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SOME PROPERTIES OF MEASURE AND CATEGORY
BY

ARNOLD W. MILLER1

Abstract. Several elementary cardinal properties of measure and category on the
real line are studied. For example, one property is that every set of real numbers of
cardinality less than the continuum has measure zero. All of the properties are true
if the continuum hypothesis is assumed. Several of the properties are shown to be
connected with the properties of the set of functions from integers to integers
partially ordered by eventual dominance. Several, but not all, combinations of
these properties are shown to be consistent with the usual axioms of set theory. The
main technique used is iterated forcing.

Six properties of measure and category on the real line are studied. A(c) is the
proposition that the union of fewer than continuum many meager sets is meager.
B(c) says that the real line is not the union of fewer than continuum many meager
sets. U(c) is the proposition that every subset of the real line of cardinality less than
continuum is meager. A(m), B(m), and U(w) are defined analogously by replacing
meager by measure zero. In the first section some equivalent forms of these
properties are given, for example, it is shown that A(c) iff B(c) and every family of
elements of to" of cardinality less than the continuum is eventually dominated by
an element of ww. Characterizations of U(c) and B(c) are also given. In the second
section we prove some theorems about unions of closed sets of measure zero, small
dominating families, and strong measure zero sets. In the remaining sections
several combinations of these properties are shown to be consistent with ZFC.
These consistency results are summarized in the third section. The last section
contains some open problems. I would like to thank K. Kunen for several helpful
discussions.

1. The properties and some of their equivalent forms. All the properties we
consider are equivalent whether stated for 2", w", or the real line. For definiteness
they will be stated for the Cantor space 2", so we will begin by reviewing the usual
product topology and measure on 2" and also establish some standard terminology.
For sets X and Y let Yx denote the set of functions from X into Y and \X\ denote
cardinality of X. Let 2<u = U {2n : n < to} and similarly w<". Note that for
s G 2<w, \s\ is the length of s when thought of as a sequence of zeros and ones. For
s G 2<u let [s] = {x G 2" : s Ç. x (x extends s)}, then the usual product topology
on 2" is given by taking {[s] : s G 2<w) as a basis for the open sets and the usual
product measure ¡u. is given by letting /x([s]) = 2"|j|. For i and / finite sequences let
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94 A. W. MILLER

s^t denote the concatenation of s and t. Let [Ar]<u and [X]* denote the set of
finite subsets of X and the set of countably infinite subsets of X respectively. Let
2<n = U {2m : m « n} and for n, m G w let [n, m) — {í G a : » < i < m). The
symbols "300" and "V°°" abbreviate "there exist infinitely many" and "for all but
finitely many" respectively. Recall that a set is nowhere dense iff its closure has no
interior; and a set is meager (equivalently first category) iff it is the countable
union of nowhere dense sets.

We consider the following three properties each applied to category and mea-
sure. The strongest property, Additivity (A(c)), says that the union of less than |2"|
meager sets is meager. The next property, Baire (B(c)), says that the union of less
than |2"| meager sets is not 2". Finally the last property, Uniformity (U(c)), says
that every X Ç 2" of cardinality less than |2W| is meager. A(m), B(m), and U(m) are
defined analogously by replacing meager by measure zero. These properties are
considered (but not named) in [MS] where the basic facts about the Cohen real
extension and the Solovay real (random real) extension are noted (but not proved,
these proofs will appear in the survey paper [Kl]). Note that trivially A(c) implies
B(c) and U(c); and A(m) implies B(w) and U(m). The only other implications
known are Theorem 1.1(a) and (b) which are due to Rothberger [Rl]. This leaves
fourteen possible combinations (see the chart in §3 which is taken from [Kl]).

Theorem 1.1. (a) B(/n) implies U(c).
(b) B(c) implies U(w).

Proof. For x, y G 2" let x + y he the pointwise sum modulo 2 of x and_y. Let G
be a comeager measure zero subset of 2" (see [O]). If X C 2" is not meager, then
2" = U {x + G : x G X). This is because if z G 2a - U {x + G : x G X), then
(z + G) n X = 0 but z + G is comeager, contradicting the fact that X is not
meager. This proves the contrapositive of (a); and (b) is proved similarly,    fj

For /, g G co" define / < g iff V°°m fim) < g(m) (that is g eventually dominates
/). Let D stand for the property that VF Ç co" if \F\ < |co"| then 3/ G «" Vg G F
/ < g. D says that every family of small cardinality is dominated. Rothberger [R2]
noted that D implies U(c). This is because for any / G w" (g G co" : g </} is
meager. Truss (see [T]) showed that B(c) + D implies A(c). We prove the converse.

Theorem 1.2. A(c) iff B(c) + D.

Proof. Suppose F ç co", \F\ < |co"|, and no/ G u" eventually dominates every
g G F. We assume every g in F is strictly increasing and define nk for k < co by
letting nk+l = g(nk), and define C(g) = (A G 2" : VA: h(nk) = 1}. Note that each
C( g) is closed nowhere dense in 2U.

Claim. U {C(g) : g G F} is not meager.
Proof. Let {C„ : n < co} be a countable family of closed nowhere dense sets.

Define mk < « for k < co as follows. Let mk+x > mk be such that V/ < k, Vy G
2m-, 3t G 2m"+\ t D s and [t] n C, = 0. Let Z = {mk : k < co}. Then there is a
g G F with the property that for its associated sequence (nk : k < co> there are
infinitely many k such that

\[nk, nk + x) n Z\ > 2   where [nk, nk+x) = {m < co : nk < m < nk+x}.
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This is true because if not, then define fik) = mk for all k and let / eventually
dominate the tails of /, i.e. VA < co if A is defined by h(n) = fin + k) for all n then
A </. For any g G F and its associated nks 3/ VA > /, \[nk, nk+x) n Z| < 1. Let
mk he the least element of [n,, oo) n Z and then VA > /, g(A) < nk < mk+k =
fik + A) and thus g < f. This contradicts the fact that nothing dominates F.
Letting g G F be such that there are infinitely many A such that \[nk, nk+ x) n Z\ >
2, it follows easily from the definition of Z that each C„ is nowhere dense in C( g)
(the relative topology), and thus U {C(g) : g G F} is not included in (J {C„ : n <
co}. Since the C„'s were arbitrary to start with the claim is proved and so is the
theorem.    □

Note that B(c) is necessary in Theorem 1.2 since D + -iA(c) is true in the
Mathias real model (see §6). The following theorem characterizes U(c) (every
IÇ2" with |*| < |2"| is meager).

Theorem 1.3. U(c) iff VF ç co" if \F\ < |co"| then 3X Q co infinite, 3/ G co",
Vg G F, V°°n G X, fin) ¥= g(n) (that is f is eventually different on X from every
element of F).

Proof. (<=) This is easy since for any / and X {g : V°°« G X, fin) ¥= g(n)} is
meager.

(=>) Suppose not and let k = |2"| + + and choose M an elementary substructure
of (H(k), e) (H(k) is the set of hereditarily of cardinality less than k sets) with the
properties \M\ < |2"| and V/ G co" V* Ç co infinite 3g G M n co", 3°°« G X,
fin) = g(n). We show M n 2" is not meager in 2".

Claim. Vg G co", 3(nk : A < co> G M strictly increasing and 3°°A, g(nk) < nk+,'.
Proof. We may as well assume g is strictly increasing. Choose/ G co" n M such

that 3°°A,/(A) = g(A). Build in M, (mk : A < co> so that VA: V/ < mk,f(i) < mk+l.
Let X = {i :/(/) = g(i')}. Assume U {[mk, mk+l) n X : A even} is infinite, then
nk = m2k works since if i G [m2k, m2k + x) n X then g(nk) = g(m2k) < g(i) = /(/)
< m2k+2 = nk+i- A similar argument works if U {[mk, mk+x) n X : A odd} is
infinite.

