Some Properties of n-Dimensional Triangulations

C.L. Lawson

(NASA-CR-176535) SONE PROPERTIES OF N86-19009n-dimensional terangulations jet propulsionLab.) 35 p нС A 03 / MF A01CscL 09B
UaclasG3/61:05451
June 15,1985

N/SA

National Aerónautics and
Space Administration
Jet Propulsion-Laboratory
California Institute of Technology
PasadenarCalifornia

| 1. Report No. $85-42$ |
| :--- | :--- | :--- | :--- |

Some Properties of n-Dimensional Triangulations

C.L. Lawson

National Aeronautics and
Space Administration
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

The research described in this publication was carried out by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement by the United States Government or the Jet Propulsion Laboratory, California Institute of Technology.

ABSTRACT

This report establishes a number of mathematical results relevant to the problem of constructing a triangulation, i.e., a simplicial tessellation, of the convex hull of an arbitrary finite set of points in $n-s p a c e$.

The principal results of the present report are (a) A set of $n+2$ points in n-space may be triangulated in at most 2 different ways.
(b) The "sphere test" defined in this report selects a preferred one of these two triangulations.
(c) A set of parameters is defined that permits the characterization and enumeration of all sets of $n+2$ points in n-space that are significantly different from the point of view of their possible triangularizations.
(d) The local sphere test induces a global sphere test property for a triangulation.
(e) A triangulation satisfying the global sphere property is dual to the n-dimensional Dirichlet tessellation, i.e., it is a Delaunay triangulation.

ACKNOWLEDGEMENTS

The author wishes to express his appreciation
to C. deBoor, G. Farin, and W. V. Snyder forhelpful discussions and comments on the drafts ofthis report.

1. Introduction 1
2. Barycentric coordinates and their geometric interpretation. 4
3. Triangulations of sets of $n+2$ points 5
4. Signature sets 7
5. Admissible triangulations of $n+2$ points 9
6. Configurations having all pairs of points connected 16
7. The sphere test for a set of $n+2$ points in $n-s p a c e$ 17
8. The local and global sphere tests 23
9. The global sphere test and the Dirichlet tessellation 25
References 28
Figures
10. Configurations of four distinct non-colinear points in
2-space 6
11. Configurations of five distinct non-coplanar points in
3-space 15
12. Example of application of the sphere test 19
13. Configuration of Lemmas 1 and 2 in 2-space 21
14. Configuration of Theorem 3 in 2-space 22
15. Configuration of Theorem 4 in 2-space 24

Table

1. Characterizing parameters for all of the significantly different configurations of $n+2$ points in n-space for

2. Introduction

Let P denote a set of m distinct points in n-space $(n \geq 2$, $m \geq n+1$.$) Let c$ denote the convex hull of P. Assuming P does not lie entirely in some ($n-1$)-dimensional manifold, we are interested in the problem of constructing a simplicial tessellation, T, of C such that each simplex, $t \in T$, has $n+1$ points of P as its vertices, has non-null n-dimensional volume, and contains no other points of P. Such a tessellation will be called a triangulation.

Another type of tessellation with which we shall be concerned is the Dirichlet tessellation. This is the set of. m cells, d_{i}, defined as

$$
a_{i}=\left\{q:\left\|q-p_{i}\right\| \leq\left\|q-p_{j}\right\| \text { for all } p_{j} \in P\right\}
$$

Thus the interior points of the cell a, are the points of n-space that are closer to the point p_{i} than to any other point of P. A triangulation of P can be defined that is, in a certain sense, dual to the Dirichlet tessellation. Such a triangulation is called a Delaunay triangulation and will be defined in Section 9.

Triangulations of point sets in 2 -space are used in a variety of applications, particularly as an initial step in the analysis of data that is available at scattered points in the plane. After triangulation one may carry out interpolation, regridding to a rectangular grid, contour plotting, or other processes. The Dirichlet tessellation is used as a model in various scientific fields where it is appropriate to associate a unique region of space with each point in a finite point set.

Examples of applications of the Dirichlet tessellation are summarized and referenced in [Green '78].

Similar needs arise for the analysis of data defined at scattered points in higher dimensional spaces, but much less study has been devoted to triangulation algorithms and interpolation methods for these problems.

Some early algorithms proposed for triangulation in the plane required $O\left(m^{2}\right)$ time. Since 1972 a number of computer programs for this problem, or the closely related Dirichlet tessellation problem, have been reported with estimates of
 [Lawson '77], [Akima '78], [Green '78], [Cline '84], and [Renka '84bl. Triangulation on the surface of a sphere is treated in [Lawson '84] and [Renka '84a]. The methods of various of these papers have been used in a number of proprietary graphics packages, and in the portable Fortran programs described in [Renka '84a] and [Renka '84b] that are available from the ACM software distribution service.

Bowyer [Bowyer '81] devised and implemented an algorithm for constructing the n-dimensional Dirichlet tessellation and the dual (Delaunay) triangulation. A very satisfactory execution time estimate of $O\left(a_{k} n^{(1+1 / k)}+b_{k} n\right)$ was reported. The algorithm was implemented in ISO Fortran and performed well in a variety of test cases.

Barnhill and Little [Barnhill '84] presented ideas on a different approach to the n-dimensional triangulation problem and
also gave interpolation methods for use with triangular grids in 3- and 4-dimensional space.

