Some Properties of Graphs of Diameters*

V. L. Dol'nikov
Yaroslavl State University, Sovetskaya Str. 14,
Yaroslavl 150000, Russia
dolnikov@univ.uniyar.ac.ru

Abstract

The main result of this paper is as follows. Any two cycles of odd lengths of the graph of diameters G in three-dimensional Euclidean space have a common vertex. Some properties of graphs of diameters in two-dimensional Banach spaces with strictly convex metrics are also established. Applications are given.

Definition. Let V be a set in a metric space. We assign the following graph G to the set V. The vertices of $G=(V, E)$ are the points of V. Two vertices x_{1}, x_{2} are adjacent $\left(x_{1} x_{2} \in E\right)$ iff the distance between x_{1}, x_{2} equals the diameter of the set V. This graph is called the graph of diameters of V (see [7], [8], and [11]). A segment with the ends $x_{1}, x_{2} \in V$ in a Banach space B^{n} is called a diameter too if its length is equal to the diameter of V. In what follows, only sets of diameter one are considered.

Graphs of diameters were investigated in many papers in connection with the famous conjecture of Borsuk [2] (an excellent survey of the literature on Borsuk's conjecture is Grünbaum's paper [11]). In spite of the fact that at present this conjecture is disproved in large dimensions [15], it is probable that in small dimensions, for instance $n=$ 4, this conjecture is true. The proof for $n=3$ was given by Eggleston [6]. Other simple proofs for $n=3$ were given by Grünbaum [10] and Heppes [12] (for $n=$ 2 see [11]). However, the research of graphs of diameters represents an independent interest, but still there are no approaches to full description of these graph. Note that for two-dimensional Euclidean space this problem has a relatively easy solution (see [3]).

In this paper some properties of graphs of diameters in certain two-dimensional Banach spaces and in three-dimensional Euclidean space are presented.

[^0]Let B^{2} be a two-dimensional Banach space with strictly convex metric.
Theorem 1. If G is the graph of diameters of a set V in B^{2}, then there exists $x \in V$ such that the graph of diameters G^{\prime} of $V \backslash\{x\}$ is bipartite.

To prove Theorem 1, we need a lemma.
Lemma. Let V be a finite subset of B^{2}, then any two diameters of V have a common point.

Proof. Denote the closed ball and the sphere with center x and of radius r by $B(x, r)$ and $S(x, r)$. First we show that if $V \subset B^{n}$ and x, y are the endpoints of a diameter of V, then there exist two parallel supporting hyperplanes of V passing through x and y, respectively.

Consider the ball $B(x, 1)$ and let π_{1} be a supporting hyperplane of $B(x, 1)$ passing through y. Since V is the subset of $B(x, 1)$, we see that π_{1} is a supporting hyperplane of V. Similarly, there exists a supporting hyperplane π_{2} of $B(y, 1)$ passing through x such that π_{1}, π_{2} are parallel.

Consider two diameters $[x, y]$ and $[a, b]$ of V. Assume $[x, y] \cap[a, b]=\emptyset$. Arguing as above, we see that there exist two parallel supporting lines π_{1}, π_{2} of V passing through x and y, respectively, and two parallel supporting lines $\pi_{1}^{\prime}, \pi_{2}^{\prime}$ of V passing through a and b, respectively.

We consider two cases.
Case 1: π_{1} and π_{1}^{\prime} are nonparallel. Then the lines $\pi_{1}, \pi_{2}, \pi_{1}^{\prime}, \pi_{2}^{\prime}$ form a parallelogram. The points x, y and a, b belong to the opposite sides of this parallelogram. Consequently, $[x, y]$ and $[a, b]$ have a common point.
Case 2: if they are parallel, then $\pi_{1}=\pi_{1}^{\prime}$ and $\pi_{2}=\pi_{2}^{\prime}$. We may assume that x, $a \in \pi_{1}$ and $y, b \in \pi_{2}$. Since π_{1} is the supporting line of $B(y, 1)$ at the point x, we have $\|a-y\| \geq 1 \Rightarrow\|a-y\|=1$. Hence, if $z \in[x, a]$, then $\|z-y\|=1$. This contradicts the condition of the strict convexity for B^{2}. The lemma is proved.

Proof of Theorem 1. In other words, we must prove that all cycles of odd lengths have a common vertex. Without loss of generality, it can be assumed that V is a finite set in B^{2}. It is easy to prove that there exists a direction e such that any line $\pi \| e$ intersects V in at most one point.

