Ken Goodearl)

Abstract. A direct proof without modular category theory is given of a re-
cent theorem of Etingof and Gelaki (1998) on the dimensions of irreducible
representations. Factorizable Hopf algebras are characterized in terms of their
Drinfeld double, and their character rings and the group-like elements of their
duals are described.

1. Introduction

Etingof and Gelaki [EG] recently obtained a fundamental result in the repre-
sentation theory of the Drinfeld double of a semisimple Hopf algebra H over an
algebraically closed field of characteristic 0. Using the theory of modular ribbon
categories, they showed that the dimension of any simple D(H)-module divides the
dimension of H .

In this note, a direct proof of their result is given. More generally let (A,R) be a
quasitriangular and semisimple Hopf algebra. Assume that (A,R) is factorizable in
the sense of [RS] (see section 2). Then by Theorem 3.2, the square of the dimension
of any simple A-module divides the dimension of A. The theorem of Etingof and
Gelaki is an immediate corollary by taking A = D(H) with the usual R-matrix of
the double. The main ingredients of the short proof of Theorem 3.2 are the class
equation of Kac and Zhu (see [L] for an elementary proof), and Drinfeld’s central
element construction in [D]. Drinfeld’s construction is reviewed in section 2. Here
it is essential to note (see Theorem 2.1) that Drinfeld’s proof of [D, 3.3] shows more
than what is actually stated in [D, 3.3].

Moreover this paper contains two new results about factorizable Hopf algebras
over an arbitrary field. Let (A,R) be a factorizable Hopf algebra. It is not diffi-
cult to see that Drinfeld’s construction defines an algebra isomorphism between a
character ring C(A) and the center Z(A) of A. By Theorem 2.3, this isomorphism
induces a group isomorphism between the group-like elements of the linear dual A∗

and the central group-like elements of A. This last result answers a question of
Sonia Natale. When A is the double of a finite-dimensional Hopf algebra H , the
group isomorphism in 2.3 was already obtained by Radford [R93, Propositions 9
and 10].
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In section 4, a new characterization of factorizable Hopf algebras is given. Let
(A,R) be a quasitriangular and finite-dimensional Hopf algebra. If (A,R) is factor-
izable, then it is stated in [RS] (without an explicit proof) that the double D(A) is
isomorphic to a 2-cocycle twist of the tensor product Hopf algebra A ⊗ A. Tsang
and Zhu recently rediscovered this result in the case when A is the double of an-
other Hopf algebra H . Their proof uses the special structure of the double D(H).
In Theorem 4.3, a stronger result is obtained in a more conceptual way: (A,R)
is factorizable if and only if the double D(A) is isomorphic (in a specific way) to
a 2-cocycle twist of the tensor product A ⊗ A. The proof of 4.3 follows from the
theorem on Hopf modules.

This note originated on the occasion of some lectures I gave at the University
of Córdoba, Argentina, in the fall of 1998. I would like to thank Nicolás An-
druskiewitsch, the FOMEC and FaMAF for the invitation.

2. Central and group-like elements

In this paper, algebras and coalgebras are defined over the ground-field k; co-
multiplication and counit of a coalgebra and the antipode of a Hopf algebra will
be denoted by ∆, ε and S. If A is an algebra, the dual vector space A∗ is an
(A,A)-bimodule with (af)(b) = f(ba) and (fa)(b) = f(ab) for all a, b ∈ A.

Let A be a Hopf algebra and R an invertible element in A ⊗ A. Elements t in
A⊗A will be written symbolically as t = t1⊗t2. Following Drinfeld, the pair (A,R)
is called quasitriangular if:

(1) x2R
1 ⊗ x1R

2 = R1x1 ⊗R2x2, for all x ∈ A.
(2) ∆(R1)⊗R2 = R1 ⊗ r1 ⊗R2r2.
(3) R1 ⊗∆(R2) = R1r1 ⊗ r2 ⊗R2.