The present report establishes some mathematical properties of n-dimensional triangulations that provide additional understanding of the problem. These results are generalizations of properties of the 2-dimensional problem given in [Lawson '77].

The algorithm given in [Lawson '77] operates by successively triangulating various 4 -point subsets of the given point set P. It is easily seen that a set of 4 points in the plane admits of at most 2 different triangulations. In [Lawson '77] a local "circle test" was introduced that selected one of these two possible triangulations. It was shown that the triangulation produced according to this criterion satisfied a global circle test property, a max-min angle property, and was dual to the Dirichlet tessellation. The equivalence of these latter two properties was established independently by Sibson in [Sibson '78].

The principal results of the present report are
(a) A set of $n+2$ points in $n-s p a c e$ may be triangulated in at most 2 different ways.
(b) The "sphere test" defined in this report selects a preferred one of these two triangulations.
(c) A set of parameters is defined that permits the characterization and enumeration of all sets of $n+2$ points in n-space that are significantly different from the point of view of their possible triangularizations.
(d) The local sphere test induces a global sphere test property for a triangulation.
(e) A triangulation satisfying the global sphere property is dual to the n-dimensional Dirichlet tessellation, i.e., it is a Delaunay triangulation.
2. Barycentric coordinates and their geometric interpretation

The convex hull of $n+1$ points is called a simplex. The convex hull of a subset consisting of n of these points is called a facet of the simplex.

Let p_{1}, \ldots, p_{n+1}, be $n+1$ distinct points in n-space.
Define the matrix

$$
B=\left\{\begin{array}{llllll}
1 & 1 & \cdot & \cdot & \cdot & 1 \\
p_{1} & p_{2} & \cdot & \cdot & \cdot & p_{n+1}
\end{array}\right\}
$$

Let t be the (possibly degenerate) simplex with vertices P_{1}, \ldots, p_{n+1}. The n-dimensional volume of t is given by

$$
\operatorname{Vol}(t)=|\operatorname{Det}(B)| / n!
$$

Let q be an arbitrary point in n-space. If t is nondegenerate, i.e., if $\operatorname{Vol}(t) \neq 0$, the numbers, b_{1}, \ldots, b_{n}, satisfying

$$
\left\{\begin{array}{llll}
1 & 1 & & 1 \tag{1}\\
p_{1} & p_{2} & \cdot & p_{n+1}
\end{array}\right\} \cdot\left\{\begin{array}{l}
b_{1} \\
\vdots \\
b_{n+1}
\end{array}\right\}=\left[\begin{array}{l}
1 \\
q
\end{array}\right]
$$

are called barycentric coordinates of q relative to the simplex, t.

For each 3 , the sign of b_{s} indicates the position of q relative to the hyperplane, H_{s}, containing the facet of t. opposite vertex p_{s}. Thus $b_{s}=0$ when q is in $H_{s}, b_{s}>0$ when q is on the same side of H_{s} as p_{s}, and $b_{s}<0$ when q is on the opposite side of H_{s} from p_{s}.

Some consequences of these facts are:
(a) The point, q, is in the simplex, t, if and only if all $b_{s} \geq 0$.
(b) If q is strictly outside the simplex, t, then one or more of the b_{s} 's are negative. These negative D_{s} 's Identify the facets of t with whose vertices q can be connected to form nondegenerate simplices neighboring to t.
(c) At least one of the D_{s} 's must be positive since $\Sigma b_{s}=1$.

3. Triangulations of sets of $n+2$ points

In the 2 D problem, study of all possible ways of triangulating the convex hull of four points provided the key ideas that led to a systematic procedure for improving the triangulation of the convex hull of larger sets of points as one point at a time was introduced. The study of sets of $n+2$ points provides similar insights in the n-dimensional problem.

In 2-space all of the different possibilities for configurations of four distinct points, not on a common line, are illustrated by the three cases in Figure 1.

CASE 1.
3.

$$
.2
$$

4
-1

CASE 2.

3

- 1
-4

CASE 3.

Figure 1. Configurations of four distinct non-colinear points in 2-space.

In Case 1 there is a unique triangulation using two triangles. In Case 2 there are two possible triangulations, each using two triangles. In Case 3 there is a unique triangulation using three triangles.

One might expect the general n-dimensional case to be much more complicated than the $2-\mathrm{D}$ case. Although there is more
complexity in the higher dimensional cases, there are, fortunately, two very useful properties that persist. It remains true that a given set of $n+2$ points in n-space admits of at most two different triangulations by n-dimensional simplices. Furthermore, if the $n+2$ points do not all lie on a common n-sphere, one of the possible triangulations is uniquely selected by the sphere test that will be described shortly.

These facts will be established in the following two sections.