Evidently, there exists a line $\pi \| e$ such that π intersects all diameters of the set V. Denote by P_{1} and P_{2} two open half-planes, defined by the line π. Then we have

$$
\operatorname{diam}\left(P_{1} \cap V\right)<1, \quad \operatorname{diam}\left(P_{2} \cap V\right)<1, \quad\left|\pi^{\prime} \cap V\right| \leq 1
$$

The theorem is proved.
Theorem 1 immediately implies the following two corollaries.
Corollary 1. For any finite set $V \subset B^{2}$ there exists $x \in V$ such that the set $V \backslash\{x\}$ may be divided into two parts of smaller diameter.

Corollary 2. For any finite set $V \subset B^{2}$ there exists $U \subset V$ of smaller diameter such that $|U| \geq(|V|-1) / 2$.

If V is the set of vertices of a regular $(2 m+1)$-gon and $U \subseteq V$ such that $|U| \geq|V| / 2$, then, evidently, $\operatorname{diam} U=\operatorname{diam} V=1$. This means that the inequality in Corollary 2 is exact.

The following result is an analogue of Theorem 1 for three-dimensional Euclidean space E_{3}.

Theorem 2. If G is a graph of diameters in E_{3}, then any two cycles of odd lengths have a common vertex.

Proof. Consider a finite set $V \subset E_{3}$. There is a set W of constant width 1 such that $V \subset W$ (see [1]).

Let $C=\left\{x_{1}, x_{2}, \ldots, x_{2 m+1}\right\}, x_{i} x_{i+1} \in E, 1 \leq i \leq 2 m+1$, be a cycle of length $2 m+1$ in the graph of diameters G of the set V. Suppose x_{i-1}, x_{i}, x_{i+1} are three successive vertices on this cycle; then $\left\|x_{i-1}-x_{i}\right\|=\left\|x_{i+1}-x_{i}\right\|=1$. Take the arc $\alpha_{i}(C)$ of the circle of center x_{i} and radius 1 between x_{i-1} and x_{i+1} of measure $<\pi$. Since W is the set of constant width, we see that $\alpha_{i}(C) \subset \operatorname{bd} W$ (bd W is the boundary of W).

It is easy to check that the union of all such arcs $\bigcup_{i=1}^{2 m+1} \alpha_{i}(C)$ for the given odd cycle C is the closed curve $\gamma(C) \subset$ bd W. If $x \in \alpha_{i}(C)$, then the segment $\left[x_{i}, x\right]$ is a diameter. Therefore the vectors $\overline{x_{i} x}$ and $\overline{x x_{i}}$ are the unit normal vectors of the supporting hyperplanes of W at the points t and y.

Choose an origin O in the space E_{3}. Selecting O as the initial point of all vectors $\overline{x_{i} x}$ for $x \in \alpha_{i}(C)$, we denote by $\alpha_{i}^{+}(C)$ the set of endpoints of these vectors. Similarly, denote by $\alpha_{i}^{-}(C)$ the set of endpoints of $\overline{x x_{i}}, x \in \alpha_{i}(C)$.

Since the sets $\alpha_{i}^{+}(C)$ and $\alpha_{i}^{-}(C)$ consist of unit vectors, we see that $\alpha_{i}^{+}(C)$ and $\alpha_{i}^{-}(C)$ are two centrally symmetric arcs of the unit sphere $S(O, 1)$. For any cycle C of length $2 m+1$ in the graph of diameters G, define

$$
S(C)=\bigcup_{i=1}^{2 m+1} \alpha_{i}^{+}(C) \cup \alpha_{i}^{-}(C)
$$

It is easy to show that $S(C)$ is a closed, centrally symmetric curve without selfintersections consisting of $2(2 m+1)$ arcs of a circle of radius 1 .

