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1. INTRODUCTION

Developing the idea advanced by Ya.I. Zhitomirskii in [10] concerning the descrip-

tion of the systems of partial differential equations parabolically steady to a change in

coefficients, the following wide class of parabolic systems with variable coefficients

was defined in [7]:

@tu.t Ix/ D fP0.t I i@x/CP1.t;xI i@x/gu.t Ix/; .t Ix/ 2 ˘.0IT �: (1.1)

Here, u WD col.u1; :::;um/; ˘.0IT � WD f.t Ix/ W t 2 .0IT �; x 2 R
ng, and P0.t I i@x/ and

P1.t;xI i@x/ are matrix differentiable expressions of the orders, respectively, p and

p1, p > p1 � 0; with coefficients depending on the time variable t . In this case, the

coefficients of the expression P1 can depend also on the spatial variable x. It is also

assumed that the corresponding system

@tu.t Ix/ D P0.t I i@x/u.t Ix/; .t Ix/ 2 ˘.0IT �; (1.2)

is uniformly parabolic by Shilov with parabolicity index h, 0 < h � p, nonnegative

genus �; and reduced order p0 [2]. In other words, there exist constants ı0 > 0 and

ı1 � 0 such that, for all x 2 R
n and t 2 Œ0IT �; the following inequality holds:

�.t Ix/ WD max
j 2Nm

Re�j .t Ix/ � �ı0kxkh C ı1:

Here, �j are roots of the equation det.P0.t I�/ � �E/ D 0; � 2 C
n;E is the identity

matrix of the order m, k � k is the Euclid norm in R
n, and Nm WD f1;2; : : : ;mg.

We recall also that the reduced order p0 of a system is called the exact power

order of growth of a function �.�I �/ in the complex space C
n (for a parabolic system,

c
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we have always p0 > 1). In addition, the genus of a system parabolic by Shilov

is called the largest index � such that the function �.�I �/ in the domain G�.K/ WD

Œ0IT ��fx C iy 2 C
n W kyk � K.1Ckxk/�g with some K > 0 satisfies the estimate

�.t Ix C iy/ � �ı�kxkh C ı1; ı� > 0;ı1 � 0:

It is known that 1� .p0 �h/ � � � 1:

The following condition must be satisfied for (1.1):

(A) W 0 � p1 < h�n.1�h�=p0/� .m�1/.p �h/:

It is obvious that the class of systems (1.1) envelops completely the class of Shilov-

type parabolic systems with nonnegative genus. In this connection, it was proposed in

[10] to call such systems Shilov-type parabolic systems with nonnegative genus and

variable coefficients. To a certain extent, these systems solve the problem of proper

extension of the notion of parabolicity by Shilov to the linear systems of equations

with variable coefficients, since the Shilov class of systems is not parabolically stable

to a change in its coefficients [4].

Let us consider systems (1.1) under the condition that their coefficients are the

complex-valued functions that are continuous in the variable t , infinitely differen-

tiable with respect to the variable x; and bounded together with their derivatives

in a ball ˘Œ0IT �: For these systems, Green’s function Z.t;xI�;�/, 0 � � < t � T ,

fx;�g � R
n, was constructed, and its main properties such as the smoothness and

the behavior in vicinities of infinitely remote spatial points were studied [7]. On the

basis of these results, the theory of the Cauchy problem was developed in [5, 8, 9]

for such systems in spaces of the type S by Gelfand and Shilov [3]. In particular, the

proper solvability of the Cauchy problem with generalized initial data like the Gevrey

ultradistributions was established, the form of a representation of classical solutions

with generalized limiting values on the input hyperplane was obtained, their qualitat-

ive properties were studied, and the sets of generalized input functions, for which the

corresponding solutions are elements of the Schwartz space S or some space of the

type S; were described.

In order to get similar results under weaker conditions imposed on the coeffi-

cients of system (1.1), it is necessary firstly to clarify the properties of corresponding

Green’s function Z. In the present work, we will study properties of the function

Z.t;xI�;�/ with respect to spatial variables x and � under the minimum conditions

of smoothness imposed on the coefficients of this system.

2. AUXILIARY INFORMATION

Let the differential expressions P0 and P1 of system (1.1) have the structure

P0.t I i@x/ D
X

jkjC�p

A0;k.t/@k
x; P1.t;xI i@x/ D

X

jkjC�p1

A1;k.t Ix/@k
x;
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where A0;k.t/ WD i jkjC
�
a

lj

0;k
.t/
�m

l;j D1
, A1;k.t Ix/ WD i jkjC

�
a

lj

1;k
.t Ix/

�m

l;j D1
are mat-

rix coefficients, i is the imaginary unity, and jkjC WD k1 C : : :Ckn; k 2 Z
n
C.

