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1. Introduction

The classical univariate distributions, like normal, exponential, Weibull, gamma,
beta, etc., have been studied in great details by many authors (cf. Kotz et al., 1994,
1995). Over the past decade, extensive studies have been carried out to develop
generalized families of distributions based on the classical ones, which exhibit
greater flexibility in modeling real-life data. Mudholkar and Srivastava (1993)
introduced the exponentiated Weibull distribution to analyze bathtub failure rate
data. Gupta et al. (1998) proposed a generalization of the standard exponential
distribution. Thereafter, many authors introduced and studied various classes of
univariate distributions, see, for example, Gupta and Kundu (2001), Eugene et al.
(2002), Nadarajah (2005), Pal et al. (2006), Lee et al. (2007), Zografos (2008),
Sarhan and Zaindin (2009), Aryal, and Tsokos (2011), Cordeira (2013), Pal and
Tiensuwan (2014).

Zografos and Balakrishnan (2009) introduced a family of univariate distribu-
tions generated by the standard Gamma distribution. Based on a baseline con-
tinuous distribution G(x) with survival function G(x), and density function g(x),
they defined the cumulative distribution function (cdf) of the gamma generated
distribution as

F (x) =
1

Γ(α)

∫ −logG(x)

0

tα−1e−tdt, −∞ < x < ∞, α > 0. (1)

The density function of the distribution is, therefore, given by

f(x) =
1

Γ(α)
{−logG(x)}α−1g(x), −∞ < x < ∞, α > 0. (2)
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Zografos and Balakrishnan (2009) obtained the general expressions for the
moments and Shannon entropy of the distribution, and gave the specific forms
under some standard baseline distributions. Not much study has been carried out
on the distribution thereafter.

In this paper, we carry out further investigation on the distribution for general
baseline distribution G(.). The paper is organized as follows. In Section 2 we
study some properties of the distribution. In Section 3, we obtain distributions of
the order statistics. In Section 4, the analytical forms of the properties for some
specific baseline distributions are obtained. Finally in Section 5, some concluding
remarks on the study have been made.

2. Properties of gamma generated distributions

The class of gamma generated distributions is flexible in the sense that, depending
on the value of α in (2), it can represent distributions of different shapes. Below
are some gamma generated density curves for varied values of α.

 

 

                                                                           (a) 

 

                               (b)                                                                                  (c) 

                          

Figure 1 – The density curves of gamma generated (a) exponential distribution with cdf
G(x) = 1− e−0.25x, x > 0; (b) Pareto distribution with cdf G(x) = 1− ( 0.25

x
)2, x ≥ 0.25,

and (c) uniform distribution with cdf G(x) = x
2
, 0 ≥ x ≥ 2, for α = 0.5, 0.75, 1, 1.5.

In this section we study some interesting properties of gamma generated dis-
tributions.

2.1. Survival Function and Hazard Rate

The survival function of the distribution (1) is
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F (x) = 1− F (x) =
1

Γ(α)

∫ ∞

−logG(x)

tα−1e−tdt,

and its hazard rate is given by

hF (x) =
f(x)

F (x)
=

{−logG(x)}α−1g(x)∫∞
−logG(x)

tα−1e−tdt
, −∞ < x < ∞, α > 0, (3)

Lemma 1. If G(.) be the baseline distribution with hazard rate hG(x) and the
generating distribution be Gamma(α) with hazard rate hgamma(x;α), then the haz-
ard rate of the gamma generated distribution F (x) is the product of hG(x) and
hgamma(−lnG(x);α).

Proof. We can write

hF (x) =
G(x){−logG(x)}α−1g(x)/G(x)∫∞

−logG(x)
tα−1e−tdt

= hG(x)
e−{lnG(x)}{−logG(x)}α−1∫∞

−logG(x)
tα−1e−tdt

= hG(x)× hgamma(−lnG(x);α).

Lemma 2. For fixed x, hF (x) is a decreasing function of α.

Proof. From Lemma 1 we have that hF (x) = hG(x)× hgamma(−lnG(x);α),
which is dependent on α only through hgamma(−lnG(x);α).
For the distribution Gamma(α), the hazard rate can be written as

hgamma(x;α) =

[∫ ∞

0

e−z(1 +
z

x
)α−1dz

]−1

,

which decreases as α increases for fixed x.