4. Signature sets

Theorem 1 Let P be a set of $n+2$ points, p_{1}, \ldots, p_{n+2} in n-space not lying entirely in any (n-1)-dimensional manifold. There is a partltioning of the index set \{1, 2, ... n+2\} into three sets, S_{0}, S_{1}, and S_{2}, and a set of numbers. c_{i}, satisfying

$$
\begin{align*}
& \underset{i \in S_{1}}{c_{i} p_{i}}=\underset{i \in S_{2}}{ } c_{i} p_{i} \tag{2}\\
& \underset{i \in S_{1}}{ } c_{i}=\sum_{i \in S_{2}} c_{i}=1 \tag{3}\\
& c_{i}=0, i \in S_{0} \tag{4}\\
& c_{i}>0, i \in S_{1} \cup S_{2} \tag{5}
\end{align*}
$$

The numbers c_{i} are uniquely determined by the set P.. The sets $\cdot S_{0}, S_{1}$, and S_{2}, are also unique, with the understanding that the labeling of S_{1} and S_{2} could be arbitrarily interchanged.

Proof. The $(n+1) \times(n+2)$ matrix

$$
A=\left\{\begin{array}{lllll}
1 & \cdot & \cdot & \cdot & 1 \\
p_{1} & \cdot & \cdot & \cdot & p_{n+2}
\end{array}\right\}
$$

is of rank $n+1$ due to the hypothesis that the points of P do not all lie in any ($n-1$)-dimensional manifold. The system

$$
\begin{equation*}
A x=0 \tag{6}
\end{equation*}
$$

has a 1-dimensional space of solution vectors. Let x^{*} be a nonzero vector satisfying Eq. (6) and normalized to satisfy $\Sigma\left|x_{i}\right|=2$. Since the first row of Eq. (6) is $\Sigma x_{i}=0$, the vector x^{*} must have both positive and negative components, and the sum of the positive components must equal the sum of the magnitudes of the negative components. In fact, with the specified normalization, these sums must each be 1 .

If any components of x^{*} are zero, let s_{0} be the index set for these components. Let S_{1} be the index set for components of x^{*} of one sign and let S_{2} be the index set for components of x^{*} of the other sign. Both S_{1} and S_{2} are non-null. Define

$$
c_{i}=\left|x_{i}^{*}\right|, \quad i=1, \ldots, n+2
$$

Then $\Sigma_{i} c_{i}=2$ and all of the Eqs. (2-5) are satisfied.
This specification of the sets, S_{0}, S_{1}, and S_{2}, and the numbers, c_{i}, is unique to within the possible interchange of S_{1} and S_{2}, since if Eqs. (2-5) were satisfied by any other sets, S_{0}^{\prime}, S_{1}, and S_{2}, and numbers, c_{i}^{\prime}, it would permit the construction of a solution vector for Eq. (6) not in the same 1-dimensional subspace as x^{*}.

For any point set P satisfying the hypotheses of Theorem 1 . the associated sets, s_{0}, s_{1}, and s_{2}, will be called the signature sets of P.

Let p^{*} be the point given by the equal left and right members of Eq. (2). Note that p^{*} is in the convex hull of $\left\{p_{i}: i \in S_{1}\right\}$ and also in the convex hull of $\left\{p_{i}: d e S_{2}\right\}$. In fact the
geometric interpretation of Theorem 1 is that the subsets of P indexed by S_{1} and S_{2} are. the smallest two disjoint subsets of P whose convex hulls have a point in common, and the common point, p^{*}, is unique.

As examples, in Fig. 1 , we can identify the signature sets and the common point p^{*} as follows:

Case I $S_{0}=\{2\}, S_{1}=\{4\}, S_{2}=\{1,3\}, p^{*}=p_{4}$
Case II $S_{0}=N u 11, S_{1}=\{1,3\}, S_{2}=\{2,4\}, p^{*}=$ the intersection of lines $p_{1} p_{3}$ and $p_{2} p_{4}$.
Case.III $S_{0}=N u I I, S_{1}=\{4\}, S_{2}=\{1,2,3\}, p^{*}=p_{4}$

To relate this to the possible triangulations of the convex hull of P, we next identify the possible nondegenerate simplices that can be formed from the points of P.

For each $i=1, \ldots, n+2$, let t_{i} denote the (possibly degenerate) simplex formed using the points $P \backslash p_{i}$ as vertices. (The notation $P \backslash p_{i}$ denotes the subset of P remaining when point p_{i} is removed.) The n-dimensional volume of t_{l} is λc_{i} where the c_{i}^{\prime} 's are given by Theorem 1, and λ is a positive constant independent of i. Thus the nondegenerate simplices are just the set $\left\{t_{i}: i \in S_{1} \cup S_{2}\right\}$.

What are the possible groupings of these simplices to form a triangulation of the convex hull of P ?
5. Admissible triangulations of $n+2$ points

Theorem 2 Let p be a point set as in theorem 1. There are at most two distinct triangulations of the convex hull of P. namely, $T_{1}=\left\{t_{i}: i \in S_{1}\right\}$ and $T_{2}=\left\{t_{i}: i \in S_{2}\right\}$, where the sets S_{1} and
S_{2} are as defined in Theorem 1, and t_{i} is the simplex with vertex set $P-\left\{p_{i}\right\}$. If one of the sets S_{1} or S_{2} is of cardinality 1 . the corresponding set T_{1} or T_{2} is not an admlsible triangulation. Proof. This theorem will be proved by establishing the following four assertions:
(a) Any pair of simplices, one indexed in S_{1} and the other indexed in S_{2}, is mutually overlapping and thus cannot be used in the same triangulation.
(b) Any pair of simplices, both indexed in S_{1} or both indexed in S_{2}, is nonoverlapping, and thus the sets $T_{1}=\left\{t_{i}: i \in S_{1}\right\}$ and $T_{2}\left\{t_{i}: i \in S_{2}\right\}$, are each nonoverlapping sets of simplices.
(c) Each of the sets T_{1} and T_{2} covers the entire convex hull, C, of $P, i . e .$, any point $q \in C$ is also contained in some $t_{i} \in \boldsymbol{T}_{1}$ and in some $t_{j} \in T_{2}$.
(d) T_{i} is not an admissible triangulation of C if