By G.t;� I �/, 0 � � < t � T , we denote Green’s function of system (1.2). It is

known that G.t;� I �/ D F
�
�t

� .�/
�
.t; � I �/, where F Œ�� is the Fourier transformation

operator, and �t
� .�/ is a matriciant of the corresponding Fourier duality of the system.

The following proposition is proper [5, 6]:

8 T > 0 9 ı > 0 8 k 2 Z
n
C 9 c > 0 8 t 2 .� IT � 8 � 2 Œ0IT / 8 fx;�g � R

n W

j@k
xG.t;� Ix � �/j � c.t � �/�

nCjkjCC


h e
�ı
�

kx��k

.t��/˛

� 1
1�˛

; (2.1)

where 
 WD .m�1/.p �h/ and ˛ WD �=p0, j.alj /m
l;j D1

j WD max
fl;j g�Nm

jalj j.

Here, we consider systems (1.1), which satisfy, in addition to condition (A), the

following condition:

(B): the coefficients a
lj

0;k
.t/, a

lj

1;k
.t Ix/ are continuous in the variable t uni-

formly with respect to x, differentiable with respect to the variable x

up to the order ˛� inclusively, and bounded together with their deri-

vatives by complex-valued functions in a ball ˘Œ0IT �.
In [7], Green’s function of system (1.1) was constructed in the form

Z.t;xI�;�/ D G.t;� Ix � �/CW.t;xI�;�/; .t;xI�;�/ 2 ˘2
T ; (2.2)

where ˘2
T WD f.t;xI�;�/j 0 � � < t � T;fx;�g � R

ng,

W.t;xI�;�/ WD

tZ

�

dˇ

Z

Rn

G.t;ˇIx �y/˚.ˇ;yI�;�/dy; (2.3)

and

˚.t;xI� I�/ D

1X

lD1

Kl.t;xI�;�/; (2.4)

where

K1.t;xI�;�/ WD P1.t;xI i@x/G.�;�Ix � �/;

Kl.t;xI�;�/ WD

tZ

�

dˇ

Z

Rn

K1.t;xIˇ;y/Kl�1.ˇ;yI�;�/dy; l > 1: (2.5)

In this case, it was established that condition (A) and the boundedness of the coef-

ficients of system (1.1) ensure the absolute uniform convergence of the functional

series (2.4) for all fx;�g � R
n, t 2 .� IT �; and � 2 Œ0;T /. Moreover, its sum ˚ and

the iterated kernels Kl satisfy the estimates

j˚.t;xI�;�/j � c1.t � �/˛0�.1C˛n/e
�ı1

�
kx��k

.t��/˛

� 1
1�˛

; (2.6)
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jKl.t;xI�;�/j � cl
0

0
@

l�1Y

j D1

c.j"/B.˛0;j˛0/

1
A

� .t � �/l˛0�.1C˛n/e
�ı.1�.l�1/"/

�
kx��k

.t��/˛

� 1
1�˛

; " 2 .0I1/; (2.7)

with the estimating constants independent of t; �;x; and �. Here ˛0 WD 1C˛n� .nC

p1 C
/=h > 0 and B.�; �/ is the Euler beta-function.

We note that estimates (2.1) and (2.6) for fx;�g � R
n and 0 � � < t � T guarantee

the absolute convergence of the integral, by which the potential W is determined.

Thus, the matrix function Z.t;xI�;�/ is properly determined by formula (2.2) on the

whole set ˘2
T .

Completing this item, we present the following estimates from [1], which will be

of importance in what follows:

e
�ı

(�
kx�yk

.t�ˇ/˛

� 1
1�˛

C
�

ky��k

.ˇ��/˛

� 1
1�˛

)

� e
�ı
�

kx��k

.t��/˛

� 1
1�˛

I (2.8)

Z

Rn

e
�ı

(�
kx�yk

.t�ˇ/˛

� 1
1�˛

C
�

ky��k

.ˇ��/˛

� 1
1�˛

)

dy

..t �ˇ/.ˇ � �//˛n

�
c"e

�ı.1�"/
�

kx��k

.t��/˛

� 1
1�˛

.t � �/˛n
; ı > 0 (2.9)

(here, fx;y;�g � R
n, ˇ 2 .� I t /, 0 � � < t � T , " 2 .0I1/; and ı > 0, and the quantity

c" depends only on ").

3. PROPERTIES OF GREEN’S FUNCTION

First, we estimate the derivatives of the iterated kernels Kl .

