

Some Properties of Graphs of Diameters*

V. L. Dol'nikov

Yaroslavl State University, Sovetskaya Str. 14, Yaroslavl 150000, Russia dolnikov@univ.uniyar.ac.ru

Abstract. The main result of this paper is as follows. Any two cycles of odd lengths of the graph of diameters G in three-dimensional Euclidean space have a common vertex. Some properties of graphs of diameters in two-dimensional Banach spaces with strictly convex metrics are also established. Applications are given.

Definition. Let *V* be a set in a metric space. We assign the following graph *G* to the set *V*. The vertices of G = (V, E) are the points of *V*. Two vertices x_1, x_2 are adjacent $(x_1x_2 \in E)$ iff the distance between x_1, x_2 equals the diameter of the set *V*. This graph is called *the graph of diameters of V* (see [7], [8], and [11]). A segment with the ends $x_1, x_2 \in V$ in a Banach space B^n is called a diameter too if its length is equal to the diameter of *V*. In what follows, only sets of diameter one are considered.

Graphs of diameters were investigated in many papers in connection with the famous conjecture of Borsuk [2] (an excellent survey of the literature on Borsuk's conjecture is Grünbaum's paper [11]). In spite of the fact that at present this conjecture is disproved in large dimensions [15], it is probable that in small dimensions, for instance n = 4, this conjecture is true. The proof for n = 3 was given by Eggleston [6]. Other simple proofs for n = 3 were given by Grünbaum [10] and Heppes [12] (for n = 2 see [11]). However, the research of graphs of diameters represents an independent interest, but still there are no approaches to full description of these graph. Note that for two-dimensional Euclidean space this problem has a relatively easy solution (see [3]).

In this paper some properties of graphs of diameters in certain two-dimensional Banach spaces and in three-dimensional Euclidean space are presented.

^{*} This research was supported by the Russian Fund of Fundamental Researches (Grants 96-01-01054 and 98-01-00216).

Let B^2 be a two-dimensional Banach space with strictly convex metric.

Theorem 1. If G is the graph of diameters of a set V in B^2 , then there exists $x \in V$ such that the graph of diameters G' of $V \setminus \{x\}$ is bipartite.

To prove Theorem 1, we need a lemma.

Lemma. Let V be a finite subset of B^2 , then any two diameters of V have a common point.

Proof. Denote the closed ball and the sphere with center x and of radius r by B(x, r) and S(x, r). First we show that if $V \subset B^n$ and x, y are the endpoints of a diameter of V, then there exist two parallel supporting hyperplanes of V passing through x and y, respectively.

Consider the ball B(x, 1) and let π_1 be a supporting hyperplane of B(x, 1) passing through y. Since V is the subset of B(x, 1), we see that π_1 is a supporting hyperplane of V. Similarly, there exists a supporting hyperplane π_2 of B(y, 1) passing through x such that π_1, π_2 are parallel.

Consider two diameters [x, y] and [a, b] of *V*. Assume $[x, y] \cap [a, b] = \emptyset$. Arguing as above, we see that there exist two parallel supporting lines π_1, π_2 of *V* passing through *x* and *y*, respectively, and two parallel supporting lines π'_1, π'_2 of *V* passing through *a* and *b*, respectively.

We consider two cases.

Case 1: π_1 and π'_1 are nonparallel. Then the lines $\pi_1, \pi_2, \pi'_1, \pi'_2$ form a parallelogram. The points *x*, *y* and *a*, *b* belong to the opposite sides of this parallelogram. Consequently, [x, y] and [a, b] have a common point.

Case 2: *if they are parallel, then* $\pi_1 = \pi'_1$ *and* $\pi_2 = \pi'_2$. We may assume that x, $a \in \pi_1$ and $y, b \in \pi_2$. Since π_1 is the supporting line of B(y, 1) at the point x, we have $||a - y|| \ge 1 \Rightarrow ||a - y|| = 1$. Hence, if $z \in [x, a]$, then ||z - y|| = 1. This contradicts the condition of the strict convexity for B^2 . The lemma is proved.