$$
\left|S_{i}\right|=1
$$

Note that Eq. (2) can be solved for any one of the $p_{i} \mathbf{s}^{\prime}$, $i \in S_{1} U S_{2}$, and the resulting equation gives the barycentric coordinates of one point of P with respect to the simplex formed by the others. For example, choose an index, $k \in S_{1}$, and solve Eq. (2) for p_{k}, obtaining

$$
\begin{equation*}
p_{k}=\sum_{i \in S_{2}}\left(c_{i} / c_{k}\right) p_{i}-\sum_{i \in S_{1} \backslash k}\left(c_{i} / c_{k}\right) p_{i}+\sum_{i \in S_{0}}\left(c_{i} / c_{k}\right) p_{i} \tag{7}
\end{equation*}
$$

from which we may write the barycentric coordinates of p_{k} relative to the simplex t_{k} as

$$
\begin{gather*}
b_{i}=c_{i} / c_{k}>0 \text { for } i \in S_{2} \tag{8}\\
b_{i}=-c_{i} / c_{k}<0 \text { for } i \in\left(S_{1}-\{k\}\right) \tag{9}\\
b_{i}=0 \text { for } i \in S_{0} \tag{10}\\
-10-
\end{gather*}
$$

Eq. (8) implies that for each $i \in S_{2}, p_{i}$ and p_{k} are on the same side of the common facet shared by t_{i} and t_{k}. Thus t_{i} and t_{k} overlap, establishing assertion (a). Eq. (9) implies that for each $i \in S_{1} \backslash k, p_{i}$ and p_{k} are on opposite sides of the common facet shared by t_{i} and t_{k}. Thus t_{i} and t_{k} do not overlap, establishing assertion (b).

Let q be an arbitrary point in C. Then there are non-negative coefficients, d_{i}, such that

$$
\begin{align*}
& q=\sum_{i=1}^{n+2} d_{i} p_{i} \tag{11}\\
& 1=\sum_{i=1}^{n+2} d_{i} \tag{12}
\end{align*}
$$

Rewrite Eqs.(2-3) as

$$
\begin{align*}
& 0=\sum_{i \in S_{1}} c_{i} p_{i}-\sum_{i \in S_{2}} c_{i} p_{i} \tag{13}\\
& 0=\sum_{i \in S_{1}} c_{i}-\sum_{i \in S_{2}} c_{i} \tag{14}
\end{align*}
$$

Using an indeterminate, λ, form λ times Eq:(13) plus Eq. (11), and λ times Eq. (14) plus Eq. (12):

$$
\begin{align*}
& q=\sum_{i \in S_{1}}\left(\alpha_{i}+\lambda c_{i}\right) p_{i}+\sum_{i \in S_{2}}\left(\alpha_{i}-\lambda c_{i}\right) p_{i}+\sum_{i \in S_{0}} \alpha_{i} p_{i} \tag{15}\\
& 1=\sum_{i \in S_{1}}\left(\alpha_{i}+\lambda c_{i}\right)+\sum_{i \in S_{2}}\left(\alpha_{i}-\lambda c_{i}\right)+\sum_{i \in S_{0}} \alpha_{i} \tag{16}
\end{align*}
$$

There is a range of values of $\lambda, \lambda_{\min } \leq \lambda \leq \lambda_{\text {max }}$ for which all of the coefficients, $\left(\alpha_{i}+\lambda c_{i}\right), i \in S_{1}$, and $\left(\alpha_{i}-\lambda c_{i}\right), i \in S_{2}$, appearing in Eqs. (15-16) are nonnegative. At the low end of this range, at least one of the coefficients indexed in S_{1}, say $a_{j}+\lambda c_{j}$, is zero, showing that $q \in t_{j}$. Similarly at the high end of the λ range at least one of the coefficients indexed in S_{2}, say
$\alpha_{\ell}-\lambda c_{\ell}$, is zero, showing that $q \in t_{\ell}$. These limiting values of λ are given by

$$
\begin{aligned}
\lambda_{\min } & =\max \left\{-\alpha_{i} / c_{i}: i \in S_{1}\right\} \\
\lambda_{\max } & =\min \left\{\alpha_{i} / c_{i}: i \in S_{2}\right\}
\end{aligned}
$$

This establishes assertion (c).
Consider now the case in which one of the sets S_{1} or S_{2} has cardinality 1 , e.g., suppose $\left|S_{1}\right|=1$. Then the triangulation, r_{1}, consists of a single simplex, say t_{j}. The point p_{j} that is not a vertex of t, j is therefore not a vertex in the triangulation, T_{1}. Thus the triangulation T_{1} is not admissible because it does not include all points of P as vertices. $\quad 0$

In a different context, namely in developing a stable method for evaluation of multivariate splines, Grandine [Grandine '84] proved a theorem encompassing a subset of the above Theorem 2 . His theorem states that an arbitrary point in the convex hull of a set of $n+2$ points in $n-s p a c e$ can be in the interior of at most two of the $n+2$ simplices that can be formed using these points.