Now suppose C„ for n < co are closed nowhere dense in 2" and C„ Ç Cn+, for all
n. Define/ : co -^ 2<" so that V« < co Vs G 2<n [s^fin)] n C„ = 0. By the claim
3(nk : A < co> G M such that nk+x >knk for all A and 3°°A \f(nk)\ < nk+x. Let
X = {nk : k even and |/(n*)| < nk+x). By hypothesis on M 3g : co-»2<w g G M
and Sxk El X g(nk) = f(nk). We can assume VA \g(nk)\ < nk+l. Let z =
gW^i^^gK)^ • • • ; then z G M n 2" and z G U {C„ : /i < co}, since if
S(«2*) = Kn2k) then | g(«0)^(«2)"" • ' ' ^f(«»-^ < (2* - 2) ■ /J2Ar_! < n^ and
therefore z Í CL .   D

Remark. The a-ideal / generated by sets of the form

{gGW":V°°/tG*,g(«)^/(n)}

for X Ç co infinite and / G co" is a proper subset of the ideal of meager subsets. To
see this let (s„ : n < co> enumerate co<u without repetitions and let C = {x G
co" : —13/1 < co sn^(n) Q x}. It is easily checked that C is closed nowhere dense in
co". To see that C & I let/,, Xn for n < co be given. Build a sequence rm Ç rm+1 of
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96 A. W. MILLER

elements of co<" so that  U {tm : m < co} = z G C but V« 3°°/n G X„ fn(m) =
z(m). This can be done since given t G u<a such that [/] n C?t0 and « < co we
can choose / G X„ such that / > |/| + 1; then T = {r : r D t A M = / A [r] n C
té 0} is infinite. So 3r G T such that [r^(/„(/))] n C ^ 0.

Next we characterize B(c).

Theorem 1.4. B(c) iff [VF ç co" if \F\ < |co"| then 3/ G co" Vg G F 3°°w
t/W- ¿Tí«) A V» <«/(/)<«)].

Proof. (=>) It is easily checked that for any g G co" {/ G co" : 3°°w (fin) = g(n)
A Vi < nfii) < n)} is a comeager GÄ subset of co".

(<=) Let M be any elementary substructure of (H(k), e) such that k > |2"|+ + and
\M\ < |2"|. By hypothesis 3/ G co" Vg G M n w" 3°°n (/(n) = g(n) A Vi < n
fii) < n). Let <j„ : n < co> G M, list 2<w, and define z = ^0)^~ L*rn'^*ra '"».♦•">,

Clatm. VC ç 2" closed nowhere dense, if C G M then z £ C.
Proof. Define g G co" n M by g(n) is the least m < u such that V/0, . . ., i„_x

< n [j/(pi,p • • -^\ ^sj n C ,* 0. If g(/i) = /(n) A Vi < n /(/) < /» then
z & C. This proves the claim and since M was arbitrary it proves the theorem,    fj

2. Closed sets of measure zero, small dominating families, and strong measure zero
sets. It is well known that B(c) does not imply B(m) (Cohen real model, see [Kl]),
however,

Theorem 2.1. B(c) implies the union of fewer than |2"| closed sets of measure zero
has measure zero.

Proof. Let C„ = {F>¿ : m < co} = {D ç 2" : D clopen A u(^) < 1/2"}. Let
Ea Q 2" for a < X he closed sets of measure zero. Then G0 = {/ G co" : 3°°«
Ea Ç D£n)] is a comeager Gs set. If/ G f~) {Ga : a < K} then

m( fi   U   /£„)) = 0   and   Va < \Ea ç f|   U ^m)-   D
\ n<ai m>n I n<u m>n

SD says that 3F C co" \F\ < |co"| and V/ G co" 3g G F / < g (i.e. there is a
small dominating family).

Theorem 2.2. SD implies there is a union of fewer than |2"| closed sets of measure
zero that does not have measure zero.

Proof. Let M < (H(k), e) for some k > |2"| + + and \M\ < |2"| and F ç M,
where F witnesses SD. We show that X = U {C ç2": C closed measure zero A
C G M } does not have measure zero. Suppose it does and let H C 2" be an open
set with ¡i(H) < \ and X Q H.

Claim. VA1 ç co infinite 3<«t, A < co> G M so that 0 = n0 and VA: nk < nk+l
and|A- n [nk,nk+x)\ > 2.

Proof. Choose fin) for all n so that \[n,f(n)) n X\ > 2. Let g G co" n M he
strictly increasing and Vn fin) < g(n), and let nk+x = g(nk) for all A > 0 (n0 = 0).
D

Build a sequence /^ < nk+x for A < co with n0 = 0 and so that Vj G 2<Kk

^{{Hn[s])- U {[/]:rDJ,/G2^,and[/]ç//})<-lT.
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By the claim we may assume (nk : k < co) G M. VA < co let Dk = {nx, . . . , nk)
and let sk : />-»2 be constantly 1. Define C = C\ {[sk] : k < co} and note that
C G M is a closed set of measure zero. We will show C ç£ H by showing in effect
that the "measure" of H with respect to C is less than \. For any A < co let
e* = l/22^ + 3andlet

Vk=\J {[t] :í3SíA'e2^A[í] QH).

Then u(// n [**+,]) = u((// - £4) n [**+iD + /t(í/t n [i/t+1]). By our choice of
/!*+„ ju(// - £/t n KD < %• Since Uk lives in 2"-', u(i/ n K+1]) -¿/i(£/ n [**])
and since Uk Q H n [sk], \i(H n K+iD < ÎK^ H [sj) + et. By induction on A it
is easily shown that

M"nK+1])<-^u(//)+¿-^e,
2 ,_02

And thus

2*+1u(# n[^+1])< ^(H)+ 22/+,e,.
1-0

Since n, > /, 2/+1e, = 2l+l/22n'+4 < l/2/+3 and thus for alll A

2V#n [**])'< |.
Define the canonical homeomorphism F from 2" onto C as follows:

1, if / = nk for some k > 0,
F(X)(l) =

[ *(/ - A),    if A + 1 is the least integer such that / < nk+,.

Consider the Borel measure ft* defined by ¡i*(X) = ¡i(F~\X)). Let

Hk = U {[*] :'i6 2*«Aj[»] £#}•
Note that Vi G 2*-' /»*([/D < 1/2**'-* = 2V(['])- And therefore

p*(Hk) = it*(a» n[*]) < 2V(//, n[^]) < 2V(h n[ifc]) < |.
Therefore ft*(//) = lim ju*(//A) < 5 and thus C - H =£ 0.    □

For I Ç 2" we say that X has strong measure zero iff V/ G co" 3sn G 2y(") for
n < co such that * ç U {[■$■„] : n < co}. Let SMZ stand for the proposition V* Ç
2" if 1*1 < |2"| then * has strong measure zero. For B G co", B is bounded iff
3/ G co" Vg G B Vn < co g(n) <f(n). The following theorem is essentially proven
in [R2] and [R6].

Theorem 2.3. SMZ iff VF Ç co" // \E\ < |co"| and E is bounded then 3/ G co"
VA G E3xnf(n) = h(n).

Proof. (<=) Suppose X C 2", \X\ < |2"|, and / G co". For every x G X let
gx : a-► 2<" be defined by gx(n) = x f fin). Let E = {gx : x G X) and note that
E corresponds to a bounded set in co" since Vn Vx gx(n) lies in a fixed set of size
2A"\ Thus 3A : co -» 2<" Vn < w A(n) G 2*# and Vg G F 3°°w h(n) = g(«) and
this implies X Q U {[A(n)] : n < co}.
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(=>) Assume without loss of generality that F Ç {/ : co -> 2<" : V« fin) G 2g(n)}
= F for some g G co" and V/, /' G Y if Vo0« /(«) = /'(«) then / G F iff /' G E.
Define c : F -» 2" by c(/) = /(0)^/( 1)^/(2)^ • • • (the infinite concatenation of
f). For every n < co let fin) = 2{g(w) : w < «}. Since c(E) has strong measure
zero 3sn G 2/w such that c(E) ç U {[í„] : n < co}. For each n < co let A(/t) G 2gin)
he defined by h(n)(i) = sn(f(n) — g(n) + i) (i.e. h(n) is the last g(n) digits of s„).
For any/ G F 3« Xy G [jj which implies that/(«) = h(n), since E is closed under
finite changes 30Onf(n) = A(n).

Remarks. (1) Let f:T-+ [0, 1] be defined by fix) = 2 {x(n)/2n+x : n < co};
then / is onto and at worst two to one. Furthermore it is easily checked that if
fiX) = y then X has strong measure zero iff Y has strong measure zero in the
usual sense, i.e. given e„ > 0 for n < co, 3/n intervals such that Y Ç. U {/„ : n <
co} and the length of /„ is less than e„.

(2) The assumption that E is bounded in Theorem 2.3 can be seen to be
necessary because of the model constructed in §7 (co2 infinitely often equal reals
side by side).

