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Abstract. The main result of this paper is as follows. Any two cycles of odd lengths of the
graph of diametersG in three-dimensional Euclidean space have a common vertex. Some
properties of graphs of diameters in two-dimensional Banach spaces with strictly convex
metrics are also established. Applications are given.

Definition. Let V be a set in a metric space. We assign the following graphG to the
setV . The vertices ofG = (V, E) are the points ofV . Two verticesx1, x2 are adjacent
(x1x2 ∈ E) iff the distance betweenx1, x2 equals the diameter of the setV . This graph
is calledthe graph of diameters of V(see [7], [8], and [11]). A segment with the ends
x1, x2 ∈ V in a Banach spaceBn is called a diameter too if its length is equal to the
diameter ofV . In what follows, only sets of diameter one are considered.

Graphs of diameters were investigated in many papers in connection with the famous
conjecture of Borsuk [2] (an excellent survey of the literature on Borsuk’s conjecture is
Grünbaum’s paper [11]). In spite of the fact that at present this conjecture is disproved
in large dimensions [15], it is probable that in small dimensions, for instancen =
4, this conjecture is true. The proof forn = 3 was given by Eggleston [6]. Other
simple proofs forn = 3 were given by Gr¨unbaum [10] and Heppes [12] (forn =
2 see [11]). However, the research of graphs of diameters represents an independent
interest, but still there are no approaches to full description of these graph. Note that
for two-dimensional Euclidean space this problem has a relatively easy solution (see
[3]).

In this paper some properties of graphs of diameters in certain two-dimensional
Banach spaces and in three-dimensional Euclidean space are presented.

∗ This research was supported by the Russian Fund of Fundamental Researches (Grants 96-01-01054 and
98-01-00216).
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Let B2 be a two-dimensional Banach space with strictly convex metric.

Theorem 1. If G is the graph of diameters of a set V in B2, then there exists x∈ V
such that the graph of diameters G′ of V\{x} is bipartite.

To prove Theorem 1, we need a lemma.

Lemma. Let V be a finite subset of B2, then any two diameters of V have a common
point.

Proof. Denote the closed ball and the sphere with centerx and of radiusr by B(x, r )
andS(x, r ). First we show that ifV ⊂ Bn andx, y are the endpoints of a diameter of
V , then there exist two parallel supporting hyperplanes ofV passing throughx andy,
respectively.

Consider the ballB(x,1) and letπ1 be a supporting hyperplane ofB(x,1) passing
throughy. SinceV is the subset ofB(x,1), we see thatπ1 is a supporting hyperplane of
V . Similarly, there exists a supporting hyperplaneπ2 of B(y,1) passing throughx such
thatπ1, π2 are parallel.

Consider two diameters [x, y] and [a,b] of V . Assume [x, y] ∩ [a,b] = ∅. Arguing
as above, we see that there exist two parallel supporting linesπ1, π2 of V passing through
x andy, respectively, and two parallel supporting linesπ ′1, π

′
2 of V passing througha

andb, respectively.
We consider two cases.

Case1: π1 andπ ′1 are nonparallel. Then the linesπ1, π2, π
′
1, π

′
2 form a parallelogram.

The pointsx, y anda,b belong to the opposite sides of this parallelogram. Consequently,
[x, y] and [a,b] have a common point.

Case2: if they are parallel, thenπ1 = π ′1 and π2 = π ′2. We may assume thatx,
a ∈ π1 andy, b ∈ π2. Sinceπ1 is the supporting line ofB(y,1) at the pointx, we have
‖a− y‖ ≥ 1⇒ ‖a− y‖ = 1. Hence, ifz ∈ [x,a], then‖z− y‖ = 1. This contradicts
the condition of the strict convexity forB2. The lemma is proved.

Proof of Theorem1. In other words, we must prove that all cycles of odd lengths have
a common vertex. Without loss of generality, it can be assumed thatV is a finite set in
B2. It is easy to prove that there exists a directionesuch that any lineπ ‖ e intersectsV
in at most one point.