According to representation (2.5), the smoothness of the kernel K1.t;xI�;�/ in

the spatial variables x and � is determined, respectively, by the smoothness of the

coefficients of system (1.1) and the function G.t;� Ix � �/. Therefore, there exist the

derivatives @r
�
@

q
xK1 for fr;qg � Z

n
C, jqjC � ˛�, and the following equality holds:

@r
�@q

xK1.t;xI�;�/ D
X

jkjC�p1

qX

lD0

C l
q

�
@l

xA1;k.t Ix/
��

@
kCrCq�l

.x��/
G.t;� Ix � �/

�
;

where C l
q is a binomial coefficient. From whence, with regard for condition (B) and

estimate (2.1) for fr;qg � Z
n
C, jqjC � ˛�, .t;xI�;�/ 2 ˘2

T ; we get

j@r
�@q

xK1.t;xI�;�/j � cr;q.t � �/�
nCp1C
CjrCqjC

h e
�ı
�

kx��k

.t��/˛

� 1
1�˛

(3.1)
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(here, the estimating constants are independent of t; �;x; and �).

For l > 1; we will use the representation

Kl.t;xI�;�/ D

t1Z

�

dˇ

Z

Rn

K1.t;xIˇ;�C �/Kl�1.ˇ;�C �I�;�/d�

C

tZ

t1

dˇ

Z

Rn

K1.t;xIˇ;x �´/Kl�1.ˇ;x �´I�;�/d´; t1 WD
t C �

2
:

According to it,

@r
�@q

xKl.t;xI�;�/ D
X

jr1jC�jrjC

C r1
r

t1Z

�

dˇ

Z

Rn

�
@

r1

�
@q

xK1.t;xIˇ;�C �/
�

�
�
@

r�r1

�
Kl�1.ˇ;�C �I�;�/

�
d�C

X

jq1jC�jqjC

C q1
q

tZ

t1

dˇ

Z

Rn

�
@q1

x K1.t;xIˇ;x �´/
�

�
�
@r

�@q�q1
x Kl�1.ˇ;x �´I�;�/

�
d´; jqjC � ˛�; .t;xI�;�/ 2 ˘2

T : (3.2)

Hence, the estimation of j@r
�
@

q
xKl.t;xI�;�/j is reduced to that of the expressions

j@r
�@q

xK1.t;xI�;�C �/j; j@q
xK1.t;xI�;x �´/j;

j@r
�Kl�1.t;�C �I�;�/j; j@r

�@q
xKl�1.t;x �´I�;�/j:

In view of the boundedness of @
q
xa

lj

1;k
.t Ix/, jqjC � ˛�, and estimate (2.1), for all

fq;rg 2 Z
n
C, jqjC � ˛�; fx;�;�g 2 R

n; t 2 .� IT �; and � 2 Œ0IT /; we have

ˇ̌
@r

�@q
xK1.t;xI�;�C �/

ˇ̌
� m

X

jkjC�p1

X

jq1jC�jqjC

C q1
q

ˇ̌
@q1

x A1;k.t Ix/
ˇ̌

�
ˇ̌
@

kCrCq�q1

.x����/
G.t;� Ix ��� �/

ˇ̌
� cr;q.t � �/�

nCp1C
CjrCqjC
h e

�ı
�

kx����k

.t��/˛

� 1
1�˛

I

(3.3)

ˇ̌
@q

xK1.t;xI�;x � �/
ˇ̌
D
ˇ̌
ˇ@q

x

� X

jkjC�p1

A1;k.t Ix/@k
xG.t;� I�/

�ˇ̌
ˇ� m

ˇ̌
ˇ@q

xA1;0.t Ix/
ˇ̌
ˇ

�
ˇ̌
ˇG.t;� I�/

ˇ̌
ˇ�bcq.t � �/� nC


h e
�ı
�

k�k

.t��/˛

� 1
1�˛

� cq.t � �/�
nCp1C


h e
�ı
�

k�k

.t��/˛

� 1
1�˛

:

(3.4)
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We now estimate the expression
ˇ̌
@r

�
Kl.t;�C �I�;�/

ˇ̌
: Since

@r
�K1.t;�C �I�;�/ D

X

jkjC�p1

@r
�A1;k.t I�C �/@k

�G.t;� I�/; .t;xI�;�/ 2 ˘2
T ; (3.5)

we have, according to condition (A), that the iterated kernels Kl.t;� C �I�;�/ are

differentiable with respect to the variable � only to the order ˛�. This fact and (3.2)

imply that @
q
xKl.t;xI�;�/, jqj� � ˛�, is also a function differentiable with respect to

� only to this order ˛�.

