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Abstract. The main result of this paper is as follows. Any two cycles of odd lengths of the
graph of diameter§ in three-dimensional Euclidean space have a common vertex. Some
properties of graphs of diameters in two-dimensional Banach spaces with strictly convex
metrics are also established. Applications are given.

Definition. LetV be a set in a metric space. We assign the following gi@pb the
setV. The vertices ofc = (V, E) are the points of¥/. Two verticesxy, x, are adjacent
(X1x2 € E) iff the distance betweery, x, equals the diameter of the 9ét This graph

is calledthe graph of diameters of Ysee [7], [8], and [11]). A segment with the ends
X1, X2 € V in a Banach spacB" is called a diameter too if its length is equal to the
diameter ofV. In what follows, only sets of diameter one are considered.

Graphs of diameters were investigated in many papers in connection with the famous
conjecture of Borsuk [2] (an excellent survey of the literature on Borsuk’s conjecture is
Grinbaum'’s paper [11]). In spite of the fact that at present this conjecture is disproved
in large dimensions [15], it is probable that in small dimensions, for instanee
4, this conjecture is true. The proof for = 3 was given by Eggleston [6]. Other
simple proofs forn = 3 were given by Qriitbaum [10] and Heppes [12] (for =
2 see [11]). However, the research of graphs of diameters represents an independent
interest, but still there are no approaches to full description of these graph. Note that
for two-dimensional Euclidean space this problem has a relatively easy solution (see
[3]).

In this paper some properties of graphs of diameters in certain two-dimensional
Banach spaces and in three-dimensional Euclidean space are presented.

* This research was supported by the Russian Fund of Fundamental Researches (Grants 96-01-01054 and
98-01-00216).
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Let B2 be a two-dimensional Banach space with strictly convex metric.

Theorem 1. If G is the graph of diameters of a set V irf,Bhen there exists x V
such that the graph of diameters &f V\{x} is bipartite

To prove Theorem 1, we need a lemma.

Lemma. LetV be a finite subset of?Bthen any two diameters of V have a common
point

Proof. Denote the closed ball and the sphere with cextand of radiug by B(x, r)
and S(x, r). First we show that iV c B" andx, y are the endpoints of a diameter of
V, then there exist two parallel supporting hyperplane¥ gfassing througlx andy,
respectively.

Consider the balB(x, 1) and letrr; be a supporting hyperplane 8f(x, 1) passing
throughy. SinceV is the subset oB(x, 1), we see that is a supporting hyperplane of
V. Similarly, there exists a supporting hyperplaneof B(y, 1) passing through such
thatm,, 7, are parallel.

Consider two diameterx[ y] and [a, b] of V. Assume k, y] N [a, b] = @. Arguing
as above, we see that there exist two parallel supportingtines of V passing through
x andy, respectively, and two parallel supporting lines 5 of V passing througla
andb, respectively.

We consider two cases.

Casel: m; andsm; are nonparallel Then the linesry, o, 71, 7, form a parallelogram.
The pointsx, y anda, b belong to the opposite sides of this parallelogram. Consequently,
[X, y] and [a, b] have a common point.

Case2: if they are paralle] thenz; = n; and n, = 5. We may assume that,
a € m; andy, b € m,. Sincer; is the supporting line oB(y, 1) at the pointx, we have
la—yll>1= |la—y| = 1. Hence, ifz € [X, a], then|z — y|| = 1. This contradicts
the condition of the strict convexity fd82. The lemma is proved. |

Proof of Theoreni. In other words, we must prove that all cycles of odd lengths have
a common vertex. Without loss of generality, it can be assumed#hat finite set in
B2. Itis easy to prove that there exists a directsuch that any liner || eintersectsV
in at most one point.

Evidently, there exists a line || e such thatr intersects all diameters of the 3ét
Denote byP; and P, two open half-planes, defined by the lineThen we have

diamPLNV) < 1, diamP,NV) < 1, 7' NV| <1

The theorem is proved. O
Theorem 1 immediately implies the following two corollaries.

Corollary 1.  For any finite set VC B? there exists x V such that the set \{x} may
be divided into two parts of smaller diameter
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Corollary 2. For any finite set VC B? there exists Uc V of smaller diameter such
that|U| > (JV| —1)/2.

If V is the set of vertices of a regulé@m+-1)-gon andJ C V suchthatU| > |V|/2,
then, evidently, diard = diamV = 1. This means that the inequality in Corollary 2 is
exact.

The following result is an analogue of Theorem 1 for three-dimensional Euclidean
spaceks.

Theorem 2. If G is a graph of diameters in & then any two cycles of odd lengths
have a common vertex

Proof. Consider a finite sé¢ C Es. There is a seW of constant width 1 such that
V C W (see [1]).