Evidently, there exists a lineπ ‖ e such thatπ intersects all diameters of the setV .
Denote byP1 andP2 two open half-planes, defined by the lineπ . Then we have

diam(P1 ∩ V) < 1, diam(P2 ∩ V) < 1, |π ′ ∩ V | ≤ 1.

The theorem is proved.

Theorem 1 immediately implies the following two corollaries.

Corollary 1. For any finite set V⊂ B2 there exists x∈ V such that the set V\{x}may
be divided into two parts of smaller diameter.
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Corollary 2. For any finite set V⊂ B2 there exists U⊂ V of smaller diameter such
that |U | ≥ (|V | − 1)/2.

If V is the set of vertices of a regular(2m+1)-gon andU ⊆ V such that|U | ≥ |V |/2,
then, evidently, diamU = diamV = 1. This means that the inequality in Corollary 2 is
exact.

The following result is an analogue of Theorem 1 for three-dimensional Euclidean
spaceE3.

Theorem 2. If G is a graph of diameters in E3, then any two cycles of odd lengths
have a common vertex.

Proof. Consider a finite setV ⊂ E3. There is a setW of constant width 1 such that
V ⊂ W (see [1]).

Let C = {x1, x2, . . . , x2m+1}, xi xi+1 ∈ E, 1 ≤ i ≤ 2m+ 1, be a cycle of length
2m + 1 in the graph of diametersG of the setV . Supposexi−1, xi , xi+1 are three
successive vertices on this cycle; then‖xi−1 − xi ‖ = ‖xi+1 − xi ‖ = 1. Take the arc
αi (C) of the circle of centerxi and radius 1 betweenxi−1 andxi+1 of measure< π .
SinceW is the set of constant width, we see thatαi (C) ⊂ bdW (bdW is the boundary
of W).

It is easy to check that the union of all such arcs
⋃2m+1

i=1 αi (C) for the given odd
cycleC is the closed curveγ (C) ⊂ bdW. If x ∈ αi (C), then the segment [xi , x] is a
diameter. Therefore the vectorsxi x andxxi are the unit normal vectors of the supporting
hyperplanes ofW at the pointst andy.

Choose an originO in the spaceE3. SelectingO as the initial point of all vectors
xi x for x ∈ αi (C), we denote byα+i (C) the set of endpoints of these vectors. Similarly,
denote byα−i (C) the set of endpoints ofxxi , x ∈ αi (C).

Since the setsα+i (C) andα−i (C) consist of unit vectors, we see thatα+i (C) andα−i (C)
are two centrally symmetric arcs of the unit sphereS(O,1). For any cycleC of length
2m+ 1 in the graph of diametersG, define

S(C) =
2m+1⋃
i=1

α+i (C) ∪ α−i (C).

It is easy to show thatS(C) is a closed, centrally symmetric curve without self-
intersections consisting of 2(2m+ 1) arcs of a circle of radius 1.

Consider two cycles of odd lengthsC1 = {x1, x2, . . . , x2m+1} andC2 = {y1, y2, . . . ,

y2k+1} of the graphG. The corresponding curvesS(C1) andS(C2) are homeomorphic
to the circle, have no self-intersections, and are centrally symmetric. Using Jordan’s
theorem, we get that there existsx ∈ S(C1) ∩ S(C2). We consider two cases.

Case1. Supposex is a common point for two arcsα+i (C1) andα+j (C2); then the vector
Ox is the normal vector of the supporting hyperplane for a setW at the pointsxi and
yj . Thereforexi , yj belong to the same supporting hyperplane forW. Since a set of
constant width is strictly convex, we see thatxi = yj , and the theorem is proved in this
case.
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Case2. Now suppose thatx ∈ α−i (C1) ∩ α+j (C2); thenxi ∈ αj (C2) andyj ∈ αi (C1).
Assumexi 6= yj−1, yj+1, yj 6= xi−1, xi+1. Denote the planes passing through the points
xi−1, xi , xi+1 andyj−1, yj , yj+1 by π1 andπ2, respectively. Now supposeπ1 andπ2 are
not perpendicular. Bypπ1 denote the orthogonal projection ofE3 ontoπ1. Thenpπ1(W)

is the set of constant width one too. Since [xi−1, xi ] and [xi , xi+1] are diameters of
pπ1(W), we see thatxi is a corner point ofpπ1(W).