Hence the lemma.

Lemma 3. If the baseline distribution G(.) has the increasing failure rate (IFR)
(decreasing failure rate (DFR)) property, then for α > 1 (α < 1) the gamma
generated distribution (2) also has the IFR (DFR) property.

Proof. The Gamma(α) distribution has the IFR (DFR) property accord-
ing as α > (<)1. Further, −lnG(x) is a non-decreasing function of x. Hence,
hgamma(−lnG(x);α) is a non-decreasing (non-increasing) function of x for α >
(<)1.

Thus, if the distribution G(.) has the IFR (DFR) property, then for α > (<)1,
hF (x) is a non-decreasing (non-increasing) function of x, that is the distribution
F (.), given by (1) has the IFR (DFR) property.
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2.2. Moment Generating Function (MGF)

It is easy to check that a logarithmic transformation of the baseline distribution
G transforms the random variable X with density f(x), given by (2), to a gamma
variate. Thus, if X has a density (2), then the random variable Z = −logF (x)
has a gamma distribution with parameter α.

Using this result, a general expression of the moment generating function (mgf)
of gamma generated distribution (1) is obtained as

MX(t) = (1/Γ(α))

∫ ∞

−∞
etxg(x){−lnG(x)}α−1dx

= EZ [e
tG−1(1−e−Z)]

=

∞∑
r=0

tr

r!
EZ [G

−1(1− e−Z)]r,

where Z ∼ Gamma(α), and G−1(p) denotes the value x such that G(x) = p.
We, therefore, get the moments as

µ′
r = EX(X ′) = EZ [G

−1(1− e−Z)]r, r ≥ 1.

2.3. Quantiles and Simulation

The quantile function of a probability distribution is useful in statistical applica-
tions and Monte Carlo simulation. The following lemma relates the quantile of a
gamma generated distribution to that of the baseline distribution.

Lemma 4. The p-th quantile of the gamma generated distribution F (.), given
by (1), 0 < p < 1, is equal to the (1 − exp(−tp))-th quantile of the baseline
distribution G(.), where tp denotes the p-th quantile of the Gamma distribution
with shape parameter α.

Proof. The p-th quantile tF (p) of F (.) is such that F (tF (p)) = p, that is

F (tF (p)) =
1

Γ(α)

∫ −logG(tF (p))

0

tα−1e−tdt = p.

Thus, if tp be the p-th quantile of Gamma(α), we get tp = −lnG(tF (p)), which
gives

G(tF (p)) = 1− exp(−tp)).

Hence the Lemma.

In particular, the median µe(F ) = tF (0.5) of a gamma generated distribution
F (.) with baseline distribution G(.) is given by
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µe(F ) = G−1(1− exp(−t0.5)), (4)

where t0.5 is the median of Gamma(α) distribution.

The median of Gamma(α), and hence that of F (.), cannot be obtained in a closed
form. However, for α ≥ 1, an approximation to the median of Gamma(α) is given
by α 3α−0.8

3α+0.2 (cf. Banneheka and Ekanayake, 2009), which may be used to find
µe(F ) from (4).

To simulate from the distribution F (.), given by (1), we may first simulate an
observation x from the Gamma(α) distribution and then find y such that G(y) =
1− exp(−x). The simulated observation from F (.) will then be y.

2.4. Stress-strength reliability

Suppose X and Y are independently distributed with X ∼ F1(x) and Y ∼ F2(y),
where

F1(x) =
1

Γ(α)

∫ −logG(x)

0

tα−1e−tdt,

F2(y) =
1

Γ(β)

∫ −logH(y)

0

tβ−1e−tdt.

Since −logH(Y ) is distributed as Gamma(β), we get

Pr(X > Y ) =
1

Γ(α)Γ(β)

∫ ∞

0

{
∫ ∞

−lnG(H
−1

(e−ν))

uα−1e−udu}νβ−1e−νdν.