Here R = r and the symbolic notations R = R1 ⊗ R2 = r1 ⊗ r2 (to indicate two
different summation indices) and ∆(x) = x1⊗x2 are used. Define R21 = R2⊗R1 =
τ(R) where τ : R⊗R→ R⊗R is the usual twist map, and

b := R21R = r2R1 ⊗ r1R2.

Note that b∆(x) = ∆(x)b for all x ∈ A since R and R−1
21 both satisfy (1).

The quasitriangular Hopf algebra (A,R) is called factorizable [RS] if the map

ΦR = Φ : A∗ → A, Φ(f) := b1f(b2) for all f ∈ A∗,
is an isomorphism of vector spaces; A∗ is the k-linear dual of A. Important examples
of factorizable Hopf algebras are the Drinfeld doubles of arbitrary finite-dimensional
Hopf algebras [RS, 2.10] (see 2.4 1) below).

In [D], Drinfeld introduced a basic construction of central elements of a quasi-
triangular Hopf algebra. As in [D] let

C(A) := {f ∈ A∗ | for all x, y ∈ A : f(xy) = f(yS2(x))}.
Let Z(A) denote the center of A. The next crucial result is due to Drinfeld [D,
1.2 and 3.3]. However the formulation below in (b) is more general; [D, 3.3] just
says that the map Φ defines by restriction an algebra homomorphism on C(A). For
completeness the short proof will be repeated (in a different notation).

Theorem 2.1 (Drinfeld [D]). Let (A,R) be a quasitriangular Hopf algebra and
Φ = ΦR : A∗ → A. Then for all g ∈ C(A) and f ∈ A∗,

(a) Φ(g) ∈ Z(A), and
(b) Φ(fg) = Φ(f)Φ(g).
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Proof. (a) For all g ∈ C(A) and x ∈ A,

xΦ(g) = x1b
1g(S−1(x3)x2b

2)

= b1x1g(b2x2S(x3)) since g ∈ C(A), and ∆(x)b = b∆(x)

= Φ(g)x.

(b) For all f ∈ A∗ and g ∈ C(A),

Φ(fg) = R2r1(fg)(R1r2)

= R2r1f(R1
1r

2
1)g(R1

2r
2
2)

= R2r2s1t1f(R1t2)g(r1s2) by (2) and (3) with R = r = s = t

= R2r2s1g(r1s2)t1f(R1t2)

= R2Φ(g)t1f(R1t2)

= Φ(f)Φ(g) since Φ(g) is central by (a).

Lemma 2.2. Let A be a finite-dimensional unimodular Hopf algebra. Then
dim(C(A)) = dim(Z(A)).

Proof. Let λ ∈ A∗ be a non-zero left integral. Then A→ A∗, a 7→ λa, is bijective.
Since A is unimodular, for all a, b ∈ A, λ(ab) = λ(bS2(a)) [OS, 3.2, 2)a)]. Hence
for all a, x, y ∈ A, (λa)(yS2(x)) = λ(ayS2(x)) = λ(xay). Thus λa ∈ C(A) if and
only if for all x ∈ A, λ(xa) = λ(ax), that is a ∈ Z(A).

If C is a coalgebra, then G(C) = {c ∈ C | ∆(c) = c⊗ c, ε(c) = 1} will denote the
set of all group-like elements of C.

Theorem 2.3. Let (A,R) be a factorizable Hopf algebra. Then ΦR : A∗ → A
induces by restriction

(a) an algebra isomorphism C(A)→ Z(A), and
(b) a group isomorphism G(A∗)→ G(A) ∩ Z(A).

Proof. (a) By [R94, Proposition 3], A is unimodular (for another proof see 4.4
below). By Theorem 2.1, ΦR defines an injective algebra map C(A)→ Z(A) which
is bijective by Lemma 2.2.

(b) Let f ∈ G(A∗) = Alg(A, k). Then f ∈ C(A) since fS2 = f, fS being the
inverse of f in the group G(A∗). Hence Φ(f) ∈ Z(A) by (a), and

Φ(f) = R2r1f(R1r2) = R2f(R1)r1f(r2) = uv,

where u := R2f(R1), v := r1f(r2). It follows easily from (3) and (2) that u and
v are group-like elements of A. Thus Φ defines an injective group homomorphism
from G(A∗) to G(A) ∩ Z(A).