On the other hand,xi is contained in the interior ofpπ1(αj (C2)) ⊂ pπ1(W). The
set pπ1(αj (C2)) is an arc of an ellipse. Hence the pointxi is not a corner point. This
contradiction proves the theorem for this case.

Now consider the case whenπ1 andπ2 are perpendicular. Then the pointyj is contained
in the interior ofαi (C1). Let t be the midpoint ofαi (C1), and letα, β be the measures
of ∠xi−1xi t , ∠xi−1xi yj , respectively. Thenα > β and cosα < cosβ.

Consider the planeπ passing throught andxi and perpendicular toπ1. SinceW ⊆
B(xi−1,1)

⋂
B(xi+1,1), we have

pπ (W) ⊆ πB(xi−1,1) ∩ B(xi+1,1) ∩ π = B.

Clearly,B is a disk of radius cosα with center at the pointz= (xi−1+ xi+1)/2 ∈ π . Let
S be its boundary circle. The setδ = pπ (αj (C2)) is an arc of an ellipse with semiaxes
1, cosβ, and center on a segment [t, xi ]. The circleSmust touchδ at the pointxi .

Since cosα > cosβ, we obtain that the arcδ is situated outsideB in some neighbor-
hood of the pointxi . This contradiction proves the theorem.

Remark. Combining the proof of Theorem 1 and the statement of Theorem 2, it is
easy to obtain that for any finite setV in E3 there existsx ∈ V such that the setV\{x}
may be divided into four parts of smaller diameters.

However, Theorem 2 leads to a stronger result. Namely, it implies an easy new solution
of Borsuk’s problem for finite subsets ofE3.

Corollary 3. If V is a finite set in E3, then it may be divided into four parts of smaller
diameters.

Proof. In other notation, we must prove that the graph of diametersG of a setV in
E3 has chromatic numberχ(G) ≤ 4. If G contains no cycles of odd length, then, by
König’s theorem about bipartite graphs, we haveχ(G) ≤ 2, and all is proved.

Therefore we assume thatG contains cycles of odd length. LetC = {x1, x2, . . . ,

x2m+1}, xi xi+1 ∈ E, 1 ≤ i ≤ 2m+ 1, be a cycle of the least odd length 2m+ 1 in G.
It is easy to prove that if|i − j | ≥ 2, thenxi andxj are not adjacent inG. Therefore
χ(C) = 3. We color the vertices of the cycleC by the colors 1,2,3. LetC1,C2,C3 be
the color classes ofC.

By Theorem 2, it follows that the graph of diametersG1 of V\C contains no cycles
of odd length. Consequentlyχ(G1) ≤ 2. LetV1 andV2 be the color classes ofG1.

Now we prove that only one vertexy ∈ G1 may be adjacent to three vertices ofC
and that any other vertexx ∈ G1 is adjacent to at most two vertices ofC.
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Indeed, suppose that there exists a vertexy ∈ G1 adjacent to three verticesxi , xj , xk,
i < j < k, of the cycleC. Trivially, ( j − i )+ (k − j )+ (2m+ 1+ i − k) = 2m+ 1
and therefore one of the numbersj − i, k− j,2m+ 1+ i − k is odd. Letl = j − i be
the least odd number of the set{ j − i, k− j,2m+ 1+ i − k}.

We consider two cases.

Case1: l = 1. Thenm = 1 andG contains three mutually adjacent verticesC =
{x1, x2, x3} ⊆ V . Obviously, only one vertexy ∈ G1 may be joined by an edge inG
with all vertices ofC.