Representation (3.5) and estimate (2.1) yield

ˇ̌
@r

�K1.t;�C �I�;�/
ˇ̌
� c1;r.t � �/�

nCp1C


h e
�ı
�

k�k

.t��/˛

� 1
1�˛

: (3.6)

We note that

@r
�K2.t;�C �I�;�/ D @r

�

 tZ

�

dˇ

Z

Rn

K1.t;�C �Iˇ;y/K1.ˇ;yI�;�/dy

!
:

Let us change the variable of integration in the last integral by the formula y D ´C�:

In view of estimates (3.6) and (2.9) and the equalities

tZ

�

..t �ˇ/.ˇ � �//˛0�1dˇ D .t � �/2˛0�1B.˛0;˛0/ (3.7)

and

@r
�K1.t;�C �I�;´C �/ D @r

�K1.t; .��´/C �I�;�/
ˇ̌
ˇ
�D´C�

;

we get

ˇ̌
@r

�K2.t;�C �I�;�/
ˇ̌
� m

X

jr1jC�jrjC

C r1
r

tZ

�

dˇ

Z

Rn

ˇ̌
ˇ@r1

�
K1.t;�C �Iˇ;´C �/

ˇ̌
ˇ

�
ˇ̌
ˇ@r�r1

�
K1.ˇ;´C �I�;�/

ˇ̌
ˇd´ � m

X

jr1jC�jrjC

C r1
r c1;r1

c1;.r�r1/

�

tZ

�

�
.t �ˇ/.ˇ � �/

�� nCp1C


h

Z

Rn

e
�ı

��
k��´k

.t�ˇ/˛

� 1
1�˛

C
�

k´k

.ˇ��/˛

� 1
1�˛

�
d´dˇ

� c2;r."/B.˛0;˛0/.t � �/˛0�
nCp1C


h e
�ı.1�"/

�
k�k

.t��/˛

� 1
1�˛

; " 2 .0I1/:

By reasoning analogously step by step, we arrive at the inequality

ˇ̌
@r

�Kl.t;�C �I�;�/
ˇ̌
� cl;r."/

� l�1Y

j D1

B.˛0;j˛0/
�
.t � �/.l�1/˛0�

nCp1C


h
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� e
�ı.1�.l�1/"/

�
k�k

.t��/˛

� 1
1�˛

; (3.8)

which is satisfied for all f�;�g � R
n, jr jC � ˛�, 0 � � < t � T , " 2 .0I1/; and

l 2 Nn f1g and, hence, until the existence of such number l�, for which

ˇ̌
@r

�Kl�
.t;�C �I�;�/

ˇ̌
� cl�;r."/

� l��1Y

j D1

B.˛0;j˛0/
�

e
�ı.1�.l��1/"/

�
k�k

.t��/˛

� 1
1�˛

(3.9)

(here, the quantities cl;r."/ > 0 do not depend on the variables t; �;�; and � , which

vary in the above-indicated way).

Since

@r
�@q

xKl.t;xI�;�C �/ D @r
�@q

xKl.t;xI�;�/
ˇ̌
ˇ
�D�C�

;

@r
�@q

xKl.t;x �´I�;�/ D @r
�@q

yKl.t;yI�;�/
ˇ̌
ˇ
yDx�´

;

the expressions @r
�
@

q
xKl.t;xI�;� C �/;@r

�
@

q
xKl.t;x � ´I�;�/ and @r

�
@

q
xKl.t;xI�;�/

are of the same type. Therefore, with regard for representation (3.2) and estimates

(3.3), (3.4), (3.8), and (2.9), we have

ˇ̌
@r

�@q
xK2.t;xI�;�/

ˇ̌
� m2jrCqjC

 X

jr1jC�jrjC

cr1;qc1;.r�r1/

t1Z

�

.t �ˇ/�
nCp1C
Cjr1CqjC

h

� .ˇ � �/�
nCp1C


h

Z

Rn

e
�ı

��
kx����k

.t�ˇ/˛

� 1
1�˛

C
�

k�k

.ˇ��/˛

� 1
1�˛

�
d�dˇ

C
X

jq1jC�jqjC

cq1
cr;.q�q1/ �

tZ

t1

.ˇ � �/�
nCp1C
CjrCq�q1jC

h .t �ˇ/�
nCp1C


h

Z

Rn

e
�ı

��
k´k

.t�ˇ/˛

� 1
1�˛

C
�

kx�´��k

.ˇ��/˛

� 1
1�˛

�
d´dˇ

!