When X and Y have the same baseline distribution, that is G(x) = H(x), for
−∞ < x < ∞, it is easy to show that Pr(X > Y ) is equal to the probability that
U is greater than V , where U and V are independent Gamma(α) and Gamma(β)
variates, respectively. An analytical expression for the same can be obtained as
follows:

Pr(X > Y ) =
1

Γ(α)Γ(β)

∫ ∞

0

{
∫ ∞

0

(u+ ν)α−1e−(u+ν)du}νβ−1e−νdν

=
1

2α+βB(α, β)

α−1∑
j=0

(
α− 1
j

)
2j+1B(j + 1, α+ β − j − 1),

if α is a positive integer

=
1

2α+βB(α, β)

∞∑
j=0

(
α− 1
j

)
2j+1B(j + 1, α+ β − j − 1),

otherwise,

where B(a, b) =
∫ 1

0
za−1(1− z)b−1dz.
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2.5. Entropy

Entropy indicates the amount of uncertainty associated with a random variable.
It is an important concept in many areas of study, like physics, probability and
statistics, economics, communication theory. Zografos and Balakrishnan (2009)
gave a general expression of a very popular measure of entropy introduced by
Shannon (1948). We give an expression of another popular measure of entropy,
namely Rényi entropy.

Rényi entropy is defined as

IR(ν) = (1− ν)−1log[

∫ ∞

−∞
f(x)νdx],where ν > 0, ν ̸= 1.

From (2),

IR(ν) = (1− ν)−1log[

∫ ∞

−∞

1

(Γ(α))ν
{−logG(x)}ν(α−1)g(x)νdx]

= (1− ν)−1log

[
Γ(ν(α− 1) + 1)

(Γ(α))ν
EZ{g(G

−1
(e−z))ν−1}

]
= (1− ν)−1

[
logΓ(ν(α− 1) + 1)− νlogΓ(α) + logEZ{g(G

−1
(e−z))}ν−1

]
,

(5)

where Z is distributed as Gamma(ν(α− 1) + 1).

Thus, the members of the family of gamma generated distributions (1) can be dis-

criminated among each other by means of the expected valueEZ{g(G
−1

(e−Z))}ν−1,
which depends on the baseline distribution G(.).

3. Order statistics

LetX1,X2, . . . ,Xn be a random sample of size n drawn from the F (.) distribution,
given by (1), and let X(1) < X(2) < . . . < X(n) denote the corresponding ordered
observations.

Theorem 5. The density of the i-th order statistic X(i) is an infinite weighted
sum of gamma generated distributions with baseline distribution G(.).
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Proof. The density of the i-th order statistic X(i) is given by

f(i)(x) =
n!

(i− 1)!(n− i)!
f(x)[F (x)]i−1[1− F (x)]n−i

=
n!

(i− 1)!(n− i)!
f(x)

n−i∑
j=0

(−1)j
(
n− i

j

)
[F (x)]i+j−1

=
n!

(i− 1)!(n− i)!
f(x)

n−i∑
j=0

(−1)j
(
n− i

j

)[
1

Γ(α)

∫ −lnG(x)

0

tα−1e−tdt

]i+j−1

=
n!

(i− 1)!(n− i)!
f(x)

n−i∑
j=0

(−1)j
(
n− i

j

)[
1

Γ(α)
γ(α,−lnG(x))

]i+j−1

,

where γ(α, z) =
∑∞

k=0(−1)k zα+k

k!(α+k) .

We can, therefore, write

f(i)(x) =
n!

(i− 1)!(n− i)!
f(x)

n−i∑
j=0

(−1)j
(
n− i

j

)
1

(Γ(α))i+j−1
(−lnG(x))α(i+j−1)

[ ∞∑
k=0

(−1)k
(−lnG(x))k

k!(α+ k)

]i+j−1

=
n!

(i− 1)!(n− i)!
g(x)

n−i∑
j=0

(−1)j
(
n− i

j

)
1

(Γ(α))i+j
(−lnG(x))α(i+j)−1

[ ∞∑
k=0

(−1)k
(−lnG(x))k

k!(α+ k)

]i+j−1

.

Writing αk = (−1)k

k!(α+k) , and using the result on power series raised to a positive
integer, we get[ ∞∑

k=0

ak{−lnG(x)}k
]i+j−1

=

∞∑
k=0

bk,i+j−1{−lnG(x)}k,

where b0,i+j−1 = ai+j−1
0 and bk,i+j−1 = 1

ka0

∑k
l=1{(i+ j)l − k}albk−l,i+j−1.