As examples of Theorem 2, consider again Figure 1. In Case 1. with $S_{1}=\{4\}$ and $S_{2}=\{1,3\}$, the triangulation $T_{2}=\left\{t_{1}, t_{3}\right\}$ is admissible while $T_{1}=\left\{t_{4}\right\}$ is not, again because p_{4} is not used as a vertex. In Case 2 , with $S_{1}=\{1,3\}$ and $S_{2}=\{2,4\}$, there is a choice of two admissible triangulations, $T_{1}=\left\{t_{1}, t_{3}\right\}$ and $T_{2}=\left\{t_{2}, \dot{亏}_{4}\right\}$ In Case 3, with $S_{1}=\{4\}$ and $S_{2}=\{1,2,3\}$, the triangulation $T_{2}=\left\{t_{1}, t_{2}, t_{3}\right\}$ is admissible while $T_{1}=\left\{t_{4}\right\}$ is not, because p_{4} is not used as a vertex.

Corollary 1 In the context of building triangulations, an enumeration of all possible significantly different
configurations of $n+2$ distinct points in n-space, not lying in any (n-1)-dimensional manifold, is given by all of the possible ways of assigning values to $\left|S_{0}\right|,\left|S_{1}\right|$, and $\left|S_{2}\right|$ satisfying

$$
\begin{align*}
& \left|S_{2}\right| \geq\left|S_{1}\right| \geq 1 \tag{17}\\
& \left|S_{2}\right| \geq 2 \tag{18}\\
& \left|s_{0}\right| \geq 0 \tag{19}\\
& \left|s_{0}\right|+\left|s_{1}\right|+\left|s_{2}\right|=n+2 \tag{20}
\end{align*}
$$

Proof. The sets S_{1} and S_{2} must each be nonempty to satisfy Eq. (3). Since the sets S_{1} and S_{2} are not mutually distinguished we may arbitrarily use S_{1} as the label of the smaller of the two sets when they are not of the same size. These considerations establish Eq.(17).

The sets S_{1} and S_{2} cannot both be singletons for then they would have to index the same single point in order for Eq. (2) to hold. This is ruled out by the hypothesis that all points of P are distinct. Along with the convention of Eq. (17) this gives Eq. (18) .

Eqs.(19-20) follow from previous discussions.

Using Corollary 1 one may list the values of $\left(\left|S_{0}\right|,\left|S_{1}\right|\right.$. $\left.\left|S_{2}\right|\right)$ for all significantly different configurations of $n+2$ points in n-space. This is done for dimensions $1,2,3$, and 4 in Table 1.

Table 1. Characterizing parameters for all of the significantly different configurations of $n+2$ points in n-space for $n=1,2,3$, and 4 .

${ }_{0} 1$	1	21	$\left\|S_{0}\right\|$	1	$\mathrm{S}_{2} 1$	$\left\|s_{0}\right\|$	1	${ }_{2}$	$1 s_{0}$		$S_{2} 1$
0	1	2	1	1	2	2	1	2	3	1	2
			0	2	2	1	2	2	2	2	2
			0	1	3	1	1	3	2	1	3
						0	2	3	1	2	3
						0	1	4	1	1	4
									0	3	3
									0	2	4
									0	1	5

For each dimension in Table 1 the triples are listed in reverse lexicographic order. With this ordering cases in the same row have the same pair of values of $\left|S_{1}\right|$ and $\left|S_{2}\right|$, differing only in $\left|S_{o}\right|$. Since the possible triangulations are determined by $\left|S_{1}\right|$ and $\left|S_{2}\right|$, there is a significant geometric relationship between the possible triangulations for cases appearing in the same row. This will be explained further after introducing Figure 2.

The three cases shown for $n=2$ are those previously illustrated in Figure 1 , and in the same order. Diagrams illustrating the five cases for $n=3$ are given in Figure 2. Recall that cases with $\left|S_{1}\right|=1$ admit only one triangulation each while cases with $\left|S_{1}\right|>1$ admit two distinct triangulations each.

CASE 1.

CASE 2.

CASE 3.

CASE 4.

CASE 5.

Figure 2. Configurations of five distinct non-coplanar points in 3-space.

Note that in the first three cases of Figure 2 the base facet of each diagram has the same configuration as the corresponding case in Figure I. Case 1 admits of a further stage of reduction since the base edge in Figure 1 is the diagram for the case of 3 points in 1-space, i.e., the case corresponding to the first and only entry for $n=1$ in Table 2.

These are examples of the following general principle: If a point set P has parameters $\left(\sigma_{0}, \sigma_{1}, \sigma_{2}\right)$ with $\sigma_{0} \neq 0$, the subset P^{*} consisting of the points indexed in S_{1} and S_{2} will lie in an ($n-\sigma_{0}$)-dimensional manifold and have a ($0, \sigma_{1}, \sigma_{2}$) configuration. (Note that these two related configurations are in the same row in Table 2.) Any triangulation of P is related to a tesselation of P^{*} by the fact that any simplex in a triangulation of P is the convex hull of the union of a simplex in a triangulation of P^{*} with the points of $P \backslash P^{*}$.
6. Configurations having all pairs of points connected

Note that in Case 3 and in the second triangulation shown for Case 4 in Figure 2, every pair of points is connected by an edge used in the triangulation. This is true of any triangulation of $n+2$ points in n-space if the triangulation consists of three or more simplices. This follows from the observation that if any three different subsets of size $n+1$ are selected from a set of $n+2$ points, every possible pairing of points must appear in one or more of the selected subsets.