Proof of Theorem 1. In other words, we must prove that all cycles of odd lengths have a common vertex. Without loss of generality, it can be assumed that V is a finite set in B^2 . It is easy to prove that there exists a direction e such that any line $\pi \parallel e$ intersects V in at most one point.

Evidently, there exists a line $\pi \parallel e$ such that π intersects all diameters of the set *V*. Denote by P_1 and P_2 two open half-planes, defined by the line π . Then we have

 $diam(P_1 \cap V) < 1$, $diam(P_2 \cap V) < 1$, $|\pi' \cap V| \le 1$.

The theorem is proved.

Theorem 1 immediately implies the following two corollaries.

Corollary 1. For any finite set $V \subset B^2$ there exists $x \in V$ such that the set $V \setminus \{x\}$ may be divided into two parts of smaller diameter.

Corollary 2. For any finite set $V \subset B^2$ there exists $U \subset V$ of smaller diameter such that $|U| \ge (|V| - 1)/2$.

If V is the set of vertices of a regular (2m+1)-gon and $U \subseteq V$ such that $|U| \ge |V|/2$, then, evidently, diam U = diam V = 1. This means that the inequality in Corollary 2 is exact.

The following result is an analogue of Theorem 1 for three-dimensional Euclidean space E_3 .

Theorem 2. If G is a graph of diameters in E_3 , then any two cycles of odd lengths have a common vertex.

Proof. Consider a finite set $V \subset E_3$. There is a set W of constant width 1 such that $V \subset W$ (see [1]).

Let $C = \{x_1, x_2, ..., x_{2m+1}\}$, $x_i x_{i+1} \in E$, $1 \le i \le 2m + 1$, be a cycle of length 2m + 1 in the graph of diameters *G* of the set *V*. Suppose x_{i-1}, x_i, x_{i+1} are three successive vertices on this cycle; then $||x_{i-1} - x_i|| = ||x_{i+1} - x_i|| = 1$. Take the arc $\alpha_i(C)$ of the circle of center x_i and radius 1 between x_{i-1} and x_{i+1} of measure $< \pi$. Since *W* is the set of constant width, we see that $\alpha_i(C) \subset \operatorname{bd} W$ (bd *W* is the boundary of *W*).

It is easy to check that the union of all such arcs $\bigcup_{i=1}^{2m+1} \alpha_i(C)$ for the given odd cycle *C* is the closed curve $\gamma(C) \subset$ bd *W*. If $x \in \alpha_i(C)$, then the segment $[x_i, x]$ is a diameter. Therefore the vectors $\overline{x_i x}$ and $\overline{xx_i}$ are the unit normal vectors of the supporting hyperplanes of *W* at the points *t* and *y*.

Choose an origin *O* in the space E_3 . Selecting *O* as the initial point of all vectors $\overline{x_ix}$ for $x \in \alpha_i(C)$, we denote by $\alpha_i^+(C)$ the set of endpoints of these vectors. Similarly, denote by $\alpha_i^-(C)$ the set of endpoints of $\overline{xx_i}$, $x \in \alpha_i(C)$.

Since the sets $\alpha_i^+(C)$ and $\alpha_i^-(C)$ consist of unit vectors, we see that $\alpha_i^+(C)$ and $\alpha_i^-(C)$ are two centrally symmetric arcs of the unit sphere S(O, 1). For any cycle C of length 2m + 1 in the graph of diameters G, define

$$S(C) = \bigcup_{i=1}^{2m+1} \alpha_i^+(C) \cup \alpha_i^-(C).$$

It is easy to show that S(C) is a closed, centrally symmetric curve without self-intersections consisting of 2(2m + 1) arcs of a circle of radius 1.

Consider two cycles of odd lengths $C_1 = \{x_1, x_2, ..., x_{2m+1}\}$ and $C_2 = \{y_1, y_2, ..., y_{2k+1}\}$ of the graph *G*. The corresponding curves $S(C_1)$ and $S(C_2)$ are homeomorphic to the circle, have no self-intersections, and are centrally symmetric. Using Jordan's theorem, we get that there exists $x \in S(C_1) \cap S(C_2)$. We consider two cases.