To prove surjectivity of this map take g ∈ G(A) ∩ Z(A). By Lemma 2.2 λg−1 is
in C(A) since g−1 is central. Then for all p ∈ A∗, p(λg−1) = p(g)λg−1 in A∗, since
for all x ∈ A,

(p(λg−1))(x) = p(x1)λ(g−1x2) = ((pg)λ)(g−1x) = p(g)(λg−1)(x),

since λ is a left integral. Hence it follows from Theorem 2.1 (b) that for all p ∈ A∗,
Φ(p)Φ(λg−1) = Φ(p(λg−1)) = p(g)Φ(λg−1).
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Therefore the left A-module generated by Φ(λg−1) is one-dimensional (since Φ :
A∗ → A is bijective). Hence there is an algebra homomorphism χ : A → k with
p(g) = χ(Φ(p)) for all p ∈ A∗.

It remains to show that Φ(χ) = g or equivalently χ(Φ(p)) = p(Φ(χ)) for all
p ∈ A∗. Define u := R1χ(R2), v := r2χ(r1). For all p ∈ A∗,

χ(Φ(p)) = χ(R2)χ(r1)p(R1r2) = p(uv), and

p(Φ(χ)) = p(R2r1χ(R1)χ(r2)) = p(vu).

Thus the claim follows from the equality uv = vu. Since Φ defines an algebra
homomorphism C(A)→ Z(A), Φ(χ) = S(Φ(χS)); hence

uv = Φ(χ) = S(r1)χ(S(r2))S(R2)χ(S(R1)) = vu,

since R = S(R1)⊗ S(R2) by [K, VIII.2.4].

Remark 2.4. 1) Let H be a finite-dimensional Hopf algebra and A = D(H) =
H∗cop ⊗H the Drinfeld double of H . Elements p⊗ h, p ∈ H∗, h ∈ H of D(H) will
be simply denoted by ph. Then H∗cop and H are sub Hopf algebras of D(H) and
comultiplication and multiplication in D(H) are given by

∆(ph) = p2h1 ⊗ p1h2, and hp = p(S−1(h3)− h1)h2,

for all h ∈ H, p ∈ H∗ [K, IX.4.1].
Let (ei) and (fi) be dual bases in H and H∗. Then D(H) is quasitriangular

with R-matrix R =
∑
i ei ⊗ fi [K, IX.4.2]. Thus b =

∑
i,j fjei ⊗ ejfi and Φ(F ) =∑

i,j fjeiF (ejfi) for all F ∈ D(H)∗. Since the elements fjei, 1 ≤ i, j ≤ n, and
S(fi)S(ej), 1 ≤ i, j ≤ n, are bases of D(H), ΦS is injective. Hence (D(H), R) is
factorizable (cf. [RS, Theorem 2.10], [R94, p. 226]).

2) The group isomorphism in Theorem 2.3 can be described explicitly in case
A = D(H) with R-matrix as in 1). For any χ ∈ G(A∗) = Alg(A, k), Φ(χ) = uv
with u =

∑
i fiχ(ei) and v =

∑
i eiχ(fi). Thus u ∈ G(A∗) is the restriction of χ on

H∗, and the group-like element v ∈ G(H) is defined by p(v) = χ(p) for all p ∈ H∗.
Therefore the isomorphism G(D(H)∗) → G(D(H)) ∩ Z(D(H)) of Theorem 2.3 is
the isomorphism constructed by Radford [R93, Propositions 9 and 10].

3. A direct proof of a theorem of Etingof-Gelaki

Throughout this section the field k is algebraically closed of characteristic 0.
The Theorem of Etingof-Gelaki [EG, 1.4] will follow from Drinfeld’s central element
construction in section 2 and the following result by Kac-Zhu (the class equation,
see [L] for a more elementary proof).

Theorem 3.1 (Kac-Zhu). Let A be a semisimple Hopf algebra and e a primitive
idempotent in the character algebra C(A). Then dim(A∗e) divides dim(A).

