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ABSTRACT. In this paper, we introduce and study a comprehensive family of harmonic
univalent functions which contains various well-known classes of harmonic univalent func-
tions as well as many new ones. Also, we improve some results obtained by Frasin [3]
and obtain coefficient bounds, distortion bounds and extreme points, convolution condi-
tions and convex combination are also determined for functions in this family. It is worth
mentioning that many of our results are either extensions or new approaches to those cor-
responding previously known results.

1. Introduction

A continuous complex-valued function f = u + v is said to be harmonic in a
simply connected domain D if both u and v are real harmonic in D. In any sim-
ply connected domain we can write f = h + g, where h and g are analytic in
D. We call h the analytic part and g the co-analytic part of f. A necessary and
sufficient condition for f to be locally univalent and sense-preserving in D is that

‘h/ (z)‘ > ‘g/ (2)],z € D. See Clunie and Sheil-Small [2].

Let Sy denote the class of functions f = h+ g that are harmonic univalent and
sense-preserving in the unit disk U = {z : |z] < 1} for which f (0) = . (0) — 1 =0.
Then for f = h+ g € Sy we may express the analytic functions h and g as

(1.1) h(z) =z + Zanz",g(z) = Z bz, |b1| < 1.
n=2 n=1

Note that Sy reduces to class S of normalized analytic univalent functions if the
co-analytic part of its member is zero. In fact Clunie and Sheil-Small [2] investigated
the class Sy.

Recently, Frasin [3]defined the class Sy (¢,1; «) the subclass of Sy consisting
of functions f = h 4+ g € Sy that satisfy the condition

12) Re{h(z)*wz)g(mwz)}m
h(z) + g(2) ’
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where (0 <a <1), ¢(z) =2+ Z Az and P(z) = 2+ Z tn2" are analytic in U
n=2 n=2

with the conditions A, > 0, p,, > 0. The operator “*” stands for the convolution

of two power series and T'Sy (¢, ¥; &) denote the subclass of Sy (¢, 1; &) consisting

of functions f = h + g such that h and g are of the form

(1.3) h(z) =2 lan|z" g(z) =) |bn| 2"

We let Sy (¢, 9; a; \) denote the subclass of Sy consisting of functions f =
h+ g € Sy that satisfy the condition

h(2)*6(2) — 9(2) <6 (2)
Ah() 0 () =g G0 ) + (1= () +9()

for some (0 <a<1),A(0<A<1)andforall zeU.

We further let T'Sy (¢, ¥; a; A) denote the subclass of S (¢, 1; a; ) consisting
of functions f = h + g € Sy such that h and g are of the form (1.3).

We note that by specializing the parameters we obtain the following known
subclasses studied by various authors.

(i) Su (6,¢;;0) = Sy (¢, ¢; ) and TSy (¢, 9;a;0) = TSy (P, ;) the sub-
classes of Sy studied by Frasin [3].

(1.4) Re > a,

z z

i) TS s
(i) H(uzf(1@

monic univalent functions f which are starlike of order « in U studied by
Jahangiri [4].

5050 | = HS () the class of sense preserving har-

z

(iil) Sy <(1 - z)Q’ - 2)2; Q; /\> =55 (A a) and

1-2)% (1-2)
starlike functions studied by Metin Oztiirk et al. [5).

TSh <( z z 2§045/\> = TS% (A, «) convex subclass of harmonic

Remark. (i) For the harmonic functions f of the form (1.1) with b; = 0, Avci

and Zlotkiewicz [1] showed that if Z k (Jag| + |bk]) < 1 then f belong to the class
k=2

HS(0), and Silverman [7] proved that the above coefficient condition is also necessary

if f = h 4 7 has negative coefficients. Later, Silverman and Silvia [8] improved the

results of [1], [7] to the case by not necessarily zero.

(ii) For g = 0, the class Sy reduces to class of analytic univalent functions S. We

note that for g = 0, Sy (¢, ¥; a; \) = S (P, a5 A) and T'Sy (¢, ¥;a5A) =TS (¢, a; N).
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Noting that by suitable choice of ¢ and A we obtain the following subclasses
studied in literature.

z—l—z2

TS ((12)2,(1;0) = TS* (o) and TS <(1)3,a;0> = TK (a) studied by
—z

Silverman [6].