Case 1. Suppose *x* is a common point for two arcs $\alpha_i^+(C_1)$ and $\alpha_j^+(C_2)$; then the vector Ox is the normal vector of the supporting hyperplane for a set *W* at the points x_i and y_j . Therefore x_i , y_j belong to the same supporting hyperplane for *W*. Since a set of constant width is strictly convex, we see that $x_i = y_j$, and the theorem is proved in this case.

Case 2. Now suppose that $x \in \alpha_i^-(C_1) \cap \alpha_j^+(C_2)$; then $x_i \in \alpha_j(C_2)$ and $y_j \in \alpha_i(C_1)$. Assume $x_i \neq y_{j-1}, y_{j+1}, y_j \neq x_{i-1}, x_{i+1}$. Denote the planes passing through the points x_{i-1}, x_i, x_{i+1} and y_{j-1}, y_j, y_{j+1} by π_1 and π_2 , respectively. Now suppose π_1 and π_2 are not perpendicular. By p_{π_1} denote the orthogonal projection of E_3 onto π_1 . Then $p_{\pi_1}(W)$ is the set of constant width one too. Since $[x_{i-1}, x_i]$ and $[x_i, x_{i+1}]$ are diameters of $p_{\pi_1}(W)$, we see that x_i is a corner point of $p_{\pi_1}(W)$.

On the other hand, x_i is contained in the interior of $p_{\pi_1}(\alpha_j(C_2)) \subset p_{\pi_1}(W)$. The set $p_{\pi_1}(\alpha_j(C_2))$ is an arc of an ellipse. Hence the point x_i is not a corner point. This contradiction proves the theorem for this case.

Now consider the case when π_1 and π_2 are perpendicular. Then the point y_j is contained in the interior of $\alpha_i(C_1)$. Let *t* be the midpoint of $\alpha_i(C_1)$, and let α , β be the measures of $\angle x_{i-1}x_it$, $\angle x_{i-1}x_iy_i$, respectively. Then $\alpha > \beta$ and $\cos \alpha < \cos \beta$.

Consider the plane π passing through *t* and x_i and perpendicular to π_1 . Since $W \subseteq B(x_{i-1}, 1) \bigcap B(x_{i+1}, 1)$, we have

$$p_{\pi}(W) \subseteq \pi B(x_{i-1}, 1) \cap B(x_{i+1}, 1) \cap \pi = B.$$

Clearly, *B* is a disk of radius $\cos \alpha$ with center at the point $z = (x_{i-1} + x_{i+1})/2 \in \pi$. Let *S* be its boundary circle. The set $\delta = p_{\pi}(\alpha_j(C_2))$ is an arc of an ellipse with semiaxes 1, $\cos \beta$, and center on a segment $[t, x_i]$. The circle *S* must touch δ at the point x_i .

Since $\cos \alpha > \cos \beta$, we obtain that the arc δ is situated outside *B* in some neighborhood of the point x_i . This contradiction proves the theorem.

Remark. Combining the proof of Theorem 1 and the statement of Theorem 2, it is easy to obtain that for any finite set *V* in E_3 there exists $x \in V$ such that the set $V \setminus \{x\}$ may be divided into four parts of smaller diameters.

However, Theorem 2 leads to a stronger result. Namely, it implies an easy new solution of Borsuk's problem for finite subsets of E_3 .

Corollary 3. If V is a finite set in E_3 , then it may be divided into four parts of smaller diameters.

Proof. In other notation, we must prove that the graph of diameters G of a set V in E_3 has chromatic number $\chi(G) \leq 4$. If G contains no cycles of odd length, then, by König's theorem about bipartite graphs, we have $\chi(G) \leq 2$, and all is proved.