LetC = {X1, X2, ..., Xoms1}, XiXi+1 € E, 1 <i < 2m+ 1, be a cycle of length
2m + 1 in the graph of diameter& of the setV. Supposex;_1, X, X1 are three
successive vertices on this cycle; then_1 — x|l = ||Xi+1 — Xi|| = 1. Take the arc

a; (C) of the circle of centex; and radius 1 betweex _; andx;; of measure< x.
SinceW is the set of constant width, we see thatC) c bdW (bdW is the boundary
of W).

It is easy to check that the union of all such atg-:fl a;(C) for the given odd
cycleC is the closed curve (C) C bdW. If x € «;(C), then the segmenk, x] is a
diameter. Therefore the vectofX andxx are the unit normal vectors of the supporting
hyperplanes ofV at the pointd andy.

Choose an origirO in the spaceEs. SelectingO as the initial point of all vectors
%X for x € & (C), we denote by;" (C) the set of endpoints of these vectors. Similarly,
denote byy; (C) the set of endpoints 6f%, X € «; (C).

Since the set.:isﬁr (C) ande; (C) consist of unit vectors, we see tladt(C) ande; (C)
are two centrally symmetric arcs of the unit sph&(©, 1). For any cycleC of length
2m + 1 in the graph of diameterSs, define

2m+1

SC) = |J «"(C)Ue (C).

i=1

It is easy to show thaS(C) is a closed, centrally symmetric curve without self-
intersections consisting of2m + 1) arcs of a circle of radius 1.

Consider two cycles of odd lengtlls = {x3, X2, ..., Xomy1} @andCo = {v1, Vo, . . .,
Y1} of the graphG. The corresponding curveXC;) and S(C,) are homeomorphic
to the circle, have no self-intersections, and are centrally symmetric. Using Jordan’s
theorem, we get that there exist& S(C;) N S(Cy). We consider two cases.

Casel. Suppos& is a common point for two areg™ (C;) andal*(Cz); then the vector
Ox is the normal vector of the supporting hyperplane for aWedt the pointsg; and
y;. Thereforex;, y; belong to the same supporting hyperplane \fér Since a set of
constant width is strictly convex, we see that= y;, and the theorem is proved in this
case.
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Case2. Now suppose that € o; (C1) N aJ-+(C2); thenx; € «;(Cy) andy; € «;(Cy).
Assumex; # Yj_1, Yj+1, ¥j # Xi—1, Xi+1. Denote the planes passing through the points
Xi—1, Xi, Xi+1 andyj_1, ¥j, ¥j+1 by w1 andrn,, respectively. Now suppose andr, are
not perpendicular. By,, denote the orthogonal projection Bf ontor;. Thenp,, (W)
is the set of constant width one too. Sincg_[, x;] and [x;, x;;+1] are diameters of
pr, (W), we see thak; is a corner point op,, (W).

On the other handyx; is contained in the interior op,, («;(C2)) C px, (W). The
set pr, (¢ (Cy)) is an arc of an ellipse. Hence the poigtis not a corner point. This
contradiction proves the theorem for this case.

Now consider the case whefnandr, are perpendicular. Thenthe pojnis contained
in the interior ofw; (C1). Lett be the midpoint ofy; (C1), and letw, 8 be the measures
of Zxi_1Xit, ZXi_1Xiy;, respectively. Ther > g and cosx < cospg.

Consider the plang passing through andx; and perpendicular ta;. SinceW C
B(Xi—1, D) () B(Xi+1, 1), we have

P (W) € B(Xi-1, ) N B(Xi41, ) N7 = B.

Clearly, B is a disk of radius cos with center at the poirt = (xj_1+ Xj11)/2 € 7. Let
Sbe its boundary circle. The sét= p, («;(C»)) is an arc of an ellipse with semiaxes
1, cosB, and center on a segmen} X;]. The circleS must touchs at the point;.

Since cosr > cosp, we obtain that the argis situated outsid® in some neighbor-
hood of the poink;. This contradiction proves the theorem. O

Remark. Combining the proof of Theorem 1 and the statement of Theorem 2, it is
easy to obtain that for any finite sétin E3 there existx € V such that the se¥ \ {x}
may be divided into four parts of smaller diameters.

However, Theorem 2 leads to a stronger result. Namely, itimplies an easy new solution
of Borsuk’s problem for finite subsets &.

Corollary 3. If V is afinite setin &, then it may be divided into four parts of smaller
diameters

Proof. In other notation, we must prove that the graph of diameers a setV in
E3z has chromatic number(G) < 4. If G contains no cycles of odd length, then, by
Konig's theorem about bipartite graphs, we hgy6&) < 2, and all is proved.