This observation has particular significance in dimensions 4 and higher, since then there are configurations of $n+2$ points having 3 or more points in both s_{1} and s_{2}; e.g., see Row 6 for
$n=4$ in Table 1. In such cases both of the possible triangulations will have all points connected by edges of the triangulations. Therefore the two possible simplicial triangulations are not distinguished from each other by information about connectivity of pairs of points.

We shall return to this point in Section 9 in connection with the Dirichlet tessellation.
7. The sphere test for a set of $n+2$ points in n-space

Let P continue to denote a set of $n+2$ points in n-space, not lying entirely in any $n-1$ dimensional manifold. In the preceding section it was seen that there may be either one or two ways to triangulate the convex hull C of such a set P. For the cases in which two triangulations are possible we introduce the sphere test as a way of choosing one of the triangulations.

Suppose P is a configuration that admits two possible triangulations. Using the notation and results of Theorems 1 and 2, it follows that $\left|S_{1}\right| \geq 2,\left|S_{2}\right| \geq 2$, and $n \geq 2$. The two possible triangulations are $T_{1}=\left\{t_{i}: l \in S_{1}\right\}$ and $T_{2}=\left\{t_{i}: l \in S_{2}\right\}$, where t, is the nondegenerate simplex with vertex set $P \backslash p_{i}$.

For each $i \in S_{1} U_{2}$, let E_{i} be the unique n-sphere circumscribing the simplex t, and let B, be the open n-ball whose boundary is E_{i}.

The Sphere Test

If all points of P lie on the same sphere, i.e.,
all of the spheres E_{i} are coincident, then the sphere test does not distinguish between T_{1} and T_{2}. Otherwise choose $J \in S_{1} \cup S_{2}$. If $p ; \in B$, select the triangulation T_{1} or T_{2} that includes t_{j}, while if $p_{j} \in B{ }_{j}$ select the triangulation T_{1} or T_{2} that does not include t_{j}.

As an example consider Case 2 of Figure 1 with $S_{1}=\{1, \ldots 3\}$ and $S_{2}=\{2,4\}$. To apply the sphere test we may choose any one of the four points and ask whether it is inside or outside the open ball circumscribing the other three points. Figure 3 illustrates the four possible ways of applying the test for this example. We find $P_{1} \in B_{1}, P_{3} \in B_{3}, P_{2} \notin B_{2}$, and $P_{4} \notin B_{4}$. Thus any one of these tests results in the selection of $T_{2}=\left\{t_{2}, t_{4}\right\}$ as the preferred triangulation.

$p_{1} \in B_{1}$

$\mathrm{P}_{2} \notin \mathrm{~B}_{2}$

$P_{3} \in B_{3}$

$P_{4} \notin B_{4}$

Figure 3. Example of application of the sphere test.

The crucial fact that the result of the sphere test is unique independent of the choice of the test point is established by the following theorem.

Theorem 3 Let p be a point set satisfying the hypotheses of Theorem 1 with signature sets satisfying $\left|S_{1}\right| \geq 2$ and $\left|S_{2}\right| \geq 2$. If the points of P do not all lie on the same n-sphere then either

$$
p_{i} \in B_{i} \text { for all } i \in S_{1} \text { and } p_{i} \in B_{i} \text { for all } i \in S_{2}
$$

or

$$
P_{i} \in B_{i} \text { for all } i \in S_{2} \text { and } P_{i} \in B_{i} \text { for all } i \in S_{1} .
$$

For the proof of this theorem it is useful to have the following two lemmas on intersecting spheres.

Lemma 1 Let E_{1} and E_{2} be two distinct n-spheres in n-space, $(n \geq 2)$, intersecting in a set E_{12} consisting of more than a single polnt.: Then E_{12} is an (n-1)-sphere contained in a uniquely determined hyperplane h_{12}

Lemma 2 Let B_{1} and B_{2} denote the open Dalls bounded by E_{1} and E_{2}, respectively. on one side of the nyperplane, h_{12}, B_{1} will contain B_{2}, while the reverse inclusion will prevail on the other side of h_{12}. Let H_{1} denote the open halfspace on the side of h_{12} in which B_{1} contains B_{2} and let H_{2} denote the other open halfspace. Then

$$
\begin{align*}
& H_{1} \cap B_{2} \subset H_{1} \cap B_{1} \tag{21}\\
& \left(H_{1} \cap B_{2}\right) \cap\left(H_{1} \cap E_{1}\right)=\mathrm{Null} \tag{22}\\
& B_{2} \cap\left(H_{1} \cap E_{1}\right)=\mathrm{Null} \tag{23}
\end{align*}
$$

$$
\begin{align*}
& H_{2}^{\cap B} 1 \subset H_{2} \cap B_{2} \tag{24}\\
& \left(H_{2} \cap B_{1}\right) \cap\left(H_{2} \cap E_{2}\right)=N u l l \tag{25}\\
& B_{1} \cap\left(H_{2} \cap E_{2}\right)=N u I l \tag{26}
\end{align*}
$$

Proof of Lemmas. The validity of these lemmas for $n=2$ is clear from consideration of Figure 4.