(3) The co2 Mathias reals model (§6) shows that SMZ is not equivalent to U(m)
(since Laver [L] shows that SMZ fails there).

(4) It is not hard to show that assuming D, B(c) iff VF Ç co" if \E\ < |co"| then
3/ G co" Vg G F 3°°« fin) = g(n). Thus A(c) iff SMZ and D.

3. Summary of consistency results. This chart (from [Kl]) summarizes the known
consistency results for the six properties. The shaded boxes are eliminated by
Rothberger's theorem.

We review here some standard terminology and facts about iterated forcing to be
used in the remaining sections. It will be assumed that the reader is familiar with
the method of unramified forcing as presented in Shoenfield [Sh] or Kunen [K2].
By I h "9" is meant that V/> G P/>lh "9". Frequent use is made of the maximum
principal, so that |h "9" may be assumed instead of for some p G P, p\\- "9". M
and N will be used to stand for countable transitive models of ZFC + GCH. The
assumption of GCH is of course not necessary in the case of c.c.c. extensions nor is
it necessary that in the generic extension |2"| = co2. For simplicity we assume GCH
in our ground model and |2"| = |2"'| = co2 holds in our extensions (except §8).

Two types of iteration will be employed-finite support and countable support. In
general we will have a sequence of partial orders Pa for a < co2 with Pa Ç Pß for
a < ß and PÄ = U {Pa : a < 5 } for limit 8. For each a < co2 every/» G Pa will be
a map from co2 into M such that supp(/>) = {/? : p(ß) ¥= 1} Ç a (the support ofp)
and \/ß < a p [ /SIh "p( ß) G P^" where P^ is some term for a partial order in the
forcing language of P^. (p f ß is the condition agreeing with/) up to ß and equal to
1 from then on.) For G, P"2-generic over M, and a < co2 let Ga = G n P„. (For
background see [K2, Chapter 8]).

In §§4 and 5 supports will be finite and thus the partial orders iterated must have
c.c.c. (if not co, is collapsed). It is assumed that the reader is familiar with the
connection between Cohen reals and random (Solovay) reals, and measure and
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category (see [Kl] and [So]). Thus the reason the category extension (forcing with
C(co2) = {p\p : D ->2 A D C co2 finite}) satisfies B(c) + -iU(c) (and thus by
Rothberger's theorem -\B(m) + U(m)) is that the first co, Cohen reals ({xa : a <
co,} where xa(n) = G(a + n) for n < co when G is Qco^-generic over M) are not
meager (so -i U(c)) and also the co2 Cohen reals cannot be covered by co2 meager
sets (so B(c)). Showing this essentially boils down to the product lemma and the
fact that x G 2" is Cohen over M iff it avoids meager sets coded in M.

Add

category

Balre
measure

Add Baire Unlf

MA
[MS]

See
Conj ecture
§9   (2)

Iterated
random
reals

§4

Infinitely
equal and
random
reals

§7

Dominating
reals

§5

Eventually
different
reals      §5

Mathias
reals

§6

In §§6 and 7 countable support will be used (also one side by side countable
support). Here it will be assumed that the reader is familiar with [L] or [Ba]. See
also [Ml] and [BL].

In §8 some partial results are given concerning the associated cardinals. One
well known (but unpublished) fact which we will use there and in §5 is

Lemma. Suppose PçQ are partial orders in M. Then the following are equivalent.
(A) VG, Q- generic over M, G n P is Y-generic over M.
(B) VF) ç P, D G M dense in P, E = {q G Q : 3p G D, q < p) is dense in Q.

Two conditions in P are compatible in P iff they are compatible in Q.
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Proof. (A) => (B) Suppose D ç P is dense in P and 3q G Q such that -i 3p G
D p and q are compatible in Q. Then for any G, Q-generic over M with ç G G,
G n Píl 5 = 0. If/) and q are incompatible in P but 3r G Q, r < p and r < q,
then any G, Q-generic with r G G, has the property that 6 n Pis not a P filter.

(B) => (A) By the first clause P n G meets every dense subset of P in M and by
the second clause it is a P filter.

4. Iterated random reals. The main result of this section is the consistency of
B(c) + B(m) + -1 A(c) + -1 A(m). Let B be the partial order for iteratively adding
to2 random reals with finite support. That means that p G B iff p G M"2 and
Va < o¡2p\ air- "p(a) is a nonzero element of the measure algebra of 2" in M[Ga]"
and supp(/>) is finite. By c.c.c. it is clear that M[GU2] N"B(/w)". For any a < co2 let
za G 2" be defined by za(n) = xa+n(0) where xa is the ath random real added by B.
Since supports are finite it is easily checked that za avoids every nowhere dense set
coded in M[Ga] and therefore again by c.c.c. M[GU ] l="B(c)".

Thus it remains to show that M[Ga ]lh "-iA(c) H—\A(m)".

Lemma 4.1. V<? G B 3n < co 3/? < q such that

Va < «¡iß [ all- >(f(«)) > 1/ (n + 1)".

Proof. This is easily proved by induction on max(supp(c7)) by adding to the
induction hypothesis max(supp(<7)) = max(supp(/>)).    fj

Lemma 4.2. Suppose n < co, F G [co2]<", and It- "t G co"; then 3q G B 3N < co
3m < co such that q\\- "t < N", Va G F cj f alh "u(c7(a)) > 1 - \/(n + 1)" and
Va < co2 q \ alh "u(c?(a)) > l/(w + 1)".

Proof. The proof is by induction on (min(F), |F|) (where min(F) is the least
element of F) over all possible ground models.

Case 1. min(F) = a ¥* 0. In M[G„] the lemma is true (with M[Ga] the ground
model), so we can find q [ a, H G [co2 — a + \]<u, N < co, m < co, and a term q so
that ? I alh [011- "t < A"', H = supp(c/), Vß a < ß < u2, q {[a,ß)\r "n(q(ß)) >
l/(m + 1)" and V0 G F q [ [a,ß)\h "n(q(ß)) > 1 - \/(n + 1)"]. Thus using H
we can define £7 G B with the required properties.

Case 2. min(F) = 0. In M[G0] the lemma is true for F = F — {0}, so choose a
sequence in M (qk, Hk, qk, Nk, mk) for A < co so that [qk : k < co} is a maximal
family of incompatible elements of the measure algebra on 2" and for all A < co,
Hk G [co2 - {0}]<", Nk, mk < co, and

qk\h [supp(qk) = Hk, Va G F, qk \[\,a)\r >(&(«)) > 1 " 1/ (« + 1)",

Va ft r[ U)ll- >(<7*(«)) > 1/ K + 1)"> and ftlh "t < ^"].
Choose / < co so that £,<, ju(?,) > 1 ~ V«- Let A^ = sup{Nk : k < /}, c7(0) =
U(</ c7„ w = sup{mk : A < /}, and for a > 0 let 67(a) = ç7,(a) if q¡. Note that
supp(<7) Ç U {//,:<< /} and therefore <? G B and is as required,    fj

Remark. All that is used to prove Lemmas 4.1 and 4.2 is that the measure
algebra is a Boolean algebra with a finitely additive strictly positive measure. For
example, the Boolean algebra of clopen subsets of 2" would do as well.
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We show first that no/ G co" n M[GUi] eventually dominates every element of
M n co" (and thus M[G,Jlh "-,A(c)" by Theorem 1.2). Let lh "/ G co"". Using
Lemma 4.2 construct a sequence pn G B for n < u and g G co" so that Vn < co
supp(/>„+1) D supp(/>„), Va G supp(/>„) />n + , C alh >(/>„ +1(«)) > 1 - I/O + 1)",
andpn + x\\- "f(n)< g(«)".

Claim. I h "3°°«/(«) < g(n)".
Proof. Given any c7 and m < co, by Lemma 4.1, 3p < q 3n > m Va < co2

p { alh "u(/>(a)) > 1/n", and supp(/>) n U {supp(/>t) : A < co} Ç supp(/?„). But
then/>„+, is compatible with p. To see this let r(a) be a term for/?n+,(a) n ¿7(a);
then show by induction on a that r f a G Ba.