� m2jrCqjCc"e
�ı.1�"/

�
kx��k

.t��/˛

� 1
1�˛

.t � �/�˛n

 X

jr1jC�jrjC

cr1;qc1;.r�r1/

�

t1Z

�

.t �ˇ/˛n�
nCp1C
Cjr1CqjC

h .ˇ � �/˛0�1dˇ C
X

jq1jC�jqjC

cq1
cr;.q�q1/

�

tZ

t1

.t �ˇ/˛0�1.ˇ � �/˛n�
nCp1C
CjrCq�q1jC

h dˇ
�
; jr jC � ˛�; jqjC � ˛�; " 2 .0I1/:
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In view of the estimates

t1Z

�

.t �ˇ/˛n�
nCp1C
Cjr1CqjC

h .ˇ � �/˛0�1dˇ

� 2
jr1CqjC

h .t � �/2˛0�
�
1C

jr1CqjC
h

�
B.˛0;˛0/

and

tZ

t1

.t �ˇ/˛0�1.ˇ � �/˛n�
nCp1C
CjrCq�q1jC

h dˇ

� 2
jrCq�q1jC

h .t � �/2˛0�
�
1C

jrCq�q1jC
h

�
B.˛0;˛0/;

we get the inequality

ˇ̌
@r

�@q
xK2.t;xI�;�/

ˇ̌
� c

r;q

2;�
.t � �/2˛0�

�
1C˛nC

jrCqjC
h

�
B.˛0;˛0/e

�ı.1�"/
�

kx��k

.t��/˛

� 1
1�˛

:

By continuing stepwise the process of estimation, we obtain

ˇ̌
@r

�@q
xKl.t;xI�;�/

ˇ̌
� c

r;q

l;"
.t � �/l˛0�

�
1C˛nC

jrCqjC
h

�

� e
�ı.1�.l�1/"/

�
kx��k

.t��/˛

� 1
1�˛

� l�1Y

j D1

B.˛0;j˛0/
�
; (3.10)

for all jr jC � ˛�; jqjC � ˛�; fx;�g � R
n; 0 � � < t � T; " 2 .0I1/; and l 2 Nnf1g.

Let us pass to the estimation of the expression
ˇ̌
@r

�
@

q
xKl.t;xI�;�/

ˇ̌
, which will be

suitable for the establishment of the differentiability of the matrix function ˚ with

respect to the spatial variables. Directly from (3.10), we arrive at the existence of a

number l� such that

ˇ̌
@r

�@q
xKl�.t;xI�;�/

ˇ̌
� c

r;q

l�;"
e

�ı.1�.l��1/"/
�

kx��k

.t��/˛

� 1
1�˛

� l��1Y

j D1

B.˛0;j˛0/
�
:

Let us set lC WD maxfl�; l�g; l� WD minfl�; l�g, where l� is the corresponding number

from (3.9), " WD 1
r�lC

; ı� WD ı
�
1� 1

r�

�
; r� > 2; T0 WD maxf1;T g, and

c0
� WD max

l2NlC
nf1g

n
c1;r ; cl;r."/

� l�1Y

j D1

B.˛0;j˛0/
�
; cr;q; c

r;q

l;"

� l�1Y

j D1

B.˛0;j˛0/
�o

;
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c� WD c0
�.T0/lC�l� : Then (3.8) and (3.10) imply that, for all fx;�;�g � R

n, 0 � � <

t � T , jr jC � ˛�; and jqjC � ˛�;

ˇ̌
@r

�@q
xKlC

.t;xI�;�/
ˇ̌
� c�e

�ı�

�
kx��k

.t��/˛

� 1
1�˛

;

ˇ̌
@r

�KlC
.t;�C �I�;�/

ˇ̌
� c�e

�ı�

�
k�k

.t��/˛

� 1
1�˛

:

In view of this result, estimate (2.8), the equality

Z

Rn

e
�ı0

�
kx�yk

.t�ˇ/˛

� 1
1�˛ dy

.t �ˇ/˛n
D

Z

Rn

e�ı0k´k
1

1�˛
d´ DW bE < C1;