Consider two cycles of odd lengths $C_{1}=\left\{x_{1}, x_{2}, \ldots, x_{2 m+1}\right\}$ and $C_{2}=\left\{y_{1}, y_{2}, \ldots\right.$, $\left.y_{2 k+1}\right\}$ of the graph G. The corresponding curves $S\left(C_{1}\right)$ and $S\left(C_{2}\right)$ are homeomorphic to the circle, have no self-intersections, and are centrally symmetric. Using Jordan's theorem, we get that there exists $x \in S\left(C_{1}\right) \cap S\left(C_{2}\right)$. We consider two cases.
Case 1. Suppose x is a common point for two arcs $\alpha_{i}^{+}\left(C_{1}\right)$ and $\alpha_{j}^{+}\left(C_{2}\right)$; then the vector $O x$ is the normal vector of the supporting hyperplane for a set W at the points x_{i} and y_{j}. Therefore x_{i}, y_{j} belong to the same supporting hyperplane for W. Since a set of constant width is strictly convex, we see that $x_{i}=y_{j}$, and the theorem is proved in this case.

Case 2. Now suppose that $x \in \alpha_{i}^{-}\left(C_{1}\right) \cap \alpha_{j}^{+}\left(C_{2}\right)$; then $x_{i} \in \alpha_{j}\left(C_{2}\right)$ and $y_{j} \in \alpha_{i}\left(C_{1}\right)$. Assume $x_{i} \neq y_{j-1}, y_{j+1}, y_{j} \neq x_{i-1}, x_{i+1}$. Denote the planes passing through the points x_{i-1}, x_{i}, x_{i+1} and y_{j-1}, y_{j}, y_{j+1} by π_{1} and π_{2}, respectively. Now suppose π_{1} and π_{2} are not perpendicular. By $p_{\pi_{1}}$ denote the orthogonal projection of E_{3} onto π_{1}. Then $p_{\pi_{1}}(W)$ is the set of constant width one too. Since $\left[x_{i-1}, x_{i}\right]$ and $\left[x_{i}, x_{i+1}\right]$ are diameters of $p_{\pi_{1}}(W)$, we see that x_{i} is a corner point of $p_{\pi_{1}}(W)$.

On the other hand, x_{i} is contained in the interior of $p_{\pi_{1}}\left(\alpha_{j}\left(C_{2}\right)\right) \subset p_{\pi_{1}}(W)$. The set $p_{\pi_{1}}\left(\alpha_{j}\left(C_{2}\right)\right)$ is an arc of an ellipse. Hence the point x_{i} is not a corner point. This contradiction proves the theorem for this case.

Now consider the case when π_{1} and π_{2} are perpendicular. Then the point y_{j} is contained in the interior of $\alpha_{i}\left(C_{1}\right)$. Let t be the midpoint of $\alpha_{i}\left(C_{1}\right)$, and let α, β be the measures of $\angle x_{i-1} x_{i} t, \angle x_{i-1} x_{i} y_{j}$, respectively. Then $\alpha>\beta$ and $\cos \alpha<\cos \beta$.

Consider the plane π passing through t and x_{i} and perpendicular to π_{1}. Since $W \subseteq$ $B\left(x_{i-1}, 1\right) \bigcap B\left(x_{i+1}, 1\right)$, we have

$$
p_{\pi}(W) \subseteq \pi B\left(x_{i-1}, 1\right) \cap B\left(x_{i+1}, 1\right) \cap \pi=B
$$

Clearly, B is a disk of radius $\cos \alpha$ with center at the point $z=\left(x_{i-1}+x_{i+1}\right) / 2 \in \pi$. Let S be its boundary circle. The set $\delta=p_{\pi}\left(\alpha_{j}\left(C_{2}\right)\right)$ is an arc of an ellipse with semiaxes $1, \cos \beta$, and center on a segment $\left[t, x_{i}\right]$. The circle S must touch δ at the point x_{i}.

Since $\cos \alpha>\cos \beta$, we obtain that the $\operatorname{arc} \delta$ is situated outside B in some neighborhood of the point x_{i}. This contradiction proves the theorem.

Remark. Combining the proof of Theorem 1 and the statement of Theorem 2, it is easy to obtain that for any finite set V in E_{3} there exists $x \in V$ such that the set $V \backslash\{x\}$ may be divided into four parts of smaller diameters.

However, Theorem 2 leads to a stronger result. Namely, it implies an easy new solution of Borsuk's problem for finite subsets of E_{3}.

Corollary 3. If V is a finite set in E_{3}, then it may be divided into four parts of smaller diameters.

Proof. In other notation, we must prove that the graph of diameters G of a set V in E_{3} has chromatic number $\chi(G) \leq 4$. If G contains no cycles of odd length, then, by König's theorem about bipartite graphs, we have $\chi(G) \leq 2$, and all is proved.