In this note, we extend the above results to the families Sy (¢, ;a5 \) and
TSy (¢,9;a;\). We also obtain extreme points, distortion bounds, convolution
conditions and convex combinations for the class T'Sy (¢,v;a; \). Study of the
present note is of special interest because we improve number of Theorems of Frasin

[3].
2. Main results
We begin with a sufficient coefficient condition for functions in Sy (¢, ¥; a5 A) .

Theorem 2.1. Let the function f = h+G to be so that h and g are given by (1.1).
Furthermore, let

A (1—a)) —a(l—X Oounlfoz)\ +a(l—X
(2.1) Z ( 1)_a ( )|an|+z ( 1)_a ( )|bn|§1a
n=2 n=1

where 0 < a<1,0<A<],n(l—a) <A, (1—-aXN)—a(l=X) andn(l—a) <
pn (L —aX)+a (1l —X) forn > 2 then f is sense-preserving, harmonic univalent in
Uand f € S (¢,9;0; ).

Proof. First we note that f is locally univalent and sense-preserving in U. This is
because

()] > 1= nlag|le[" > 1= nlay]
n=2 n=2
) (T—a)) —a(l=2N) i (T—aX) +a (1=
oy Al 1)7(1 S E> 1)%! L=,
n=2 n=1

o0 oo
> nfba| > nfbal 2" > g (2)]-
n=1 n=1

To show that f is univalent in U, suppose z1, 20 € U so that z; # 25, then
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o0
an(z? — z3)
n=1
o
21 *ZerZan(Z{L*Z@

o0

> nlbal

n=1
=S

1- Zn|an|

n=2

(Z 1 Zed)Fall =) |bn>

l_ixn( —a)) —a(l-=X)

11—«

>1—- ——

>1—

|an|
n=2

> 0.

Now, we show that f € Sy (4, ¥; a; A). Using the fact that Rew > « if and only
it |1 —a+w| > |14 a—w|, it suffices to show that

(2:2) A(2) + (=) B(2)| = |A(2) = (1 +) B(:)| 2 0,
where A (2) =h(2)*x¢(2) — g (2) *¢ (2) and
B(z)=A(h(2)56(:) =90 () + (1 -3 (h(z) +9(2)).

Substituting for A (z) and B (z) in L. H. S. of (2.2) and making use of (2.1) we
obtain

[A(2) + (1 = @) B(2)| = [A(2) = (1 + ) B(2)|
= [h(2) x p(2) = g(2) * () + (1 = ){A(h(2) * d(2) — g(2) * 9 (2))
+ (1= A)(h(2) + gD} = [h(z) * 6(2) = g(2) * ¥(2) = (1 + a){A(A(2) * 6(2)
= 9(2) * ¥(2)) + (1 = N (h(2) + g(2))}]
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i)\ + 1 —a) A+ (1 —a)(1 = AN)]az"

Z (1 — )My, — (1 — @) (1 = N))bp2"|

n=1

—|—az+ Z[)\n —(14+a)A\, — (1 +a)(1 = Na,z"
n=2

—Z pn — (T4 @) At + (T4 @)(T = )by 2|

oo

> (2-a)lzl = Y+ (1= )M + (1= a)(1 = A))ag|z]"

=+ (1= i = (=)0 = Nl
—alz| — i()\n —(1+a)d\, — (14 a)(1 = X))|an]|z]"
= = (1 e+ 1000
~2(1- a>|z|{1 -3 2l el e
Z e = e
> 201 —a>|z|{1 —fZQ L

Z,un a/\ —I—a( )|bn|}

> 0.