Using the above expression, we obtain

f(i)(x) =
n!

(i− 1)!(n− i)!

n−i∑
j=0

∞∑
k=0

(
n− i

j

)
(−1)jbk,i+j−1

(Γ(α))i+j
Γ(α(i+ j) + k)f(x;α(i+ j) + k),

where f(x;α(i+ j) + k) denotes the density of gamma exponentiated G(.) distri-
bution, the exponentiating distribution being Gamma(α(i+ j) + k).
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In particular, the density functions of the smallest order statistic X(1) and the
largest order statistic X(n) are given by

f(1) = n

n−1∑
j=0

∞∑
k=0

(
n− 1

j

)
(−1)jbk,j
(Γ(α))j+1

Γ((j + 1)α+ k)f(x; (j + 1)α+ k),

f(n) =
n

Γ(α)

∞∑
k=0

bk,0Γ(α+ k)f(x;α+ k).

Using Theorem 5, we obtain the r-th order moment of the i-th order statistic
as

EF (X
r
(i)) =

n!

(i− 1)!(n− i)!

n−i∑
j=0

∞∑
k=0

(
n− i

j

)
(−1)jbk,i+j−1

(Γ(α))i+j
Γ(α(i+ j) + k)

E([G−1(1− eZα(i+j)+k)]r),

where Zα(i+j)+k ∼ Gamma(α(i+ j) + k).

Hence,

EF (X
r
(1)) = n

n−1∑
j=0

∞∑
k=0

(
n− i

j

)
(−1)jbk,j
(Γ(α))j+1

Γ((j + 1)α+ k)E([G−1(1− eZ(j+1)α+k)]r),

EF (X
r
(n)) =

n

Γ(α)

∞∑
k=0

bk,0Γ(α+ k)E([G−1(1− eZα+k)]r).

4. Some examples

Example 1. Gamma-uniform distribution

Suppose the baseline distribution is uniform in the interval (0, θ), θ > 0. Then,
the pdf and cdf of the baseline distribution are, respectively,

g(x) =
1

θ
, and G(x) =

x

θ
, 0 < x < θ.

The hazard rate of the distribution is hG(x) = 1
θ−x , 0 < x < θ, which is in-

creasing in x.

The gamma-uniform distribution has the density function

f(x) =
θ−1

Γ(α)
{log

(
θ

θ − x

)
}α−1, 0 < x < θ, α, θ > 0,
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and its hazard rate is given by

hF (x) =
1

θ
· {log(θ)− log(θ − x)}α−1∫∞

log( θ
θ−x )

tα−1e−tdt
.

By virtue of Lemma 3, hF (x) is a non-decreasing function of x when α > 1. Thus,
the gamma-uniform distribution has the IFR property if α > 1.

The mgf of the gamma-uniform distribution is

MX(t) =
∞∑
r=0

(θt)r

r!

r∑
j=0

(−1)j
(
r

j

)
1

(j + 1)α
.

Hence, EX(Xr) =
∑r

j=0(−1)j
(
r
j

)
1

(j+1)α , r = 1, 2, . . ..

The Rényi entropy is given by

IR(ν) = (1− ν)−1[logΓ(ν(α− 1) + 1)− νlogΓ(α)− (ν − 1)logθ].

Example 2. Gamma-exponential distribution

Let the baseline distribution be exponential with parameter θ, that is G(x) =
1− e−θx, x > 0, θ > 0. The hazard rate of the distribution is θ, a constant.

Hence, the gamma-exponential distribution, with hazard rate given by hF (x) =
θ(θx)α−1e−θx∫ ∞
θx

tα−1e−tdt
, has the IFR property for α > 1, and the DFR property for α < 1.

The mgf of the distribution is given by

MX(t) =

∞∑
r=0

tr

r!
EZ

[
Z

θ

]r
=

∞∑
r=0

tr

r!
× 1

θr
Γ(α+ r)

Γ(α)
.

Hence, EX(Xr) = Γ(α+r)
θrΓ(α) .

In particular, E(X) = α+1
θ , V ar(X) = α+1

θ2 .