Therefore we assume that G contains cycles of odd length. Let $C=\left\{x_{1}, x_{2}, \ldots\right.$, $\left.x_{2 m+1}\right\}, x_{i} x_{i+1} \in E, 1 \leq i \leq 2 m+1$, be a cycle of the least odd length $2 m+1$ in G. It is easy to prove that if $|i-j| \geq 2$, then x_{i} and x_{j} are not adjacent in G. Therefore $\chi(C)=3$. We color the vertices of the cycle C by the colors $1,2,3$. Let C_{1}, C_{2}, C_{3} be the color classes of C.

By Theorem 2, it follows that the graph of diameters G_{1} of $V \backslash C$ contains no cycles of odd length. Consequently $\chi\left(G_{1}\right) \leq 2$. Let V_{1} and V_{2} be the color classes of G_{1}.

Now we prove that only one vertex $y \in G_{1}$ may be adjacent to three vertices of C and that any other vertex $x \in G_{1}$ is adjacent to at most two vertices of C.

Indeed, suppose that there exists a vertex $y \in G_{1}$ adjacent to three vertices x_{i}, x_{j}, x_{k}, $i<j<k$, of the cycle C. Trivially, $(j-i)+(k-j)+(2 m+1+i-k)=2 m+1$ and therefore one of the numbers $j-i, k-j, 2 m+1+i-k$ is odd. Let $l=j-i$ be the least odd number of the set $\{j-i, k-j, 2 m+1+i-k\}$.

We consider two cases.
Case 1: $l=1$. Then $m=1$ and G contains three mutually adjacent vertices $C=$ $\left\{x_{1}, x_{2}, x_{3}\right\} \subseteq V$. Obviously, only one vertex $y \in G_{1}$ may be joined by an edge in G with all vertices of C.
Case 2: $l \geq 3$. Then $l \leq 2 m+1-2-2=2 m-3$. Take the vertices $y, x_{i}, x_{i+1}, \ldots, x_{k}$. We get a cycle of odd length $\leq 2 m-1$. This contradiction proves the statement in this case.

Assume, without loss of generality, that V_{2} contains no vertex y adjacent to three vertices of C. We color all vertices of V_{1} by the color 4 . Since any vertex $x \in V_{2}$ is adjacent to at most two vertices of C, we see that x is adjacent to no vertex of a certain color class C_{i} of C. We color x by the color i. Finally, we obtain the 4-coloring of G. The corollary is proved.

Remark 1. Let C be an odd cycle $C=\left\{x_{1}, x_{2}, \ldots, x_{2 m+1}\right\}$ of minimal length >3 in an arbitrary graph G. Suppose that a vertex x is adjacent to two vertices $x_{i}, x_{j}, i<j$, of a cycle C; then it is easy to see that either $j-i=2$ or $2 m+1+i-j$.

Remark 2. A sketch of the proofs of Theorem 2 and Corollary 3 was given in [4]. Other proofs of Borsuk's conjecture for finite sets in E_{3}, based on the properties of graphs of diameters, were given by Grünbaum [9], Heppes and Révész [13], [14], and Straszewicz [16]. The proofs are based on the inequality $|E| \leq 2|V|-2$, which holds for any finite graph of diameters $G=(V, E)$ in E_{3}.

Remark 3. Arguing as above, it is not hard to prove that if $\left|T_{1} \cap T_{2}\right| \leq 2$ for every two complete subgraphs on four vertices T_{1} and T_{2} of a simple graph G and if for any k cycles of odd lengths in G there exist two cycles having a common vertex, then $\chi(G) \leq 2 k+2$.

Remark 4. Reasoning as in the proof of Theorem 2, it is easy to conclude that any cycle of odd length in a graph of diameters in B^{2} (where B^{2} is a two-dimensional Banach space with strictly convex metric) and any edge of the graph have a common vertex.

Corollary 4. If a set $V \subseteq E_{3}$ (finite or infinite) has diameter d, then there exists such an integer m that in any finite subset $W \subseteq V$ there exists such a subset $U \subseteq W$ that $|U| \geq(|W|-2 m-1) / 2$ and $\operatorname{diam} U<d$.

Proof. If G contains no cycles of odd length, then, by König's theorem, we have $\chi(G) \leq 2$. Then we may assume that $m=0$, and all is proved.