Figure 4. Configuration of Lemmas 1 and 2 in 2-space.

In higher dimensional spaces the configuration of the two intersecting balls is symmetric about the line, ℓ, connecting the centers of the two balls. Thus the intersection of the objects $E_{1}, E_{2}, B_{1}, B_{2}, H_{12}, H_{1}$, and H_{2} with any 2-dimensional manifold containing ℓ again gives the configuration of Figure 4 . We omit further details of the proof. \square

The principal conclusions to be used subsequently from Lemma 2 are Eqs.(23) and (26). For example from Eq. (23) we know that if a point, q, is in $H_{1} \cap E_{1}$, then $q \in B_{2}$.

Proof of Theorem 3. Without loss of generality let $j \in S_{1}$ and suppose $P_{j} \notin B$, so that T_{1} is selected. It suffices to show that $p_{i} \notin B_{i}$ for every $i \in S_{1}$ and $p_{i} \in B_{i}$ for every $i \in S_{2}$.

Let $t \in S_{1} U S_{2}$. Let $t_{i j}$ denote the ($n-1$)-simplex forming the common facet of the simplices t_{i} and t_{j}. Thus $t_{i j}$ is the $(n-1)$-simplex with vertex set $P \backslash\left\{p_{i}, p_{j}\right\}$.

Let $n_{i j}$ denote the unique hyperplane containing $t_{i j}$. The intersection of the n-spheres E_{i} and E_{j} is the $(n-1)-\operatorname{sphere} E_{i j}$ that circumscribes $t_{i j} E_{i j}$ lies in $n_{i j}$. On one side of $h_{i j}$, B_{i} is contained in B_{j}, while on the other side of $h_{i j}{ }^{\prime} B_{j}$ is contained in B_{i}. From information about one point of E_{i}, namely p_{j}, that is not in $h_{i j}$, the relative containment relations between B_{i} and B_{j} can be determined.

Let H_{j} denote the open halfspace on the same side of $\boldsymbol{h}_{\boldsymbol{i} j}$ as p_{j} and let H_{j}^{\prime} denote the open halfspace on the other side of $n_{i j}{ }^{\prime}$ See Figure 5.

CASE OF $i \in S_{1}$

CASE OF $\mathrm{i} \in \mathrm{S}_{2}$

Figure 5. Configuration of Theorem 3 in 2-space.

Since $p_{j} \notin B_{j}$ but $p_{j} \in E_{i}$, it follows that

$$
\begin{equation*}
B_{j} \cap H_{j} \subset B_{i} \cap H_{j} \tag{27}
\end{equation*}
$$

Then, as in Lemma 1 , in the other halfspace, $H^{\prime} j$, we have

$$
\begin{equation*}
B_{i} \cap H_{j}^{:} \subset B_{j} \cap H_{j}^{1} \tag{28}
\end{equation*}
$$

We now consider the two possible cases of $i \in S_{1}$ or $i \in S_{2}$.
If $i \in S_{1}$ then p_{i} and p_{j} are on opposite sides of $n_{i j}$ and thus
$p_{i} \in H_{j}^{\prime}$. Also $p_{i} \in E$, and thus $p_{i} \in E_{j} \cap H_{j}^{\prime}$. From Eq. (28) and Lemma 2 it follows that $p_{i} \notin B_{i}$.

If $i \in S_{2}$ then p_{i} and p_{j} are on the same side of $n_{i j}$ and thus $p_{i} \in H_{j}$. Also $p_{i} \in E$, and thus $p_{j} \in E_{j} \cap H_{j}$. From Eq. (27) it follows that $p_{i} \in B_{i}$.
8. The local and global sphere tests

Let T be a triangulation of a point set P in n-space. The triangulation T satisfies the global sphere test if for each simplex $t_{i} \in T$ the open n-ball B_{i} circumscribing t_{i} contains no points of P.

A pair of n-simplices, t_{f} and t_{j}, sharing a common $(n-1)$-dimensional facet $t_{i j}$ will be said to satisfy the local sphere test if the vertex of t_{i} not in $t_{i j}$ is outside the open ball B_{j} circumscribing t_{j}. By Theorem 3, this is equivalent to the requirement that the vertex of t_{j} not in $t_{i j}$ is outside the open ball B_{i} circumscribing t_{i}.

Theorem 4 If a triangulation T of a point set P has the property that every pair of simplices sharing a common facet satisfies the local sphere test. then T satlsfies the global sphere test.

Proof. The proof will be by contradiction. Suppose the hypothesis is satisfied, but there is some point $P^{*} \in P$ and some simplex $t \in \boldsymbol{f}$ such that the open ball B^{\prime} circumscribing t " contains p^{*}.

Let ℓ be a line segment from \dot{p}^{*} to some point q interior to t. By a small perturbation of the position of the end point q, if necessary, we may assume that wherever ℓ passes from one
simplex to another it intersects the relative interior of a common facet.