Owe 1. If a G supp(/?) u supp(/>„ + 1) then /-(a) = 2".
Care 2. If a G supp(/>) — supp(pn+x) then r(a) = p(a).
Case 3. If a G supp(/>„+1) — supp(/>) then r(a) = pn+x(a).
Case 4. If a G supp(/>) n supp(/?n+,) then by choice of n, a G supp(/?„) and thus

/>„+! T all" '>(/>„+1(«)) > 1 - I/O + 1)" and therefore
' r «Ir->(/»,+ ,(a)n />(«)) >0".   a

To show -iA(w) we need the following lemma.

Lemma 4.3. // lh "/ G co"" then 3g G co" 3pn G B for n < u such that p„\r "fin)
< g(n)" and

Vq G B 3« VA: > n (q n H {ft : « < / < A}) G B.

Proof. Construct />„ G B with increasing supports, A:„ < co, and g(n) by induc-
tion on n < co. Let/>0|h "/(0) < g(0)" and Va < co2ft> [ alh XftjO)) > 2/A0". Use
Lemma 4.2 to iindpn+x and A„+1 > 2*" + 1 so that

Va/,„+,r«lh>(/)n + ,(a))>2/A„+1",
Va G supp(pn)   pn+x r alh >(ft,+ 1(«)) > 1 " !/*„+,",

and ft, + 1lh "/(n + 1) < g(« + 1)". For any pair n < k and a < co2 let r(a) be a
term for the intersection fl {ft(a) : n < I < A}. If a G supp(/>„) then

r r «lh "u(2" - r(a)) <    2    M2" - ft) <    2     T < 4"

and therefore u(ri») > 11 - — )".

If a G supp(ft+1) — supp(ft) for some i, n < i < k — 1, then

r(a)= PI {/>,(<*) :/ + 1 < / <A}

and thus

r f «lh "u(2" - r(«)) < ,i(2" - ft+,(«)) +      2      m(2w - />,(«))
i+\<J<k

< (l - -r^—) + -^-1 and thus u(r(«)) > 0"
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Given any q choose p < q and n sufficiently large so that Va p [ alh "¡i(p(a)) >
1/A„" and supp(/>) n U {supp(ft) : i < co} C supp(pn), these exist by Lemma 4.1.
By an argument similar to the proof of the claim, p and r are compatible and thus q
and r are compatible.    □

This lemma implies, by a density argument, that for every real (element of co") in
the extension there is a real in the ground model which dominates it on arbitrarily
large blocks of consecutive integers. Suppose Ih "G Q 2" is an open set of
measure <{-"■ By Lemma 4.3 we may find nk <nk + x < co with n0 = 0 and ft for
A < co such that

ftlh-V* 6 2^(1(6 n[j] -  U (Oj : t G 2^'and [i] çG})< —22nk + 3

and Va G B 3/1 VA > n, f) {ft : n < I < k} and q are compatible. Choose disjoint
Fk Q {n¡ : i < co} with \Fk\ = A, and consider H = {X El2u : 3°°n V/ G F„, x(/)
= 1}. H is a measure zero set coded in M. For any G, B-generic over M, let
y = {«, : ft G G} and let C = {x G 2" : Vn G Y x(n) = 1}. A density argument
shows that C Ç //. As in the proof of Theorem 1.6, C (f G and therefore // (t G.
Since G was arbitrary -i A(m) holds in MfG^ ].    □

5. Eventually different reals. In this section we show that B(c) + U(c) + -i B(m)
-I—i A(c) is consistent. Let E be the following partial order. E = {(s, G) : s G co<"
and G G [co"]<"} and (s, G) < (t, H) iff s D t, G D H, and Vi if \s\ < i < \t\ then
Vg G H, t(i) =£ g(i). A density argument shows that if

/= U{i:(a)6C)
for any G E-generic over M then Vg G co" n M, V°°n g(n) ¥=f(n). Let Pa denote
the a iteration of E with finite support (if p G Pa then V/? < a p \ ß
II" "p(ß) £ E^10»1"). As in §4 finite support means that Cohen reals are added, and
also eventually different reals are added. By Theorem 1.3 M[GU2}\V "B(c) + U(c)"
for any Ga Pu -generic over M.

We claim that no real in M[GUJ eventually dominates the reals in M (so by
Theorem 1.2 -iA(c) holds in M[GaJ). For clarity we first show this for a single
step, that is, VG E-generic over M, M[G]lh "V/ G co", 3g G co" n M, 3canf(n) <
g(n)".

Lemma 5.1. Suppose lh "t G Af", s G co<", and n < co then 3/7 G [ATj<" VG Ç
co" // \G\ <n then 3p < (s, G), /?lh "t G H".

Proof.    V//  g [M]<"    let    G„  =  {(g0, . . . , g„_,) G (co")" : 3/>  <
(s, {g0, . . ., g„_,}) such that />lh "t G //"}. Note {GH : H G [M]<"} is a cover
of (co")". Give co the cofinite topology, i.e. U Q co is open iff U is cofinite, and give
co" and (co")" the product topology. Then by Tychonoffs theorem (co")" is compact.
For any (g0, . . . , gn_x) & GH iî p = (t, H) < (s, {g0, . . . , g|1_,}) and /»lh "t G
//", then let U = {(g'x.g'„) : Vi if |j| < i < |r| then VA < n t(i) ¥= g'k(i)}. Note
that U is a basic open set and g G U Q GH since p < (5, {g^ . . . , g'n_,}) for any
(g'o-g'n-x) G U. Since G„ U GK Q GHuK, 3H G [M]<" GH = (co")".    D
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Let (s„, A„) for n < co list with infinitely many repetitions u<u X co. Let lh "/ G
co"" and using Lemma 5.1 find g G co" so that V« VG G [co"]*" 3p < (s„, G)
p\\- "fin) < g(n)". Now suppose 3n 3p p\V "\fm > n fim) > g(m)"; then 3m > n
such that (sm, G) = p and |G| = Am, but then 3q < p q\V "fim) < g(m)", which is
a contradiction. Thus by genericity, 3°°n/(/i) < g(n).

Next we show that no random reals are added by one step.

Lemma 5.2. Suppose lh "t < AT" where N < co and s G co<"; then 3n < N such
that V// G [co"]<" 3/> < (s, H)p\V "r = «".

Proof. If not, then V» < N 3//, (s, //,)|h "r ¥= /"• But (s, U {//, : i < N})\<r "Vi
< N, r ^ /", which is a contradiction.    □

For any x G 2" n A/[G], by employing an argument similar to the one follow-
ing Lemma 5.1 but instead using Lemma 5.2, there exists g G M such that
g : co -+ 2<" and 3°°« x \ n = g(n). Note that H = [y G 2" : 3°°/i >> f n = g(/i)}
has measure zero (assuming V« g(«) G 2") so x is not random over M.

Lemma 5.3. V/> G PWj 3o < p Va G supp(c7) 3j„ G co<" 3na < co lh "c7(a) =
(sa, G)for some G G [co"]v'.

Proof. The proof is by induction on max(supp(/?)).    Q
Call such c7 as above canonical and from now on we assume all conditons in PM

are canonical (since the canonical ones are dense).

Lemma 5.4. Suppose lh "t G M" and given F G [co2]<w and na < co and sa G co<w
for every a G F, then 3H G [M]<" such that Vq G PU2 if supp(cz) = F and Va G
F, ni = «a a/jcf ía? = sa then 3p < q p\r- "r G //".

Proof. The induction is on (min(F), |F|) as in Lemma 4.2 and the case
0 ¥= min(F) is proved similarly. If 0 = min(F) then since the lemma is true with
A/[G0] as the ground model let H he a term in the forcing language of P such that

lh "H G [ M]<u and \/q G P****) if suppO) = F - {0}

and Va G F - {0}, n* = na and í* = sa then 3/> < t7,/>lh r G /7".
Now use Lemma 5.3 to find H and take care of s0 and n0.    □

Lemma 5.5. Suppose lh "t < W where N < co a/it/ gz'uen F G [co2]<w anc/ na < co
a/jcf ja G co<w /or eue/y a G F, íAen 3n < N such that Vc7 G Pw >v/iA supp(cz) = F
a«</ Va G F, na = na? a/ic/ ia = s* 3p < cz/jlh "r = «".

Proof. The proof of this lemma is similar to Lemma 5.4 using Lemma 5.2
instead of Lemma 5.1.   fj

It is now easy to see that Va < co, VGa Pa-generic over M V/ G co" n M[Ga],
3g G co" n M, 3xnf(n) < g(n) and

2"nM[G„]= U {G : u(G) = 0 and G is coded in A/}.