Therefore we assume that G contains cycles of odd length. Let C be a cycle of the least odd length $2 m+1$ in G. Take a finite set W such that $|W| \geq 2 m+1$. By Theorem 2, $W \backslash C$ contains a stable subset on $\geq(|W|-2 m-1) / 2$ vertices. This concludes the proof.

In conclusion we formulate two problems:
(1) Does Theorem 2 hold for three-dimensional Banach spaces with a strictly convex metric?
(2) Can we choose such universal $m \in \mathbb{N}$, that for an arbitrary finite set V in E_{3} there exists U such that $U \subseteq V,|U| \geq(|V|-m) / 2$, and $\operatorname{diam} U<\operatorname{diam} V$?

The next definition was given in [5]. Consider a simple graph $G=(V, E)$. Let $q \in \mathbb{N}$ and let $p(q, G)$ be the least of the numbers p such that, for any $W \subseteq V,|W| \geq p$, there exists a stable subset consisting of $\geq q$ vertices. This function is called the stable function of G.

Corollary 3 is equivalent to the following statement: $p(q, G) \leq 2 q$ for any graph of diameters in B_{2} with a strictly convex metric. Using estimates of the number of parts of smaller diameter, in which it is possible to divide a bounded set of n-dimensional Euclidean space E_{n} (see [3]), it is easy to see that, for any graph of diameters G in E_{n}, we have

$$
p(q, G) \leq c^{n}(q-1)+1 \quad \text { for some } \quad c>1
$$

Also it easily follows from [15] that there exist $c_{1}>1$ and a graph of diameters in E_{n} such that

$$
p(q, G) \geq c_{1}^{n}(q-1)+1
$$

It would be interesting to find exact estimates of $p(q, G)$ for dimensions $n=3,4$.

References

1. Bonnesen, T., and Fenchel, W. Theorie der konvexen Körper, Berlin, 1934.
2. Borsuk, K. Drei Sätze über die n-dimensionale euklidische Sphäre, Fund. Math. 20 (1933), 177-190.
3. Bowers, P.L. The Borsuk dimension of a graph and Borsuk's partition conjecture for finite sets, Graphs Combin. 6 (1990), 207-222.
4. Dol'nikov, V.L. On a certain property of graphs of diameters in \mathbb{R}^{3}, in Qualitative and Approximate Methods of Research of Operator Equations, Collections of Scientific Works. Yaroslavl' State University Yaroslavl', 1986, pp. 47-50.
5. Dol'nikov, V.L. A coloring problem, Sibirsk. Mat. Zh. 13(6) (1973), 1272-1283.
6. Eggleston, H.G. Covering a three dimensional set with sets of smaller diameter, J. London Math. Soc. 30 (1955), 11-24.
7. Erdös, P. On sets of distances of n points, Amer. Math. Monthly 53 (1946), 248-250.
8. Erdös, P. Some unsolved problems, Michigan Math. J. 4 (1957), 291-300.
9. Grünbaum, B. A proof of Vázsonyi’s conjecture, Bull. Res. Council Israel 6A (1956), 77-78.
10. Grünbaum, B. A simple proof of Borsuk's conjecture in three dimensions, Math. Proc. Cambridge Philos. Soc. 53 (1957), 776-778.
11. Grünbaum, B. Borsuk's problem and and related questions, in Convexity, pp. 271-284, Proc. of Symposia in Pure Mathematics, Vol. 7, American Mathematics Society, Providence, RI, 1963.
12. Heppes, A. On the splitting of a point set into the union of sets of smaller diameter, Magyar. Tud. Akad. Mat. Fiz. Oszt. Közl. Soc. 7 (1957), 413-416.
13. Heppes, A. P. Beweis einer Vermutung von Vázonyi, Acta Math. Acad. Hungar. 7 (1957), 463-466.
14. Heppes, A., and Révész, P. Zum Borsukschen Zerteilungsproblem, Acta Math. Acad. Hungar. 7 (1956) 159-162.
15. Kahn, J., and Kalai, G. A counterexample to Borsuk's conjecture, Bull. Amer. Math. Soc. 29(1) (1993), 60-62.
16. Straszewicz, S. Sur un problém géometrique de P. Erdös, Bull. Acad. Polon. Sci. 5(3) (1957), 39-40.

Received December 28, 1998, and in revised form September 10, 1999. Online publication May 8, 2000.

[^0]: * This research was supported by the Russian Fund of Fundamental Researches (Grants 96-01-01054 and 98-01-00216).