representation (3.2), and inequalities (3.3) and (3.4), we obtain

ˇ̌
@r

�KlCC1.t;�C �I�;�/
ˇ̌
�

X

jr1jC�jrjC

C r1
r

tZ

�

dˇ

Z

Rn

ˇ̌
@

r1

�
K1.t;�C �Iˇ;´C �/@

r�r1

�

�KlC
.ˇ;´C �I�;�/

ˇ̌
d´ � mc2

�

� X

jr1jC�jrjC

C r1
r

� tZ

�

.t �ˇ/˛0�1

�

Z

Rn

e
�ı�

��
k��´k

.t�ˇ/˛

� 1
1�˛

C
�

k´k

.ˇ��/˛

� 1
1�˛

�
e

� ı
r�

�
k��´k

.t�ˇ/˛

� 1
1�˛ d´

.t �ˇ/n˛
dˇ

� mc0
r
bEc2

�B.˛0;1/.t � �/˛0e
�ı�

�
k�k

.t��/˛

� 1
1�˛

; c0
r WD

X

jr1jC�jrjC

C r1
r I

ˇ̌
@r

�@q
xKlCC1.t;xI�;�/

ˇ̌
�

X

jr1jC�jrjC

C r1
r

t1Z

�

dˇ

Z

Rn

ˇ̌
@

r1

�
@q

xK1.t;xIˇ;�C �/

�@
r�r1

�
KlC

.ˇ;�C �I�;�/
ˇ̌
d�C

X

jq1jC�jqjC

C q1
q

tZ

t1

dˇ

Z

Rn

ˇ̌
@q1

x K1.t;xIˇ;x �´/

�@r
�@q�q1

x KlC
.ˇ;x �´I�;�/

ˇ̌
d´
�

� mc2
�

 X

jr1jC�jrjC

C r1
r

t1Z

�

.t �ˇ/˛0�
�
1C

jr1CqjC
h

�

�

Z

Rn

e
�ı�

��
kx����k

.t�ˇ/˛

� 1
1�˛

C
�

k�k

.ˇ��/˛

� 1
1�˛

�
e

� ı
r�

�
kx����k

.t�ˇ/˛

� 1
1�˛ d�

.t �ˇ/˛n
dˇ
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C
X

jq1jC�jqjC

C q1
q

tZ

t1

�
t �ˇ

�˛0�1
Z

Rn

e
�ı�

��
k´k

.t�ˇ/˛

� 1
1�˛

C
�

kx�´��k

.ˇ��/˛

� 1
1�˛

�

� e
� ı

r�

�
k´k

.t�ˇ/˛

� 1
1�˛ d´

.t �ˇ/˛n
dˇ

!
� mc2

�
bEe

�ı�

�
kx��k

.t��/˛

� 1
1�˛

tZ

�

.t �ˇ/˛0�1dˇ

�

  X

jr1jC�jrjC

C r1
r .t � t1/�

jr1CqjC
h

!
C cq

!
� mc2

�
bEe

�ı�

�
kx��k

.t��/˛

� 1
1�˛

.t � �/˛0

�B.˛0;1/

  
2

jrCqjC
h

X

jr1jC�jrjC

C r1
r .t � �/�

jr1CqjC
h

!
C cq

!

� mc0
r;qc2

�
bE.2T0/

jrCqjC
h B.˛0;1/.t � �/˛0�

jrCqjC
h e

�ı�

�
kx��k

.t��/˛

� 1
1�˛

; c0
r;q WD cr C cq:

Applying the method of induction, we can verify firstly the validity of the estimate

ˇ̌
@r

�KlCCl.t;�C �I�;�/
ˇ̌

� c�.mc0
r c�

bE.t � �/˛0/le
�ı�

�
k�k

.t��/˛

� 1
1�˛

 
l�1Y

j D1

B.˛0;1Cj˛0/

!
; (3.11)

and, hence, the estimate

ˇ̌
@r

�@q
xKlCCl.t;xI�;�/

ˇ̌
� c�

�
mc0

r;qc�
bE.2T0/

jrCqjC
h

�l
.t � �/l˛0�

jrCqjC
h

� e
�ı�

�
kx��k

.t��/˛

� 1
1�˛

 
l�1Y

j D1

B.˛0;1Cj˛0/

!
; (3.12)

for jr jC � ˛�, jqjC � ˛�, .t;xI�;�/ 2 ˘2
T and l 2 Nnf1g.

The following propositions hold true.

Lemma 1. The matrix function ˚.t;xI�;�/ on the set ˘2
T is a function differenti-

able with respect to each of the spatial variables x and � to the order ˛� inclusively,

and their derivatives satisfy the following estimates:

ˇ̌
@r

�@q
x˚.t;xI�;�/

ˇ̌
� c1.t � �/˛0�.1C˛nC

jrCqjC
h

/e
�ı�

�
kx��k

.t��/˛

� 1
1�˛

; (3.13)

ˇ̌
@r

�˚.t;�C �I�;�/
ˇ̌
� c2.t � �/˛0�.1C˛n/e

�ı�

�
k�k

.t��/˛

� 1
1�˛

;f�;�g � R
n (3.14)

(here, the estimating constants c1; c2; and ı� are independent of t; �;x;�;�).
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Proof. In any way, let us fix a point .x0I�0/ from R
2n; and let us consider a ball

K
ı
.x0I�0/

with radius ı > 0; which is centered at the point .x0I�0/; in this space. Then,

in view of structure (2.4) of the function ˚ and the differentiability of the iterated

kernels Kl with respect to spatial variables on R
2n to the order ˛� inclusively, we

can conclude that, in order to prove the differentiability of the matrix function ˚ at

the point .x0I�0/ to the indicated order, it is necessary only to prove the uniform

convergence of the formally differentiated series (2.4) in the variables x and � on the

set K
ı
.x0I�0/

, ı > 0 (at every fixed t and �; 0 � � < t � T ):

1X

lD1

@r
�@q

xKl.t;xI�;�/; jr jC � ˛�; jqjC � ˛�: (3.15)