Therefore we assume that *G* contains cycles of odd length. Let $C = \{x_1, x_2, ..., x_{2m+1}\}$, $x_i x_{i+1} \in E$, $1 \le i \le 2m + 1$, be a cycle of the least odd length 2m + 1 in *G*. It is easy to prove that if $|i - j| \ge 2$, then x_i and x_j are not adjacent in *G*. Therefore $\chi(C) = 3$. We color the vertices of the cycle *C* by the colors 1, 2, 3. Let C_1, C_2, C_3 be the color classes of *C*.

By Theorem 2, it follows that the graph of diameters G_1 of $V \setminus C$ contains no cycles of odd length. Consequently $\chi(G_1) \leq 2$. Let V_1 and V_2 be the color classes of G_1 .

Now we prove that only one vertex $y \in G_1$ may be adjacent to three vertices of *C* and that any other vertex $x \in G_1$ is adjacent to at most two vertices of *C*.

Indeed, suppose that there exists a vertex $y \in G_1$ adjacent to three vertices x_i, x_j, x_k , i < j < k, of the cycle *C*. Trivially, (j - i) + (k - j) + (2m + 1 + i - k) = 2m + 1 and therefore one of the numbers j - i, k - j, 2m + 1 + i - k is odd. Let l = j - i be the least odd number of the set $\{j - i, k - j, 2m + 1 + i - k\}$.

We consider two cases.

Case 1: l = 1. Then m = 1 and G contains three mutually adjacent vertices $C = \{x_1, x_2, x_3\} \subseteq V$. Obviously, only one vertex $y \in G_1$ may be joined by an edge in G with all vertices of C.

Case 2: $l \ge 3$. Then $l \le 2m + 1 - 2 - 2 = 2m - 3$. Take the vertices $y, x_i, x_{i+1}, \ldots, x_k$. We get a cycle of odd length $\le 2m - 1$. This contradiction proves the statement in this case.

Assume, without loss of generality, that V_2 contains no vertex y adjacent to three vertices of C. We color all vertices of V_1 by the color 4. Since any vertex $x \in V_2$ is adjacent to at most two vertices of C, we see that x is adjacent to no vertex of a certain color class C_i of C. We color x by the color i. Finally, we obtain the 4-coloring of G. The corollary is proved.

Remark 1. Let *C* be an odd cycle $C = \{x_1, x_2, ..., x_{2m+1}\}$ of minimal length > 3 in an arbitrary graph *G*. Suppose that a vertex *x* is adjacent to two vertices $x_i, x_j, i < j$, of a cycle *C*; then it is easy to see that either j - i = 2 or 2m + 1 + i - j.

Remark 2. A sketch of the proofs of Theorem 2 and Corollary 3 was given in [4]. Other proofs of Borsuk's conjecture for finite sets in E_3 , based on the properties of graphs of diameters, were given by Grünbaum [9], Heppes and Révész [13], [14], and Straszewicz [16]. The proofs are based on the inequality $|E| \le 2|V| - 2$, which holds for any finite graph of diameters G = (V, E) in E_3 .

Remark 3. Arguing as above, it is not hard to prove that if $|T_1 \cap T_2| \le 2$ for every two complete subgraphs on four vertices T_1 and T_2 of a simple graph G and if for any k cycles of odd lengths in G there exist two cycles having a common vertex, then $\chi(G) \le 2k + 2$.

Remark 4. Reasoning as in the proof of Theorem 2, it is easy to conclude that any cycle of odd length in a graph of diameters in B^2 (where B^2 is a two-dimensional Banach space with strictly convex metric) and any edge of the graph have a common vertex.

Corollary 4. If a set $V \subseteq E_3$ (finite or infinite) has diameter d, then there exists such an integer m that in any finite subset $W \subseteq V$ there exists such a subset $U \subseteq W$ that $|U| \ge (|W| - 2m - 1)/2$ and diam U < d.

Proof. If *G* contains no cycles of odd length, then, by König's theorem, we have $\chi(G) \leq 2$. Then we may assume that m = 0, and all is proved.

Therefore we assume that *G* contains cycles of odd length. Let *C* be a cycle of the least odd length 2m + 1 in *G*. Take a finite set *W* such that $|W| \ge 2m + 1$. By Theorem 2, $W \setminus C$ contains a stable subset on $\ge (|W| - 2m - 1)/2$ vertices. This concludes the proof.