The proofs are similar to before, just list in an co sequence all the sets
(F, ((sa, na) : a G F)) for F G [a]<u. The remaining lemmas will reduce us to this
case. The technique is similar to that of the proof of Lemmas 28 through 30 of
[M21.
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Lemma 5.6. Suppose M Q N are transitive models of ZFC. Then if G is EA-generic
over N then G n EM is EM'-generic over M.

Proof. The proof is exactly the same as Lemma 5.2 of [T]. Namely if M V"A Ç
E is a maximal antichain" then A is a maximal antichain in E by IlJ absoluteness.
D

Call a partial order P absolute just in case it is definable (possibly with
parameters in M) and given any N D M, a transitive model of ZFC if G is
P^-generic over N, then G n PM is P^-generic over M. Suppose Pa for a < y is a
finite support iteration of absolute partial orders over M, i.e. Pa+1 = Pa * P" where
P" is some name for an absolute partial order in M[Ga]. Given X C y (X G M)
define the iteration P* for a < y as follows:

For a £ X let P*+, = P* * 1 (where 1 is the one element order).
For a G * let P*+, = P* * (P")^^ where G* is PJ-generic over M.
For Ga Pa-generic over M define G* = GaC\ P*.

Lemma 5.7. Va < y if Ga is Pa-generic over M then G* is P*-generic over M.

Proof. The proof is by induction on a. For the successor case a + 1 if a G X
then P*+1 is isomorphic to P*. Now suppose a G X then Ga+1 = Ga X G" where
Ga is (P^'^-generic over M[GJ. By absoluteness G*a = G" n (P")^0«*1 is
(P0,)A/[G*1-generic over M[G*]. So G*+1 = G* X G*a is P*+1-generic over M by the
product lemma (see [So]). Now suppose a is a limit ordinal. We will use the lemma
in §3. Suppose D <Z P* is dense; then we need to show E = {q & Pa : 3p G D
q < p) is dense in Pa. Given 67 G Pa choose ß such that supp(cz) Ç ß. Note that
{p \ ß '■ P e D} is dense in P^, so 3p G D p \ ß and q\ ß are compatible in P^;
therefore p and C7 are compatible in Pa. Note that the fact, that two conditions in
P* are compatible in P* iff they are compatible in Pa, is easy since a is a limit
ordinal.   Q

Lemma 5.8. //lh "r Q co" then 3X Q co2 countable, X G M and VG P„-generic
over M rG G M[G*].

Proof. This is easy using c.c.c.
Thus we conclude that

M[GU2] n co" =  U  [M[Ha] n «" : a < co„//„ G A/[GUJ,

and Ha is Pa-generic over M).

Therefore we have shown

Theorem 5.9. B(c) + U(c) + -,B(/w) + -iA(c) is consistent with ZFC.

Let D be the dominating partial order, D = {(«,/) : n < co,/ G co"} where
(n,f) < (m g) iff n > m, f f m = g ¡ m, and V/ /(/) > g(i) (see [H]). Note that
Lemma 5.2 is also true for D. Hence by similar arguments no random reals are
added by a finite support iteration of D. This shows

Theorem 5.10. A(c) + -,B(m) is consistent with ZFC.
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Remark. Kunen first proved Theorem 5.10 using the Rx precalibre of D and the
fact that the measure algebra on 2" (assuming CH) does not have K, precalibre.

6. Mathias reals. Let P = {(s, A) : s G [co]<", A G [co]", and sup(s) < ini(A)}
where (s, A) < (t, B) iff s D / and (s - t) \j A Q B (see [Ma]).

Lemma 6.1. VG P-generic over M, M[G] V"M n 2" is meager and has measure
zero".

Proof. Let Z= U {s : 3 A (s, A) G G} and note that a density argument
shows that VX G F(co) n M 3n < co Z - n Ç X or (Z - n) n X = 0. But for
any infinite g Ç co, U ,_o,i{^ G 2" : V« G ß *0) = '} is a closed set of measure
zero (hence nowhere dense),    fj

The following statement is due to Mathias (see [Ma]).

V(í, A) Vf? 35 Q A (s, B)\\- "9" or (s, B)\\- "-,0". (•)
Lemma 6.2. Suppose lh "r G 2""; íAen 3Ä = {b„ : n < co} Ç to so that Vm < co

Vi Ç {A„ : « < m} 3r G 2b- so that

(t, B-(bm + l))lh "t f bm = r".
Proof. Construct Bn G [co]" and {Am : m < n) by induction on n. Let 2?0 = co

and choose bn G B„ — (b„_x + 1) arbitrarily. By repeated applications of * obtain
Bn+\ £ Bn - On + 0 so that V/ Ç {Am : m < n} 3r G 2b" so that (f, Bn+X)\\- "r \
K = r".    U

For clarity we show first that no real in Af[G], for G P-generic over M, is Cohen
or random over M. So let lh "r G 2"". By refining B = {A„ : n < co} from Lemma
6.2 we can assume that Vn < co, A„ > 2r+'. Define 7'={(e 2<" : 3c7 < (0, 5)
3/1 < co c7lh "r\n = /"}. By Lemma 6.2, Vn < co |F n 2*-| < 2"+1 and thus \T n
22" | < 2" + 1. Therefore C={xG2":V«x|1nGF}isa closed set of measure
zero (hence nowhere dense) and (0, B)\V "r G C".

Now let Pu  he the co2 iteration of P with countable support. Let X = {x G
co" : Vn x(n) < 2"'}. We claim that Vy G M[GW;¡] n X 3<F„ : n < co> G M such
that Vn (|FJ < 2"2 and y(n) G F„).  Define f? : X -» 2" by 0(x) = x(0)^x(l)^
x(2)^^- • • , where we identify 2"  with sequences of 0's and l's of length n3. If
C = {x G X : Vn x(n) G F„} then

IF | 1/i(«(C)) - lim i-f - lim £ - 0.

Thus it remains only to prove this claim. Define (j, A') < „ (f, y) for n < co iff
s = t, X C Y, and the first n elements of y are still in X. Using * it is possible to
show that if /»lh "t < TV" where TV < co then Vn < co 3q <„p 3H \H\ < 2"
c/lh "t G //". For F G [co2]<" define for/», c/ G P"*,/» <£ C7 iff/» < c/, and Va G F
/> f alh "/»(a) <„ 67(a)". Then it can be shown that V/» G PU2 Vn < co VF G [co2f
3c7 <^/» 3// |//| < 2" c/lh "t G //". A fusion argument now finishes the proof of
the claim. □

Remark. In fact we have shown that

M[ GuJ n 2" = U {C : C closed measure zero and coded in M}.
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Thus U(w) does not imply that the union of less than |2"| closed sets of measure
zero has measure zero.

7. Infinitely often equal reals. In this section we show that U(m) + -iU(c) +
-iB(c), U(m) + B(m) + -iA(w) + -iB(c), and -iU(m) + -iU(c) are each con-
sistent with ZFC. A Sacks real is obtained by forcing with perfect (every node has
incompatible extensions) subtrees of 2<w (see [Sa]). A Silver real is obtained by
forcing with condition of the form/» : D —» 2 where D Q co is coinfinite (see [G]). It
is an unpublished result of Sacks (see also [J]) that when one adds co2 (or more)
Sacks reals side by side with countable support then -i U(w) H—i U(c) holds in the
extension. The same is true when Silver reals are added.

Consider the partial order

P = {s : D --> 2<" : D ç co is coinfinite and Vn G D, s(n) G 2"}
where s < / <-> í D t. For any G P-generic over M, define / = U G. An easy
density argument shows that Vx G M n 2" 3°°n x \ n = fin). Note that {x G
2" : 3°°n x \ n = fin)} has measure zero for any/. It is also hard not to show that
2" n M has strong measure zero (see Theorem 1.7). Next we show that VA G
M[G] n co" 3g G M n co" Vn A(«) < g(n).

Lemma 7.1. Suppose s\\- "r < co" and E G [co-dom(í)]<"; then 3N < co 3/ < s
dom(r) n F = 0 and /I h "r < TV".