Theorem 3.2. Let (A,R) be a factorizable Hopf algebra. If A is a semisimple
algebra and V a simple left A-module, then dim(V )2 divides dim(A).

Proof. By assumption, A ∼= Md1(k) × · · · × Mdt(k) is isomorphic to a product
of full matrix rings Mdi(k), and Z(A) ∼= k × · · · × k. Let Ei be the primitive
idempotent in Z(A) corresponding to the simple module V . Thus AEi ∼= Mdi(k)
has dimension d2

i , and di = dim(V ). By Theorem 2.1, ΦR induces an algebra
isomorphism C(A)→ Z(A) (Note that here unimodularity of A is very easy to see
since A is semisimple). Let ei be the primitive idempotent in C(A) with Φ(ei) = Ei.
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Then by Theorem 2.1 (b), Φ(A∗ei) = Φ(A∗)Φ(ei) = AEi. Since Φ is bijective,
dim(A∗ei) = dim(AEi) = (dim(V ))2. Therefore (dim(V ))2 divides dim(A) by
Theorem 3.1.

Corollary 3.3 (Etingof-Gelaki [EG]). (1) If H is a semisimple Hopf algebra and
V a simple left D(H)-module, then dim(V ) divides dim(H).

(2) If (H,R) is a quasitriangular Hopf algebra and H is semisimple, then for
any simple left H-module, dim(V ) divides dim(H).

Proof. (1) Since the characteristic of k is 0, D(H) is semisimple by [LR]. Hence by
Theorem 3.2 applied to the factorizable Hopf algebra (D(H), R), (dim(V ))2 divides
dim(D(H)) = (dim(H))2. Thus dim(V ) divides dim(H).

(2) follows from (1) as in [EG] since H is an epimorphic image of D(H).

Remark 3.4. The original proof of Corollary 3.3 (1) uses the theory of modular
categories. In particular, in the first line of the proof of [EG, Lemma 1.2], the
authors need a trace formula in modular categories. For a proof they refer to [Ki]
who refers to Turaev’s book [T]. The lucky reader may find a proof in [T, II,
3.2.2.(ii)] making use of various twistings in the graphical calculus.

However, in the case of the modular category of all finite-dimensional represen-
tations of a semisimple factorizable Hopf algebra (A,R) (in [EG] A is the Drinfeld
double of a semisimple Hopf algebra H), this formula is in fact a special case of the
class equation 3.1 in the version of Lorenz [L].

Let Vi, 0 ≤ i ≤ m, with V0 := k, be a complete set of representatives of the
isomorphism classes of the simple left A-modules. For all i, let χi be the character
of Vi, and let χi∗ = S(χi) be the character of (Vi)∗. By definition, the matrix (sij)
in [EG] is given by

sij = χi(Φ(χj∗ )), 0 ≤ i, j ≤ m,
where Φ = ΦR. The trace formula needed in the proof of [EG, Lemma 1.2] then is:

For all j,
∑
i

sjisij∗ = dim(A).

To prove this formula, let Ei in Z(A) be the central primitive idempotent of
Vi, 0 ≤ i ≤ m. For all i, define ei := Φ−1(Ei), and let µi be the character of
the simple C(A)-module C(A)ei. Since Φ defines an algebra isomorphism between
C(A) and Z(A), πi := µiΦ−1 is the character of the simple Z(A)-module Z(A)Ei.
Note that for any a ∈ Z(A), left multiplication with a on Vi is multiplication with
πi(a); hence χi(a) = πi(a)dim(Vi) (for, since Vi is simple, left multplication with
a on Vi is multiplication with some scalar; since AEi ∼= V dii , di := dim(Vi), and
Z(A)Ei is one-dimensional, this scalar is πi(a)).