In conclusion we formulate two problems:

- (1) Does Theorem 2 hold for three-dimensional Banach spaces with a strictly convex metric?
- (2) Can we choose such universal $m \in \mathbb{N}$, that for an arbitrary finite set V in E_3 there exists U such that $U \subseteq V$, $|U| \ge (|V| m)/2$, and diam U < diam V?

The next definition was given in [5]. Consider a simple graph G = (V, E). Let $q \in \mathbb{N}$ and let p(q, G) be the least of the numbers p such that, for any $W \subseteq V$, $|W| \ge p$, there exists a stable subset consisting of $\ge q$ vertices. This function is called the stable function of G.

Corollary 3 is equivalent to the following statement: $p(q, G) \le 2q$ for any graph of diameters in B_2 with a strictly convex metric. Using estimates of the number of parts of smaller diameter, in which it is possible to divide a bounded set of *n*-dimensional Euclidean space E_n (see [3]), it is easy to see that, for any graph of diameters G in E_n , we have

$$p(q, G) \le c^n(q-1) + 1$$
 for some $c > 1$.

Also it easily follows from [15] that there exist $c_1 > 1$ and a graph of diameters in E_n such that

$$p(q, G) \ge c_1^n(q-1) + 1.$$

It would be interesting to find exact estimates of p(q, G) for dimensions n = 3, 4.

References

- 1. Bonnesen, T., and Fenchel, W. Theorie der konvexen Körper, Berlin, 1934.
- 2. Borsuk, K. Drei Sätze über die n-dimensionale euklidische Sphäre, Fund. Math. 20 (1933), 177-190.
- 3. Bowers, P.L. The Borsuk dimension of a graph and Borsuk's partition conjecture for finite sets, *Graphs Combin.* **6** (1990), 207–222.
- Dol'nikov, V.L. On a certain property of graphs of diameters in R³, in *Qualitative and Approximate Methods of Research of Operator Equations*, Collections of Scientific Works. Yaroslavl' State University Yaroslavl', 1986, pp. 47–50.
- 5. Dol'nikov, V.L. A coloring problem, Sibirsk. Mat. Zh. 13(6) (1973), 1272-1283.
- Eggleston, H.G. Covering a three dimensional set with sets of smaller diameter, J. London Math. Soc. 30 (1955), 11–24.
- 7. Erdös, P. On sets of distances of *n* points, Amer. Math. Monthly 53 (1946), 248–250.
- 8. Erdös, P. Some unsolved problems, Michigan Math. J. 4 (1957), 291-300.
- 9. Grünbaum, B. A proof of Vázsonyi's conjecture, Bull. Res. Council Israel 6A (1956), 77-78.
- Grünbaum, B. A simple proof of Borsuk's conjecture in three dimensions, *Math. Proc. Cambridge Philos.* Soc. 53 (1957), 776–778.
- Grünbaum, B. Borsuk's problem and and related questions, in *Convexity*, pp. 271–284, Proc. of Symposia in Pure Mathematics, Vol. 7, American Mathematics Society, Providence, RI, 1963.

- Heppes, A. On the splitting of a point set into the union of sets of smaller diameter, Magyar. Tud. Akad. Mat. Fiz. Oszt. Közl. Soc. 7 (1957), 413–416.
- 13. Heppes, A. P. Beweis einer Vermutung von Vázonyi, Acta Math. Acad. Hungar. 7 (1957), 463-466.
- Heppes, A., and Révész, P. Zum Borsukschen Zerteilungsproblem, Acta Math. Acad. Hungar. 7 (1956) 159–162.
- 15. Kahn, J., and Kalai, G. A counterexample to Borsuk's conjecture, *Bull. Amer. Math. Soc.* **29**(1) (1993), 60–62.
- 16. Straszewicz, S. Sur un problém géometrique de P. Erdös, Bull. Acad. Polon. Sci. 5(3) (1957), 39-40.

Received December 28, 1998, and in revised form September 10, 1999. Online publication May 8, 2000.