Proof. Let {/•„ . . . , rk] = {/• : F -h>2<" : Vn G E r(n) G 2"}. Successively ex-
tend s > sx > s2 > ■ • ■ > sk = t so that V/' E n dom(s,) = 0 and s¡ u r¡\r "r =
«,". Let t = sk and N = sup{n, : 1 < i < A} + 1 and then ilh "r < TV".    □

Now suppose j|h "t G co"". Construct En £ En + X finite, sn + x <sa < s0 = s,
and g G co" such that dom(j„) n En = 0 and J„lh "r(n) < g(n)". Then / =
U {sn : n < co} is in P since (J {F„ : n < co} n dom(r) = 0, and /lh "Vn r(n) <

g(n)". Next we show that M[G] N"M n 2" is not meager".

Lemma 7.2. Suppose s\\- "C ¿s nowhere dense in 2"", F G [co-dom(í)]<", and
t G 2<". FAen 3r D r 3s < s E n dom(s) = 0 and ilh "[r] n C = 0".

Proof. As before let {r, : / < A} = {r : F^2<" : Vn G F r(n) G 2"}. Now
build j,+ i < j, < s for /' < A and í, + 1 D /, D / such that dom(j,) n F = 0 and
s¡ U /",1h "[t¡] n C = 0". This can be done since s\\- "C is nowhere dense". Then let
s = sk_xandr = tk_x.    □

Now suppose j|h "C ç 2" is nowhere dense". Let 2<w = {t„ : n < co} and
construct sn + x < s„ < s, En + X ̂  E„ finite, and tn D /„ such that s„\\- "C n [in] =
0" and F„ n dom(j„) = 0. Then j = U {sn : n < co} is in P since

U {F„ :n <w} n dom(j) = 0
and if G = U {[fj : n < co} then G is open dense and ilh "G n C = 0". This
shows that every meager set coded in Ai[G] is covered by a meager set coded in M,
so M n 2" is not meager in A/[G].

Next we are going to force with the side by side co2 product of P with countable
support to show that U(m) -I—i U(c) H—i B(c) is consistent. For any set X define
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*P = {/» : X -> P : {x G X : p(x) ¥= 0} = supp(/>) is countable} where /» < q<n>
Vx G X,p(x) < £7(x). Since |P| = co, a standard A-system argument implies "2P has
the co2 chain condition. Hence VX <Z 2" if \X\ < co, and X G M[GUj] then 3a <
co2 * G M[Ga\. Note that Vx G M[GJ n 2" Vn < co D = {/» G P" : 3m > n
/»(m) = x f m} is dense in P and it is an element of M[Ga]. It follows that
M[Ga] n 2" has measure zero in M[Ga ].

We claim V/ G M[GMJ n co", 3g G co" n M, Vn < co, fin) < g(n). This prop-
erty (SD of §1) implies Ab(c).

Lemma. 7.3. Given p G"2P, r such that /»lh "r < co", F G [co2]<" and Ex G [co]<"
for all x G F jmcA íAaí Vx G F dom(/?(x)) n F^ = 0, íAen 3/V < co 3q < p
Vx G F dom(6/(x)) n Fx = 0 anc/ c/lh "t < #".

The proof is similar to Lemma 7.1 and is left to the reader.   □
To prove the claim suppose that/»lh "t G co"" and using Lemma 7.3 construct a

sequence pn+x </»„</», Fa" G [co]<" for a < co2, and g G co" such that Va Fa"+1
D Fa" and F0" n dom(/»„(a)) = 0, /»„lh 'V(n) < g(ri)", for all but finitely many a,
F„a = 0, and Va G U {supp(/»J : n < to} 3m Vn > m F„a+, ^ F„a. This can be
done by diagonalizing over the supports of theft's. Define/»(a) = U {ft(«) : n <
co} for each a; then we have that/» G "2P and/»lh "Vn r(ri) < g(n)". This proves the
claim. To prove that M n 2" is not meager in M[GU2] an argument analogous to
Lemma 7.2 may be used.

Let S be Silver forcing (S = {/»:£>-» 2 : Z) Ç to is coinfinite}). VG, S -generic
over M, M[G] N"Af n 2" does not have measure zero". To see this note that
Lemma 7.1 and the fusion argument following it can be improved in this case to
show V/ G M[G] n co", 3g G M, Vn (fin) G g(n) A |g(«)| < 2"). It is not hard
(but it is messy) to show that VX <z 2" if p(X) = 0 then Ve : co -» R+ 3C„ ç 2"
clopen such that Vn < co u(C„) < e(n) and X Q U {C„ : n < co}. Given <C„ : n
< co> G M[G] such that Vn C„ is clopen and u(C„) < l/22n + l. Since clopen sets
can be coded by integers there exists <(2„:n<co>GAf such that each C„ consists
of < 2" clopen sets of measure < l/22"+l such that Vn C„ G Q„. Note that
ft(U{Uß„ :n<co})<^ and therefore it follows that every measure zero set
coded in Af[G] is contained in a measure zero set coded in M.

A similar argument yields that for GU2, "2S -generic over M, every measure zero
set coded in M[GU2] is contained in a measure zero set coded in M; thus we have
the consistency of -i U(m) + -i U(c). A simpler method for producing this result is
to start with M a model of -iCH and then iteratively with finite support add ux
random reals. The co, random reals X will not have measure zero and the co, Cohen
reals Y will not be meager; in fact, X will be a Sierpinski set and Y will be a Luzin
set.

In [My] Mycielski proves that for any U Q 2" X 2" of measure zero there exists
a perfect P such that Vx,y G P x i^y -» (x,y) £ U. We can give a forcing proof
of these facts as follows. Let M he a countable transitive model of ZFC (minus
power set) containing a code for a Borel set of measure zero covering U. Let Q he a
perfect set of reals such that Vx,_y G Q x =£>> —»(x,>>) is S X S-generic over M,
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and let r G 2" be random over M. Then by the prior remarks Vx, y G Q r is
random over M[x,y\. Let / : 2<" «-^ co be 1-1 in M and define for any x, r G 2",
j(x, r) G 2" by s(x, r)(n) = r(f(x \ n)). Let P = {s(x, r) : x G Q). Then it is easily
checked that P is perfect and Vx, y G Q x ¥=y —> (s(x, r), s(y, r)) is m.a.(2" X 2")-
generic over M (and thus not in U).

The final goal of this section is to show the consistency of U(w) + B(m) +
-iA(w) + -iB(c). In fact we find a partial order Q^ such that VG, Q^-generic
over M, M[G] l="U(w) + B(w)" and V/ G M[G] n to" 3g G A/ n co" Vn fin) <
g(n) (recalling Theorems 1.5 and 1.6 we have -iA(m) + -iB(c)). Let B be the
measure algebra on 2" and P the infinitely often equal order. Let QUj be the
iteration of B and P with countable support. That is for any /> G Q02 and for every
a < co2, if a is even or limit then p \ alh "/»(a) G BMIG"]" and if a is odd then
/> \ alh "/»(a) G p^l0-]". Since QU2 has the co2 chain condition it is clear that VG,
Q^-generic over M, M[G] f"B(w) + U(m)". Now we define/» < „ # for n < co. If
/», q G B then /» <„ ç iff p < q and ju(/») > (1 - l/2"+l)uO)- If /», cz G P then
/» <„ q<r*p < q and if F is the first n elements of co — dom(c7) then E n dom(/»)
= 0. Now note that ifft+i <«/»„ G B for n < co then u(n {ft : n < co}) > ju(/»o)
and thus D {ft : n < co} G B, and also if for each ft G P then U {ft: n < to} G
P. Now define for F G [co2]<", n < co, and /», 9 G QW2 (p <% q iff p < q and
Va G F/»r«lh "/»(«)<„ ?(«)").

Lemma 7.4. Given pn+x <«"ft /<w n < co swcA that the Fn are increasing and
U {F„ : n < co} = U {supp(ft) : n < co} iAere exw/j 67 G Qw  íwcA íAaí Vn 47 <

ft-
Proof. The proof is entirely similar to Lemma 5 of [L].   □

Lemma 7.5. Va < co2 Vt V/» G Qa Vn < co VF G [co2]<",
(A) f//»lh "t G [A/]<"" iAen 39 <í/» 3// G [M]<u q\Y "r ç //",
(B) <//»lh "t G [A/]"" /Aen 3c7 <í/» 3// G [A/]" c/lh "t Ç H".