Hence for all i, j,

sij = χi(Φ(χj∗ )) = πi(Φ(χj∗))dim(Vi) = µi(χj∗)dim(Vi),

since Φ(χj∗) is in the center of A by Theorem 2.1.
Moreover it is not difficult to see that for all i, j, sij = sji, and sij = si∗j∗ ; hence

sij∗ = sji∗ (cf. [Ki]).
Therefore one obtains∑

i

sjisij∗ =
∑
i

sjisji∗ =
∑
i

µj(χi∗)µj(χi)(dim(Vj))2.
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Finally, as in the proof of Theorem 3.2, by Theorem 2.1 (b), dim(A∗ej) = (dim(Vj))2.
Thus the trace formula is equivalent to the equality∑

i

µj(χi∗)µj(χi) =
dim(A)

dim(A∗ej)
,

which is exactly the formula

ω(ẽ) = d

(for left modules) in the proof of the class equation in [L], where ẽ = ej =∑
i µj(χi∗)χi and ω = µj , since here C(A) is commutative.

4. The Drinfeld double of a factorizable Hopf algebra

If (A,R) is a finite-dimensional quasitriangular Hopf algebra, define πR : D(A)→
A by πR(fa) := f(R1)R2a for all f ∈ A∗, a ∈ A. (See 2.4 for notations concerning
D(A).) This map appears in [D, Proof of Proposition 6.2] where it was observed
that πR is a Hopf algebra homomorphism. Since R̃ := (R21)−1 = S−1(R2) ⊗
R1 = R2 ⊗ S(R1) is another R-matrix for A [K, VIII.2], that is (A, R̃) is again
quasitriangular, there is always a second projection πR̃ : D(A)→ A.

Finally, if % : A → B is a homomorphism of bialgebras, then Aco% := {x ∈ A |
x1 ⊗ %(x2) = x⊗ 1}.
Lemma 4.1. Let (A,R) be a finite-dimensional quasitriangular Hopf algebra. De-
fine π := πR, π̃ := πR̃,Φ := ΦR, and let i : D(A)coπ → D(A) be the inclusion map.
Then:

(1) Ψ : A∗ → D(A)coπ, Ψ(f) := f2S(π(f1)), is bijective.

(2) SΦ = π̃iΨ : A∗ Ψ−→ D(A)coπ i−→ D(A) π̃−→ A.

Proof. (1) The map Ψ is well-defined since for all f ∈ A∗,
Ψ(f)1 ⊗ π(Ψ(f)2) = f4S(π(f1))⊗ π(f3S(π(f2))) = Ψ(f)⊗ 1,

since π is a Hopf algebra homomorphism. The inverse of Ψ is given by id⊗ ε since
for all f ∈ A∗, (id⊗ ε)Ψ(f) = f, and if x =

∑
i fiai ∈ D(A)coπ, fi ∈ A∗ and ai ∈ A

for all i, then
∑

i fi2ai1 ⊗ π(fi1ai2) = x⊗ 1; hence

x =
∑
i

fi2ai1Sπ(ai2)Sπ(fi1)) = Ψ(
∑
i

fiε(ai)).

(2) For any f ∈ A∗,
π̃(Ψ(f)) = π̃(f2f1(R1)S(R2))

= f2(S−1(r2))r1f1(R1)S(R2)

= S(R2S−1(r1)f(R1S−1(r2))

= S(R2r1f(R1r2)) since S−1(r1)⊗ S−1(r2) = r1 ⊗ r2

= S(Φ(f)).

Let H be a bialgebra with comultiplication ∆ and augmentation ε. An invertible
element F ∈ H ⊗H is called a 2-cocycle for H or a gauge transformation if

F12(∆⊗ id)(F ) = F23(id⊗∆)(F ) in H ⊗H ⊗H, and

ε(F 1)F 2 = 1 = F 1ε(F 2).
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If F is a 2-cocycle for H , then the twisted bialgebra HF is defined as follows.
HF = H as an algebra with the new comultiplication

∆F (x) := F∆(x)F−1 for all x ∈ H,

and the old augmentation ε. If H is a Hopf algebra, then HF is a Hopf algebra
with antipode SF (x) := vS(x)v−1 for all x ∈ H , where v := F 1S(F 2), v−1 =
S(G1)G2, G := F−1 (see [K, XV.3 and XV.6]).