The Rényi entropy is given by

IR(ν) = (1− ν)−1[logΓ(ν(α− 1) + 1)− νlogΓ(α) + (ν − 1)logθ

− (ν(α− 1) + 1)logν].

Example 3. Gamma-Pareto distribution

The density function and cdf of the Pareto distribution are given respectively
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by

g(x) =
kθk

xk+1
,

G(x) = 1−
(
θ

x

)k

, x ≥ θ, θ, k > 0.

Hence, the distribution has the DFR property.

The hazard rate of the gammaPareto distribution is

hF (x) =
kαθk(logθ − logx)α−1

xk+1
∫∞
logθ−logx

tα−1e−tdt
,

and the distribution is DFR for α < 1.

The mgf is given by

MX(t) =
∞∑
r=0

θrtr

r!
EZ

(
e

rZ
k

)
=

∞∑
r=0

θrtr

r!
(1− r/k)−α, provided r < k.

Hence, EX(Xr) = θr(1− r/k)−α, provided r < k.

The Rényi entropy is given by

IR(ν) = (1− ν)−1[logΓ(ν(α− 1) + 1)− νlogΓ(α) + (να+ 1)logk − (ν − 1)logθ

− (ν(α− 1) + 1)log(ν(k + 1)− 1)].

Example 4. Gamma-Weibull distribution

The Weibull distribution with pdf g(x) = βλxβ−1e−λxβ

, and cdf G(x) = 1−e−λxβ

,
x > 0, β, λ > 0, has the IFR (DFR) property for β > (<)1.

The hazard rate of the gamma-Weibull distribution is given by

hF (x) =
λα−1βλxαβ−1e−λxβ∫∞

λxβ tα−1e−tdt
.

Hence, for α, β > (<)1 the gamma-Weibull distribution has the IFR (DFR) prop-
erty.

The mgf is given by

MX(t) =
∞∑
r=0

tr

λr/βr!
EZ

(
Z

r
β

)
=

∞∑
r=0

tr

r!

Γ(α+ r/β)

λr/βΓ(α)
.
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Hence, EX(Xr) = Γ(α+r/β)

λ
r
β Γ(α)

.

Some simple algebraic manipulation gives

EZ{g(G
−1

(e−Z))}ν−1 =
λ

ν−1
β βν−1

ν(ν−1)(1−1/β)+δ
Γ((ν − 1)(1− 1/β) + δ),

where δ = ν(α− 1) + 1. Rényi entropy can then be easily obtained from (5).

Example 5. Gamma-power function distribution

Consider the power function distribution with pdf g(x) = kθkxk−1, and cdf
G(x) = (θx)k, 0 < x < 1/θ, k > 0. It can be easily shown that the hazard
rate of the distribution is a non-decreasing function of x for k ≥ 2, and a non-
increasing function of x for k ≤ 1. Hence when k ≥ 2 and α > 1, the gamma-power
function distribution has the IFR property, while for k ≤ 1 and α < 1, it has the
DFR property.

Now, for r ≥ 1, EZ [G
−1(1 − e−z)]r = θ−r

∑∞
j=0(−1)j

(
r/k
j

)
1

(j+1)α which leads

to the mgf and moments of the gamma-power function distribution.

We also have, after some algebraic manipulation,

EZ{g(G
−1

(e−z))}ν−1 = (kθ)ν−1
∞∑
j=0

(
a

j

)
(−1)j

(j + 1)δ
, if α ≥ 0

= (kθ)ν−1
∞∑
j=0

(
a+ j − 1

j

)
1

(j + 1)δ
, if α < 0,

where δ = ν(α − 1) + 1, α = (ν − 1)k−1
k . This leads to Rényi entropy by the

application of (5).

5. Conclusion

The paper investigates some properties of gamma generated distributions, like
the ageing property, the moment generating function, the quantiles, entropy, the
stress-strength reliability, and the order statistics and their distributions. It is
observed that the density curve of such distributions can take different shapes
depending on the parametric value of the gamma distribution. Thus, such distri-
butions exhibit more flexibility in modeling real life data. The gamma distribution
is commonly used to fit lifetime data, survival data, hydrological data, etc. The
class of gamma generated distributions provides more flexible distributions for
such applications.
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