Proof. Note that both of these are easily proved with P or B in place of Qa. The
proof for Qa is similar to Lemma 6 of [L] (see also [Ba]).   □

Using Lemmas 7.4 and 7.5 it is easy to show that if /»lh "t G co"" then 3q < p
3g G co" q\r "Vn r(n) < g(n)".

8. The cardinals associated with some of our properties. In this section we
investigate the four cardinals ka, kv, kb, and |2"|. Thus ka is the least cardinal such
that there are meager Xa Q 2" such that U {Xa : a < ka} is not meager, kv is
inf{\X\ : X Q2W not meager}, and kb is the cardinality of the smallest cover of 2"
by meager sets. Also, for example, the property A(c) (additivity of category)
corresponds to ka = |2"|. Note that ka is an uncountable regular cardinal which is
less than or equal to both k^ and kb which are both less than or equal to |2"|. It is
easy to see cof((c,j) > co, and in [M3] I also show that cof(tcB) > co, (I do not know
whether or not the corresponding cardinal for measure can have cofinality co).

Considered individually this is all that can be said. Under MA, ka = |2"| (and
therefore ka can be any regular cardinal). If k is any cardinal with cof(ic) > co, then
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adding <c many Cohen reals (random reals) to a model of GCH gives a model
where kb = k (kv = k). The chart summarizes the known consistency results.

ka Ku *b K I
1
2
3
4
5
6
7
8 co
9 co
10 co
11 co
12 co
13

co, co, co, CH.
co, co, co2 co, iteration of random reals over model of 2" = co2.
co2 co2 co2 co2 iteration of random reals over model of 2" = co, (§4).
co2 co2 co3 co2 iteration of random reals over model of (2" = co3 + co,-scale).
co, co2 co2 co2 Cohen reals over model of 2" = co,.
co2 co, co2 co2 random reals over model of 2" = co,.
co, co2 co3 co3 random then co2 Cohen.
co2 co, co3 co3 Cohen then co2 random.
co2 co3 co3 co3 iteration of measure algebras of size co,.
co-, co, co,. like 9.

CO-,    CO-.   COt MA + 2" =
14 co2 co2 co2   co3   Bukovsky [Bu].
15 co2 co3 co3   co3  co3 iteration of large measure algebras and dominating algebras

of size co,.
16 co2  co3 co3   co4   like 15.
17 co2 co2 co3   co3   co3 iteration of dominating algebras of size co,.
18 co2 co3 co2 w.

19 co2 co2 co3   co4   hke 17.
20 CO,    CO,    CO,

21 co2 co3 co4 co4 co4 iteration of co, dominating algebras and co2 measure algebras.
22 co2 to j co 4 co 5 like 21.
23 co2 co4 co3 co4 /
24 co, co.  co, co< ?

Remark. Always co2, co3, co4, and co5 can be replaced by any four regular cardinals
greater than co, in the corresponding order. In 5-8, co2 and co3 can be replaced by
any cardinals k2 and k3 such that cofiic^, cof(ic3) > to, and co2 < k2 < k3. In 2, 4, 14,
19, 20, and 22 |2"| can be any cardinal of cofinality > co,. Recall C = {p\p : D -*
2, D G [«]<"} (which adds a Cohen real), B is the measure order-the Borel subsets
of 2" with positive measure (which adds a random real), and D = {(n,f) : n < co,
/ G co"} the order for forcing an eventually dominant real (see §5). All the results
in this section will be obtained by iterating various combinations of these orders
(except 6 and 7) and in almost all cases we could have used eventually different
reals (§5) instead of random reals.

The models. (4) Start with M f"2" = to3 A 3D Ç co" \D\ = co, Vf G co" 3g G D
Vnfin) < g(n)". As in §4 it is true that if N is an iterated random real extension of
M then Vf G N n co" 3g G M n co" 3°°n fin) < g(n). It follows that D is not
eventually dominated in N and so N f"ka = co," by the results of §1. It is easy to
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see that kb > co2 and kv > co2 because the iteration has length to2. Also the set of co2
Cohen reals added by the iteration is not meager and the set of co2 random reals
does not have measure zero, so «y = co2 and kb = co2 by Rothberger's theorem.

(7) (8) We first prove the following two lemmas.

Lemma 8.1. Suppose G is Q-generic over M and H is BM[G]-generic over Af[G].
Then M[G, H] t"M[H] n 2" is not meager".

Proof. For any sentence 9 let [0] = 2{A G B : Alh 9). Suppose lh "X G [co]"
and/ G co"" (in the partial order C * B). Note that Vp G C Vn < co 3q < p 3F G
[co — n]<a 3<C/" : /' < <cm> a finite sequence of disjoint clopen sets for each m El F
such that

q\V "JlF n X * 01 •   II   [f(m) < AJ •   Ü  «/(«) = '1 VC,")) > 1 - ^"
V mGF i<km I z

where ^VS = (^ni)U (-A n -B). So working in M we can build for A < co,
ft G C, ft < nk+x < co, Fk G [ft, ft+,)<", and (C,m : i < km) for m G Fk, so that
Vp G C 3°°A ft < /» and VA ftlh "¡i(Bk) > 1 - 1/2*+ '" where Bk is a name for

[F, n X * 01 •   u   U(m) < AJ •   u (I/OO = 'IV CD-
meFk i<km

Let 5 be a name denoting fl {F* : ft G G}. Thenlhc"u(5) > 0". In M[H] define
g(w) = i if // G C,m (0 otherwise), then (1, ,B)lh "3°°n G X fin) = g(n)". It follows
that Vf G M[G, H] n co" V* G A/[G, H] n [co]" 3g G M[H\ n co" 3°°n G X
fin) = g(n). By the arguments of §1 the result follows.    □

Remark. Is it true that if we replace C by D in Lemma 8.1 that M[G, H] N"no
x G 2" is random over A/[//]"? If yes this would answer problem (3) of §9.

Lemma 8.2. Suppose H is B-generic over M and G is CM1"' = Q-generic over
M[H]. Then

Vf G M[H, G] n co" 3g G M[G] n co" V°°nf(n) < g(n).
Proof. We may assume / is strictly increasing. By the product lemma, H is

BM-generic over M[G\. By the proof of Lemma 8.1 (or even a simpler argument)
VA G M[G] n A/" 3g G M 3°°n A(n) = g(n). Working in M[G] obtain Bn G BM
and g(n) < co such that u(5„) > 1 - l/2"+1 and BJ\- "fin) <g(n)". By above
3<C„ : n < co> G M such that 3°°n C„ = Bn and we may assume Vn n(Cn) > 1 —
l/2"+1. Let C = n „<„ C„ and X = {n : C ç B„), then C6BMandle M[G].
Define (in M[G]) h(n) = g(inf(X — n)). Since / is strictly increasing Clh "Vn
/(n)<A(n)".    D

Remark. I do not know whether or not M[G] n 2" has measure zero in
M[H, G]. This is equivalent to problem (9) of §9. Note that although it is true that
VG, B-generic over M, M[G] N"Af n 2" does not have measure zero", it is not in
general true that if N D M and G is BM-generic over N then 7v*[G] \="N n 2" does
not have measure zero". In fact I can show that A^ = A/[G0], where G0 is
Bw-generic over M, is a counterexample. If C is replaced by D in Lemma 8.2 does
M[G] n co" dominate M[H, G] n co"?
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Let B(k) be the measure algebra on 2" and C(«) = {p\p : Z)—»2 and D G
[*]<"}. The model for (7) is M[G, H] where G is B(co3)-generic over M, H is
C(co2)-generic over M[G], and M 1= GCH. It is easy to see that «B > co2 and kv = co,
because of H. To see that kb < co2 note that by Lemma 8.2 and c.c.c. no real is
Cohen over M[H] n 2". The model for (8) is M[H, G] where H is C(co3)-generic
over M and G is BA/'//1(co2)-generic over M[H\. kv > co2 and kb = co, because of G.
By Lemma 8.1 and c.c.c. M[G] n 2" is not meager so kv < co2.   fj

The remaining models will all be obtained by c.c.c. finite support iterations (of
length kb). Suppose M f ZFC and Pa for a < y is such an iteration. Recall
Pa+, = Pa * P" where P" is a term in the forcing language of P0. Suppose 2 Ç y
and 2 G M; then define P* = {/» G Pa : supp(/») Ç 2}.

Lemma 8.3. Suppose Va < y P" is a term in the forcing language of P*. Then
Va < y if Ga is Pa-generic over M then Ga n P* is P*-generic over M.