Theorem 2.9 in [RS] describes the Drinfeld double of a factorizable Hopf algebra
A as a 2-cocycle twist of the usual (componentwise) tensor product bialgebra A⊗A
without giving an explicit proof.

In the case when A = D(H) is itself the Drinfeld double of another Hopf algebra
H , Tsang and Zhu [TZ, Theorem 2] recently rediscovered this result. Their proof
depends on the structure of A as the double of H .

In the next theorem a stronger result is shown by using the concept of Hopf
modules in the next lemma. Factorizable Hopf algebras can in fact be characterized
by the property that their double is isomorphic (in a specific way) to a 2-cocycle
twist of the usual tensor product bialgebra.

Lemma 4.2. Let A,B and D be bialgebras and ϕ : D → A,ψ : D → B bialgebra
maps. Define δ : D → A⊗B by δ(x) := ϕ(x1)⊗ ψ(x2) for all x ∈ D.

(1) If (D,R) is a quasitriangular Hopf algebra, then

F := 1⊗ ψ(S(R1))⊗ ϕ(R2)⊗ 1

is a 2-cocycle for A ⊗ B with componentwise bialgebra structure, and δ : D →
(A⊗B)F is a bialgebra map.

(2) Assume that B is a Hopf algebra and that there is a bialgebra homomorphism
γ : B → D with ψγ = idB. Then δ : D → A ⊗ B is bijective if and only if the
restriction of ϕ defines an isomorphism between Dcoψ and A.

Proof. (1) can be checked directly.
(2) It is easy to see that δ : D → A⊗B is a map of right (B,B)-Hopf modules.

Here D is a right B-module by restriction via γ : B → D, and a right B-comodule
by (id ⊗ ψ)∆; A ⊗ B is a right B-comodule by id ⊗ ∆, and the right B-module
structure is given by (a ⊗ b) · c := aϕ(γ(c1)) ⊗ bc2 for all a ∈ A and b, c ∈ B.
Hence by the theorem on Hopf modules [M, 1.9], δ is bijective if and only if DcoB =
Dcoψ → (A⊗B)coB ∼= A, x 7→ ϕ(x), is bijective.

Theorem 4.3. Let (A,R) be a finite-dimensional quasitriangular Hopf algebra.
Define FR := 1 ⊗ R2 ⊗ R1 ⊗ 1 and δR : D(A) → A ⊗ A, x 7→ δR(x) := π̃(x1) ⊗
π(x2) with π := πR and π̃ := πR̃. Then FR is a 2-cocycle for A ⊗ A with compo-
nentwise bialgebra structure,

δR : D(A)→ (A⊗A)FR

is a Hopf algebra homomorphism, and the following are equivalent:
(1) δR is bijective.
(2) (A,R) is factorizable.

Proof. Let (ei) and (fi) be dual bases of A and A∗. Apply Lemma 4.2 with D :=
D(A) and R-matrix

∑
i ei ⊗ fi, ϕ := π̃, ψ := π, and γ : A → D(A) the inclusion
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map. The 2-cocycle of Lemma 4.2 (1) then is∑
i

1⊗ π(S(ei))⊗ π̃(fi)⊗ 1 =
∑
i

1⊗ S(ei)⊗ fi(R2)S(R1)⊗ 1

= 1⊗ S(
∑
i

eifi(R2))⊗ S(R1)⊗ 1

= 1⊗ S(R2)⊗ S(R1)⊗ 1
= FR.

By Lemma 4.2 (2) and Lemma 4.1, conditions (1) and (2) are both equivalent
to the bijectivity of the map D(A)coπ → A, x 7→ π̃(x).

Remark 4.4. Radford [R94, Proposition 3] showed that a factorizable Hopf algebra
is unimodular. Another proof of this result follows from the isomorphism D(A) ∼=
(A⊗ A)FR in Theorem 4.3 and the unimodularity of the double [R93, Theorem4].
Let Λ be a left integral in A. Then Λ ⊗ Λ is a left integral in (A ⊗ A)FR . Since
D(A) is unimodular, Λ⊗ Λ is a right integral. Hence Λ is a right integral in A.
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