Directly from estimates (3.10) and (3.12) and the equality

l�1Y

j D0

B.˛0;1Cj˛0/ D

�
� .˛0/

�l

� .1C l˛0/
;

where � .�/ is the Euler gamma-function, for fr;qg � Z
n
C, jr jC � ˛�, jqjC � ˛�, and

.t;xI�;�/ 2 ˘2
T ; we have

ˇ̌
ˇ

1X

lD1

@r
�@q

xKl.t;xI�;�/
ˇ̌
ˇ�

lCX

lD1

ˇ̌
ˇ@r

�@q
xKl.t;xI�;�/

ˇ̌
ˇC

1X

lDlCC1

ˇ̌
ˇ@r

�@q
xKl.t;xI�;�/

ˇ̌
ˇ

� c�

 
lCX

lD1

.t � �/l˛0�.1C˛nC
jrCqjC

h
/

C

1X

lD1

�
mc0

r;qc�
bE.2T0/

jrCqjC
h

�l
.t � �/l˛0�

jrCqjC
h

�
� l�1Y

j D1

B.˛0;1Cj˛0/
�!

e
�ı�

�
kx��k

.t��/˛

� 1
1�˛

� c1.t � �/˛0�
�
1C˛nC

jrCqjC
h

�

� e
�ı�

�
kx��k

.t��/˛

� 1
1�˛

:

From whence, we get the uniform convergence of series (3.15) in x and � and, hence,

the validity of estimates (3.13).

Due to the corresponding estimates (3.8) and (3.11), we can verify analogously the

validity of estimate (3.14).

The lemma is proved. �

Lemma 2. The volumetric potential W.t;xI�;�/ on the set ˘2
T is a function dif-

ferentiable with respect to each of the spatial variables x and � to, respectively, the
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orders ˛� Cp1 and ˛� inclusively. In this case,

@r
�@q

xW.t;xI�;�/ D

rX

lD0

C l
r

t1Z

�

dˇ

Z

Rn

@l
�@q

xG.t;ˇIx �y ��/@r�l
� ˚.ˇ;y C�I�;�/dy

C

tZ

t1

dˇ

Z

Rn

@q
xG.t;ˇIx �y/@r

�˚.ˇ;yI�;�/dy; jqjC � p1; jr jC � ˛�; (3.16)

@r
�@q

xW.t;xI�;�/ D

rX

lD0

C l
r

t1Z

�

dˇ

Z

Rn

@l
�@q

xG.t;ˇIx �y � �/@r�l
� ˚.ˇ;y C �I�;�/dy

C

tZ

t1

dˇ

Z

Rn

@k
�G.t;ˇI�/@r

�@q�k
x ˚.ˇ;x ��I�;�/d�; jr jC � ˛�;

(3.17)

jkjC D p1; p1 < jqjC � ˛� Cp1:

Proof. For jqjC � p1 and jr jC � ˛�; we use the representation

W.t;xI�;�/ D

t1Z

�

dˇ

Z

Rn

G.t;ˇIx �y � �/˚.ˇ;y C �I�;�/dy

C

tZ

t1

dˇ

Z

Rn

G.t;ˇIx �y/˚.ˇ;yI�;�/dy:

From whence, by the formal differentiation under the sign of integral, we obtain

equality (3.16). Hence, in order to substantiate the validity of equality (3.16), it is

sufficient to prove the uniform convergence of the following integrals in the variables

x and � on R
2n:

I
r;l;q
1 .t1;xI�;�/ WD

t1Z

�

dˇ

Z

Rn

j@l
�@q

xG.t;ˇIx �y � �/jj@r�l
� ˚.ˇ;y C �I�;�/jdy;

jl jC � jr jCI I
r;q
2 .t;xI t1; �/ WD

tZ

t1

dˇ

Z

Rn

j@q
xG.t;ˇIx �y/jj@r

�˚.ˇ;yI�;�/jdy:

(3.18)
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This convergence becomes obvious, if we take condition (A) and the following es-

timates into account for fx;�g � R
n and 0 � � < t � T :

I
r;l;q
1 .t1;xI�;�/ � cc2

bEe
�ı�

�
kx��k

.t��/˛

� 1
1�˛

.t � t1/�
nC
CjlCqjC

h

�

t1Z

�

.ˇ � �/˛0�1dˇ; jl jC � jr jCI (3.19)

I
r;q
2 .t;xI t1; �/

� cc1
bEe

�ı�

�
kx��k

.t��/˛

� 1
1�˛

.t1 � �/�
nCp1C
CjrjC

h

tZ

t1

.t �ˇ/˛0�1C
p1�jqjC

h dˇ: (3.20)

These estimates follow directly from (2.1), (3.13), and (3.14).