The Coefficient bound (2.1) is sharp for the function
(2:3)

755

11—« 11—« _
Z+ZA Aoy —ad-n"* +Zun1—ax\ Tad-n"

where Z |z, | + Z lyn| = 1.

n=1

O

If we put A = 0 the class Sy (¢, ¥; a; A) reduces to the class Sy (¢, ¥; ) studied
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by Frasin [3]. Thus, from Theorem 2.1, we have

Corollary 2.2. Let the function f = h+g to be so that h and g are given by (1.1).
Furthermore, let

A — > b +
(2.4) > - lan| + bl <1
n=2 n=1

(0%

where 0 < a<1l,n(l—a) <A\, —aandn(l—a) < p, +a forn > 2 then f is
sense-preserving, harmonic univalent in U and f € Sy (¢, V; a).

Remark 1. Frasin has shown that if condition (2.4) and n (1 — @) < Ap—a < pp+a
are satisfied then f is sense-preserving harmonic univalent and f € Sy (¢, 9;a),
whereas we have shown that if condition (2.4) in conjunction withn (1 — a) < A\, —«
and n (1 — ) < py,+a are satisfied. Thus our result is the improvement of Theorem
2.1 of [3)].

In the following theorem, it is proved that the condition (2.1) is also necessary
for functions f = h + g, where h and g are of the form (1.3).

Theorem 2.3. Let the functions f = h+ g be so that h and g are given by (1.3).
Then f € TSy (¢,0;a; ) if and only if

1—« «

A (l—a))—a(l=X i (I—aN) +a (1=
n=2 n=1

where 0 <a<1,0<A<L,n(l—a)< A, (1-aN)—a(l=X) andn(l—a) <

tn (L—aX)+a(l =) forn>2.

Proof. The if part, follows from Theorem 2.1. To prove the only if part, let f €
TSy (¢,1;; N) then from (1.4), we have

Re —— —a, >0
A=) 562 - 9@+ E) + (1 -3) (h(z) +9())
is equivalent to
(1—a)z—Z[)\n(l—a)\)—a(l—)\)]\an|z”
n=2
=3 [ (1= aN) +a (1= )] b 2"
Re ot > 0.

z— M, +1=2Ala,|z"
> ] an|
2

+ > [An =1+ A |bn 2"

[Me3

3
Il
-
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If we choose z to be real and z — 17, we get

{(1_0‘)_20\11 (1_a>‘)_a(1_)‘))‘an‘ _Z(/ffn(l_a)‘)"_a(l_)‘)ﬂbn”
x {1—i(AAn+1—)\)|an|+§:()\un—1+)\)\bn|}_1 > 0.

or equivalently

A (I—aX) —a(l—A 1 g (1 — X 1—X
l1—« l—«
n=2 n=1
which is the required condition. O

Taking different choices of ¢ (2), ¥ (z) and X in Theorem 2.3 we obtain the
following corollaries obtained by Frasin [3].

Corollary 2.4. Let the functions f = h+ g be so that h and g are given by (1.3).
Then f € TSy (¢,¢; «;0) if and only if

Ay — mun—i—a
n b, < 1.
SRy e

n=2 n=1

where 0 <a<ln(l—a)<A,—aandn(l —a) < pu, +a forn>2.

Remark 2. We note that T'Sy (¢, ¢; «;0) = TSy (¢, v¥; a), the class defined by
Frasin [3]. We easily seen that the above corollary improves the Theorem 2.2 of [3]
because our result holds for the condition n (1 —a) < A, —aand n (1 — a) < p, +«
for n > 2 whereas Frasin’s result holds only for n (1 — a) < A\, —a < pp+a, (n > 2).

Corollary 2.5. Let the function f = h + g be so that h and g are given by (1.3).

Then
z z
eTsS , ;a0
/ H((l—z)2 1—2" )

Oon—a Oon—|—a
b, <1
Zl_a\am;l_a\n\_,

n=2

if and only if

where 0 < a < 1.
The above result is obtained by Jahangiri [4].

Corollary 2.6. Let the function f = h+ g be so that h and g are given by (1.3).

Then
2+ 22 z
eTs , ;a0
! H((l—z)3 (1-2) )
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if and only if

<>on2—oz Oon—i—oz
n bn<17

where 0 < a < 1.

The following theorem gives the bounds for functions in T'Sy (¢, ¥; a; A) , which
yields a covering result for this family.