Therefore we assume thét contains cycles of odd length. L& = {x3, X, ...,
Xome1h XiXi11 € E, 1 <i < 2m+ 1, be a cycle of the least odd lengtm2- 1 in G.
It is easy to prove that ifi — j| > 2, thenx; andx; are not adjacent iG. Therefore
x (C) = 3. We color the vertices of the cyc by the colors 12, 3. LetC,, C,, C3 be
the color classes df.

By Theorem 2, it follows that the graph of diamet&sg of V\C contains no cycles
of odd length. Consequently(G;) < 2. LetV; andV; be the color classes &;.

Now we prove that only one vertex € G; may be adjacent to three vertices®f
and that any other vertexe G; is adjacent to at most two vertices©f
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Indeed, suppose that there exists a veytexG, adjacent to three vertices, xj, Xk,
i < j <k, ofthe cycleC. Trivially, (j —i)+k—-j)+2m+1+i—-k)y=2m+1
and therefore one of the numbgrs-i,k — j,2m+1+i —kisodd. Lel = j —i be
the least odd number of the §gt— i,k — j,2m+ 1 +i — k}.

We consider two cases.

Casel: | = 1. Thenm = 1 andG contains three mutually adjacent vertidg@s=
{x1, X2, X3} € V. Obviously, only one vertey € G; may be joined by an edge
with all vertices ofC.

Case2: | > 3. Then <2m+1—-2—-2 = 2m-— 3. Take the verticeg, X, Xj 1, .. . , Xk-
We get a cycle of odd length 2m — 1. This contradiction proves the statement in this
case.

Assume, without loss of generality, thet contains no vertex adjacent to three
vertices ofC. We color all vertices ol/; by the color 4. Since any vertex € V, is
adjacent to at most two vertices 6f we see thax is adjacent to no vertex of a certain
color classC; of C. We colorx by the colori. Finally, we obtain the 4-coloring d&.
The corollary is proved. O

Remark 1. LetC be an odd cycl€ = {Xy, X, ..., Xom+1} Of minimal length> 3 in
an arbitrary grapls. Suppose that a vertexis adjacent to two vertices, x;,i < j, of
a cycleC; then itis easy to see that either-i =2or2n+1+i — j.

Remark 2. A sketch ofthe proofs of Theorem 2 and Corollary 3 was given in [4]. Other
proofs of Borsuk’s conjecture for finite sets 3, based on the properties of graphs of
diameters, were given by Gnbaum [9], Heppes anddwész [13], [14], and Straszewicz
[16]. The proofs are based on the inequalli < 2|V| — 2, which holds for any finite
graph of diameter& = (V, E) in Es.

Remark 3. Arguing as above, it is not hard to prove thatTi N T,| < 2 for every
two complete subgraphs on four verticésand T, of a simple graphG and if for
anyk cycles of odd lengths i there exist two cycles having a common vertex, then
x(G) <2k + 2.

Remark 4. Reasoning as in the proof of Theorem 2, it is easy to conclude that any
cycle of odd length in a graph of diameters Bf (where B? is a two-dimensional
Banach space with strictly convex metric) and any edge of the graph have a common
vertex.

Corollary 4. If aset V C Ejz (finite or infinite) has diameter dthen there exists such
an integer m that in any finite subset W V there exists such a subsetd W that
Ul > (JW| —2m — 1)/2 anddiamU < d.

Proof. If G contains no cycles of odd length, then, bpm{g's theorem, we have
x(G) < 2. Then we may assume that= 0, and all is proved.
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Therefore we assume th@tcontains cycles of odd length. L&tbe a cycle of the least
odd length 2n + 1 in G. Take a finite seW such thatfW| > 2m + 1. By Theorem 2,
W\C contains a stable subset on (|W| — 2m — 1)/2 vertices. This concludes the
proof. O

In conclusion we formulate two problems:

(1) Does Theorem 2 hold for three-dimensional Banach spaces with a strictly convex
metric?

(2) Canwe choose such universak N, that for an arbitrary finite s&t in E3 there
existsU suchthat) C V, |U| > (V| — m)/2, and dianU < diamV?

The next definition was given in [5]. Consider a simple grépk: (V, E). Letqg e N
and letp(q, G) be the least of the numbegssuch that, for anyv C V, |W| > p,
there exists a stable subset consisting-af vertices. This function is called the stable
function of G.

Corollary 3 is equivalent to the following statemepty, G) < 2q for any graph of
diameters inB, with a strictly convex metric. Using estimates of the number of parts
of smaller diameter, in which it is possible to divide a bounded set-dimensional
Euclidean spacg, (see [3]), itis easy to see that, for any graph of diamegens E,,
we have

p@,G) <c"(q—-1) +1 for some ¢ > 1.

Also it easily follows from [15] that there exis§ > 1 and a graph of diameters &y,
such that

P@.G) =cf(q—1) +1.

It would be interesting to find exact estimatespgf|, G) for dimensionsy = 3, 4.
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