We now prove the validity of formula (3.17). For this purpose, we fix any k 2 Z
n
C

such that jkjC D p1. Then, according to (3.16) for p1 < jqjC � ˛� Cp1 and jr jC �

˛�; we have

@r
�@q

xW.t;xI�;�/ D

rX

lD0

C l
r @q�k

x

t1Z

�

dˇ

Z

Rn

@l
�@k

xG.t;ˇIx �y ��/@r�l
� ˚.ˇ;y C�I�;�/

�dy C@q�k
x

tZ

t1

dˇ

Z

Rn

@k
�G.t;ˇI�/@r

�˚.ˇ;x ��I�;�/d�; .t;xI�;�/ 2 ˘2
T :

Hence, it remains to substantiate the possibility to introduce the operation @
q�k
x under

the signs of the corresponding integrals. In other words, we should prove the uniform

convergence in x and � of the following integrals on R
2n for 0 � � < t � T :

t1Z

�

dˇ

Z

Rn

@l
�@q

xG.t;ˇIx �y � �/˚.ˇ;y C �I�;�/dy;

tZ

t1

dˇ

Z

Rn

@k
�G.t;ˇI�/@r

�@q�k
x ˚.ˇ;x ��I�;�/d�:

By reasoning similarly to the case of integrals (3.18) and using estimates (2.1), (3.13),

and (3.14), we get the necessary convergence of the indicated integrals.

The lemma is proved. �

The main result can be formulated as the following proposition.
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Theorem 1. Let system (1.1) satisfy conditions (A) and (B). Then the correspond-

ing function Z.t;xI�;�/ defined by equality (2.2) is a function differentiable with

respect to each of the spatial variables x and � on the set ˘2
T to, respectively, the

orders ˛� Cp1 and ˛� inclusively, and

9ı > 08fr;qg � Z
n
C; jqjC � ˛� Cp1; jr jC � ˛�; 9c > 08.t;xI�;�/ 2 ˘2

T W

j@r
�@q

xZ.t;xI�;�/j � c.t � �/�
nCjrCqjCC


h e
�ı
�

kx��k

.t��/˛

� 1
1�˛

I (3.21)

j@k
� Z.t;x C �I�;�/j � ck.t � �/ˇk� nC


h e
�ı1

�
kxk

.t��/˛

� 1
1�˛

; (3.22)

where jkjC � ˛�, 0 � � < t � T , fx;�g � R
n, ˇk WD

�
0; k D 0;

˛0; k ¤ 0
(here, the

estimating constants are independent of t , � , x; and �).

Proof. With regard for structure (2.2) and the infinite differentiability of the func-

tion G.t;� I�/ with respect to the variable �, the smoothness of the function

Z.t;xI�;�/ in the variables x and � becomes obvious directly from the assertion

of Lemma 2.

Let jqjC � p1 and jr jC � ˛�. Then, according to (3.16), we get

j@r
�@q

xZ.t;xI�;�/j � j@
rCq

x��
G.t;� Ix � �/jC

rX

lD0

C l
r I

r;l;q
1 .t1;xI�;�/CI

r;q
2 .t;xI t1; �/:

From whence, by using estimates (2.1), (3.19), and (3.20), we obtain assertion (3.21).

In a similar way, by using formula (3.17), we verify the validity of assertion (3.21)

also for p1 < jqjC � ˛� and jr jC � ˛�.

Then, according to estimates (2.1) and (3.14), we have

Yk.t;xI�;�/ WD
ˇ̌
ˇ

tZ

�

dˇ

Z

Rn

G.t;ˇIx � �/@k
� ˚.ˇ;� C �I�;�/d�

ˇ̌
ˇ

� cc2

tZ

�

.t �ˇ/˛0C
p1
h

�1.ˇ � �/˛0�1

Z

Rn

exp
n

� ı0

n� kx � �k

.t �ˇ/˛

� 1
1�˛

C
� k�k

.ˇ � �/˛

� 1
1�˛

oo dydˇ

..t �ˇ/.ˇ � �/˛n
; ı0 WD minfı;ı�g; jkjC � ˛�:

Using estimate (2.9) and equality (3.7), we get

Yk.t;xI�;�/ � c".t � �/˛0� nC

h e

�ı0.1�"/

�
kxk

.t��/˛

� 1
1�˛

; " 2 .0I1/;
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where jkjC � ˛�, 0 � � < t � T and fx;�g � R
n. From whence, with regard for

inequality (2.1) and the representation

Z.t;x C �I�;�/ D G.t;� Ix/C

tZ

�

dˇ

Z

Rn

G.t;ˇIx � �/˚.ˇ;� C �Iˇ;�/d�;

we arrive at estimate (3.22).

The theorem is proved. �
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