Proof. The proof is by induction on a. For a a limit ordinal this is proved
exactly as Lemma 5.7. Also for the case a + 1 if a £ 2 then P*+, is isomorphic to
Pa*. If a G 2 then Pa G M[Ga n Pa*] and Ga+, nPa'tl= (Ga n K) X G"; so by
the product lemma Ga+X n P*+\ K Pî+rgeneric over M.   fj

Lemma 8.4. Suppose k is an uncountble cardinal and G X H is C(k) * P-generic
over M where P E M[G \ 2] for some 2 Ç k, 2 G M, and |2| < «. 77ien M[G] n
2" is not meager in M[G, //].

Proof. This is immediate from the product lemma, since G \ (k — 2) is
C(k - 2)-generic over M[G \ 2, //].    □

(9) Start with M h GCH and let 2a Ç a for co2 < a < co3. List all subsets of co3 of
cardinality co,. Let Pa for a < co3 be the following iteration.

For a < co2 let Pa+, = Pa * C.
For co2 < a < co3 let Pa+, = Pa * BM[G'] where G* = Ga n {/» G

Pa : supp(/») ç 2a}. Since the length of this iteration is co3 it is easy to see that
kb = t03 = 12"I- Since "partially" random reals are added, kv > co2. Also the
arguments of §4 easily show that M n co" is not eventually dominated so ka = co,.

By Lemmas 8.3 and 8.4, M[Ga ] n 2" is not meager in M[GU ]. This is because
for any r a term such that lhu "r C co" (or even lh "r C co,"), by using c.c.c. we can
find 2 Ç co3, |2| = co„ 2 G M, Va G 2, 2a C 2, and t is a term in the forcing
language of *• = {/» G PUj : supp(/») Ç 2}. Thus P*3 G M [G \ 2 n to2] so
Lemma 8.4 applies.    □

(10) Let M V*f = co4" be such that M V"3D C co" |F>| = co, Vf E co" 3g G D
Vn fin) < g(n) and 32a Ç a for a < co3 with |2J = co, and VA G co3 if \A\ = co,
then 3 a 2a QA".

For example this holds if M is a random real (B(co4)) extension of a model of
GCH. Now do the same iteration as in (9). To see that kb < co3 note that

2"= U {2"nA/[Ga*]:«<co3}
and 2" n M[G*] is meager for each a < co3. Also ka = co, since D is not eventually
dominated.   □
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(14) This is due to Bukovsky [Bu] who does it by starting with a model of
2" = co3 and then doing an co2 iteration. At each step of the iteration he does an co3
iteration making MA true. Alternatively we could start with a model of 2" = co3
and then do an co2 iteration with D.

(15) Let M N"GCH and 2a Ç. a for co2 < a < co3 and a even, list all subsets of co3
of size co,". For a < co2 let P" = C. For co2 < a < co3 and a even, let P" = DMlG*]
where G* = {/» G Ga : supp(/>) Ç 2J. For a odd, let P" = BMlG-K It is easy to
check that kv = kb = co3 = |2"| and ka > to2. We claim that M[GU ] n to" is not
eventually dominated (and thus by § 1 ka = «j).

Lemma 8.5. Suppose G is C(co,)-generic over M, 3y 3X Q y X E M, and Pa for
a < y a finite support iteration over M[G] such that Va E X P" is a (canonical)
name for a partial order in M and Va G y — X P" is a name for a boolean algebra
which has a finitely additive positive measure on it (for short call it a measure
algebra). Then M[G] n «" is not dominated in M[G, H] when H is Py-generic over
M[G].

Proof. Note that Py as Ç£a£X P") * P1 where 2 is the direct sum and P1 is a
name for some iteration of measure algebras. Thus H = HXX H2 and by the
product lemma G is C(co,)-generic over M[HX]. Note that C(co,) * P1 is also an
iteration of measure algebras-i.e. regard C(co,) as the to, iteration of the two
element boolean algebra {0, 1}. Now suppose/ G to" n M[HX, G, H2]. Working in
A/[//|] and using the arguments of §4 we can find ft in C(co,) * P1 for n < co and
A G co" n M[HX\ so that /»„lh "fin) < h(n)" and for any /» in C(co,) * P1 3n0
Vn > n0ft and/» are compatible and in fact 3c7 < p„q < /», supp(#) Ç supp(/») U
supp(ft). Choose a < co, so that Vn < co (a + n) £ U {supp(ft) : n < co} and
define g G co" by g(n) = least m > n such that G(a + m) = 1. Then g G A/[G] n
co" and 3°°n g(n) > fin). To see this suppose not and/»lh "Vn > n0 g(n) <f(n)";
then 3n, > n0 such that Vn > n, a + n & supp(/>) and 3q < p q < pn and Vn >
n, (a + n) ^ supp(cz). Extend q to q' by letting q'(ß) = 0 for all ß such that
a + nx < ß <a + h(nx); then q'W "f(nx) < g(nx)".   Q

The problem may be reduced to the lemma by an argument combining the ideas
of Lemmas 8.3 and 5.7. First reduce to 3 y < co3 3Pr finite support iteration over
M such that |y — co2| < co, and Va < co2 P° = C and Va co2 < a < y and either P"
is iyrei where G* = {/> G Ga : supp(/») C 2J, 2a ç a, |2a| < «,, 2a G A/or P"
is BM[G"K By swallowing up G \ 2a n co2 for co2 < a < y we reduce to the lemma.

(16) Let M h"2" = co4" in which there exists 2a Q a for a < co3 with |2J < to,
and VA Q co3 \A\ = co, -> 3a A Ç 2a. Proceed as in (15). Note that because of
forcing with BMlG°] for a odd 2" is the union of co3 meager sets so kb < co3.

(17) Let M l="GCH" and let 2a Q a for co2 < a < co3; list all subsets of co3 of size
co,. Let Pa+, = P„ * C for a < co2 and let Pa + 1 = Pa * D^0-*1 where as before
G* = Ga n {p E Pa : supp(ft) Q 2a}.It is easily seen that kb = co3 = |2"| and
ka > co2. By Lemmas 8.3 and 8.4 it is not hard to see that M[GU ] n 2" is not
meager, so ka = kv = co2.

(19) This is just like (17) only start with M f*2" = co4 and 32„ Ç a for a < co3,
|2J = co, and VA Q co3 \A\ < co, —> 3a A Ç 2a".
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(21), (22) Working in M let 2a C a for a < co4 be a list such that for all a even,
|2J < co, and for all a odd, |2a| < co2 such that for every A ÇZ co4, (\A\ < co, —* 3a
even A <Z 2a) and (\A | < co2 -» 3a odd A Q 2a). Let PW4 be the co4 iteration defined
by letting

P« = D"16-'1    for a even
anu

P° = bmig;]   foraodd
wnere

Ga*={/»GGa:supp(/»)ç:2a}.

Easily we have in A/[GUJ that ka > co2, kv > co3 and kb > co4. In case M \= GCH
we have immediately that kb = co4; in any case

M[ GWt] n 2" = U [M[G*] n 2" : a < co4}

and each M[G*] n 2" is meager. To see that kv < co3 use Lemma 8.3 and to see
that ka < co2 use an argument similar to the one used in (15).

9. Problems.2
(1) Show that A(m) does not imply A(c).
(2) Show that -\A(m) + B(m) + A(c) is consistent. The natural model for this

might be obtained by iteratively adding (with finite support) co2 dominating reals
and random reals.

(3) Show that U(c) + -iU(w) + -iB(m) is consistent. I conjecture that this
holds if one adds co2 eventually dominating reals and then co, random reals.

(4) (Fremlin) Show that the least k (k¿") such that 2" can be covered by ic-many
measure zero sets cannot have countable cofinality (see [M3] for the ideal of
meager sets).

(5) (Baumgartner) Show that if one adds a Laver real (see [L]) the ground reals
have measure zero.

(6) Show that X is necessary in Theorem 1.3.
(7) Show that Vi < nfii) < n is necessary in Theorem 1.4.
(8) Find characterizations of U(w), B(m), and A(m).
(9) Suppose B G 2" X 2" X 2" is a Borel set such that

VxYy/z({z :(x,.y,z)G B)) - 0.
Then does there exist a Borel function F : 2" -*2" such that 3A Ç. 2" p(A) > 0
Vx E A {y : (x,y, F(y)) & B] is not meager?
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