Case2: l ≥ 3. Thenl ≤ 2m+1−2−2= 2m−3. Take the verticesy, xi , xi+1, . . . , xk.
We get a cycle of odd length≤ 2m− 1. This contradiction proves the statement in this
case.

Assume, without loss of generality, thatV2 contains no vertexy adjacent to three
vertices ofC. We color all vertices ofV1 by the color 4. Since any vertexx ∈ V2 is
adjacent to at most two vertices ofC, we see thatx is adjacent to no vertex of a certain
color classCi of C. We colorx by the colori . Finally, we obtain the 4-coloring ofG.
The corollary is proved.

Remark 1. Let C be an odd cycleC = {x1, x2, . . . , x2m+1} of minimal length> 3 in
an arbitrary graphG. Suppose that a vertexx is adjacent to two verticesxi , xj , i < j , of
a cycleC; then it is easy to see that eitherj − i = 2 or 2m+ 1+ i − j .

Remark 2. A sketch of the proofs of Theorem 2 and Corollary 3 was given in [4]. Other
proofs of Borsuk’s conjecture for finite sets inE3, based on the properties of graphs of
diameters, were given by Gr¨unbaum [9], Heppes and R´evész [13], [14], and Straszewicz
[16]. The proofs are based on the inequality|E| ≤ 2|V | − 2, which holds for any finite
graph of diametersG = (V, E) in E3.

Remark 3. Arguing as above, it is not hard to prove that if|T1 ∩ T2| ≤ 2 for every
two complete subgraphs on four verticesT1 and T2 of a simple graphG and if for
anyk cycles of odd lengths inG there exist two cycles having a common vertex, then
χ(G) ≤ 2k+ 2.

Remark 4. Reasoning as in the proof of Theorem 2, it is easy to conclude that any
cycle of odd length in a graph of diameters inB2 (where B2 is a two-dimensional
Banach space with strictly convex metric) and any edge of the graph have a common
vertex.

Corollary 4. If a set V⊆ E3 (finite or infinite) has diameter d, then there exists such
an integer m that in any finite subset W⊆ V there exists such a subset U⊆ W that
|U | ≥ (|W| − 2m− 1)/2 anddiamU < d.

Proof. If G contains no cycles of odd length, then, by K¨onig’s theorem, we have
χ(G) ≤ 2. Then we may assume thatm= 0, and all is proved.
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Therefore we assume thatG contains cycles of odd length. LetC be a cycle of the least
odd length 2m+ 1 in G. Take a finite setW such that|W| ≥ 2m+ 1. By Theorem 2,
W\C contains a stable subset on≥ (|W| − 2m − 1)/2 vertices. This concludes the
proof.

In conclusion we formulate two problems:

(1) Does Theorem 2 hold for three-dimensional Banach spaces with a strictly convex
metric?

(2) Can we choose such universalm ∈ N, that for an arbitrary finite setV in E3 there
existsU such thatU ⊆ V , |U | ≥ (|V | −m)/2, and diamU < diamV?

The next definition was given in [5]. Consider a simple graphG = (V, E). Letq ∈ N
and let p(q,G) be the least of the numbersp such that, for anyW ⊆ V , |W| ≥ p,
there exists a stable subset consisting of≥ q vertices. This function is called the stable
function ofG.

Corollary 3 is equivalent to the following statement:p(q,G) ≤ 2q for any graph of
diameters inB2 with a strictly convex metric. Using estimates of the number of parts
of smaller diameter, in which it is possible to divide a bounded set ofn-dimensional
Euclidean spaceEn (see [3]), it is easy to see that, for any graph of diametersG in En,
we have

p(q,G) ≤ cn(q − 1)+ 1 for some c > 1.

Also it easily follows from [15] that there existc1 > 1 and a graph of diameters inEn

such that

p(q,G) ≥ cn
1(q − 1)+ 1.

It would be interesting to find exact estimates ofp(q,G) for dimensionsn = 3,4.
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