Theorem 2.7. Let f € TSy (¢,%; a5 X) and
A<, (I1—-aN)—a(l=N),A<pu, 1—al)+a(l-2A)

forn > 2. Then for |z| =r <1 we have

lf(2)] < (1+b1])r + (1;1a _ ,ul(l—a)\)A—i—a(l—A) |b1|) 2= <1
and
If(2)] > (1= |by|)r — <1;a M (l—a/\)A—l—a(l—)\) |b1|) 2= <1,

where A=min{Ay (1 —aX) —a(l—=X),pu2 (1 —aX)+a(l—-AN)}.

Proof. We only prove the right hand inequality. The proof for the left hand inequal-
ity is similar and will be omitted. Let f € TSy (¢,1;a; A). Taking the absolute
value of f we have

@< @b+ (] + [bal)r"

n=2

< (14 [bal)r + D (Ian] + [oal)r

n=2

[ — A A 9
=(1+b1|)r + ) 7;:2(1_0[%—|—1_Oé|bn|)r

< (Ut + L S (An(l —aN) —a(l-))

I— o |an|

n=2

1-— 1-—

+ /’Ln( Oé)\) + Oé( /\) bn|>’l"2
11—«

11—« pi(l—aX) + ol —N) 9
< — .
< (L [ba)r + ) (1 T |b1] |r

:(1+|b1|)7’—|— <1;C¥ . /*Ll(].—OZA)14+OZ(1—)\)|b1|>r2’|z| =r<l1
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This completes the proof of Theorem 2.7. (|

The following covering result follows from the left hand inequality in Theorem
2.7.

Corollary 2.8. Let f € TSy (¢, ¥;a;X) and A < Ay (1—aX) —a(l—X), A<
tn (1 —aX) +a(l = X) forn > 2 where

A=min{d(1—aX)—a(l—=A),u (1 —aX)+a(l-N}.

Then we have

{w:|w|< (A—1+aA—p1(1—a)\)—a(1—>\) bl>}cf(U).

A A
Remark 3. If we put ¢ (z) = %, Y (z) = % ; A =0 in Corollary 2.8
(1-2) (1-2)
we have the result of Jahangiri [4] and if ¢ (z) = ;2, Y (2) = ——— we have
(1—2) (1—2)

the result of Oztiirk et al. [5].

3. Extreme points
In this section, we determine the extreme points of T'Sy (¢, ¥; a; \) .

Theorem 3.1. Let

l1—«

An(l=aX)—a(l—A)

hi(2) =2z, hy(2) =2z — 2" (n>2)

and
11—«
= Ak > .
m(2) =2t T N Taa oy 2l

Then f € TSy (¢,9;a; ) if and only if it can be expressed as

3.1 F(2) =Y (@nhn (2) + Yngn (2))

oo

where x, > 0 and y, > 0, Z (xn, + yn) = 1. In particular the extreme points of

n=1

TSw (¢,%; 05 \) are {h,} and {g,}.

Proof. The proof of Theorem 3.1 is similar to those of Theorem 4.1 of Frasin [3],
therefore we omit details involved. O
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4. Convolution and convex Combination

In this section we show that the class T'Sy (¢, 1; a; A) is closed under convolution
and convex combinations.

We need the following definition of convolution of two harmonic functions.

Let the function f (z) be defined by

f(z) :z—2|an|z"+2|bn|2"
n=2 n=1

and the function F'(z) be defined by

Fiz)=z—- Z |An] 2™ + Z |B,| z"
n=2 n=1

we define the convolution of two harmonic functions f and F' as
o0 e}
(f*xF)(2)=f(z)«F(2)=2— Z lanAn| 2" + Z |y, B | Z".
n=2 n=1

Theorem 4.1. If f € TSy (¢, ¥; ;) and F € TSy (¢, ¢; a; \) then
f*F eTSy (d,¢;050).

Theorem 4.2. The class TSy (¢, 0; a; ) is closed under convex combinations.

Proof. The proofs of the above Theorems are analogues to the corresponding similar
Theorems proved in [3] and therefore we omit details involved. O
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