Relabel the simplices intersected by $\&$ so they are denoted by $t_{1},{ }^{t}{ }_{2}, \ldots, t_{k}$, ordered along the line ℓ from t_{1}, which was previously called t^{\prime}, to t_{k}, which has P^{*} as one of its vertices.

For $i=2, \ldots, k$, let p_{i} be the vertex of t_{i} that is not a vertex of t_{i-1}. For $i=1, \ldots, k$, let E_{i} be the sphere circumscribing t_{i}, and let B_{i} be the open ball whose boundary is E_{i}. Note that $p_{k}=p^{*}$ and $B_{1}=B^{\prime}$.

By hypothesis, $p_{i} \notin B_{i-1}, i=2, \ldots, k$, but we are assuming $p_{k} \in B_{1}$. Since $p_{k} \in B_{1}$ and $p_{k} \in B_{k-1}$, there exists a smallest index, j, such that $p_{k} \in B{ }_{j}$ and $p_{k} \notin B{ }_{j+1}$. Let n denote the unique hyperplane containing the facet common to t_{j} and t_{j+1}. Figure 6 illustrates t_{j}, t_{j+1}, and related objects for the case of $n=2$.

Figure 6. Configuration of Theorem 4 in 2-space.

Let H_{j+1} be the open halfspace on the same side of n as t_{j+1}. Let H_{j} be the opposite open halfspace, i.e., the halfspace on the same side of n as t_{j}. Then

$$
p_{j+1} \in E_{j+1} \cap H_{j+1}
$$

and

$$
p_{j+1} \notin B_{j}
$$

thus

$$
\begin{gathered}
B_{j} \cap H_{j+1} \subset B_{j+1}^{\cap H}{ }_{j+1} \\
p_{k} \in B_{j} \cap H_{j+1} \\
p_{k} \in B_{j+1} \cap H_{j+1}
\end{gathered}
$$

contradicting the assumption that $p_{j} \notin B_{j+1}$.

9. The global sphere test and the Dirichlet tessellation

Let P again denote a finite set of distinct points in n-space, not lying entirely in any ($n-1$)-dimensional manifold. With each point, $p_{i} \in P$, we associate the cell,

$$
d_{i}=\left\{q:\left\|q-p_{i}\right\| \leq\left\|q-p_{j}\right\|, \text { for all } p_{j} \in P\right\}
$$

The cell α_{i} is called the Dirichlet cell associated with p_{i} relative to the point set P. The set of all d_{i} 's is called the Dirichlet tessellation of n-space associated with the point set P. Clearly the cells α_{i} are disjoint except for common boundaries, and the union of all of the d_{i} 's covers all of n-space.

Each cell, α_{i}, is the intersection of a finite number of halfspaces. Each such halfspace is bounded by the hyperplane that perpendicularly bisects the line segment connecting the point p_{i} to another point of P.

Let Q denote the set of points, q_{j}, that occur as vertices of the d_{i} 's. Each q_{j} is the unique intersection point of at least n facets of some cell, a_{i}, and thus is the unique
intersection point of at least n of the bisection hyperplanes, with some n of them being linearly independent.

Let $r_{j}=\left\|q_{j} p_{i}\right\|$. Since $q_{j} \in d_{i}$, there are no points of P whose distance from q_{j} is less than r_{j}. For each bisecting hyperplane on which q_{j} lies, there is another point, $p \in P$, which is the reflection of p_{i} relative to this hyperplane and whose distance from q_{j} is also r_{j}. Thus there are $n+1$ or more points of P at the distance r_{j} from q_{j}, and this set of points does not lie in any ($n-1$)-dimensional manifold.

Conversely it can be verified that any point in n-space that attains its minimum distance from points of P at $n+1$ or more points of P that do not lie in an ($n-1$)-dimensional manifold must be a vertex of one or more of the a_{i} 's, i.e., must belong to the set Q.

With each point $q_{j} \in Q$, associate the convex hull, s_{j}, of the points of P that are at the minimal distance, r_{j}, from q_{j}. The set, s_{j}, is called a Delaunay cell. The set of all s_{j} 's constitutes the Delaunay tessellation of the convex hull of P. In particular it can be verified that the s_{j} 's are mutually disjoint except for common boundaries, and the union of all of the s_{j} 's coincides with the convex hull of P.

The Delaunay tessellation and the Dirichlet tessellation are dual to each other in the sense that each cell, a_{i}, of the Dirichlet tessellation is associated with a vertex, p_{l}, of the Delaunay tessellation, and each cell, s_{j}, of the Delaunay tessellation is associated with a vertex, q_{j}, of the Dirichlet tessellation.

If the points of P are in "general" position, each cell, s_{j}, will have just $n+1$ vertices, and thus will be a simplex. In this case, the Delaunay tessellation may be called a triangulation. In practical applications, e.g., [Bowyer '81], where one uses the Delaunay tessellation as a means toward producing a triangulation, one can replace any cell, s^{\prime}, , that has more than $n+1$ vertices by an arbitrary triangulation of that cell, thus producing an overall triangulation of P. It appears common to extend the name Delaunay tessellation to such a triangulation. We may now observe that a triangulation satisfying the global sphere test of Section 8 is, in fact, a Delaunay tessellation, possibly in the extended sense just mentioned. Let T be a triangulation of P satisfying the global sphere test. With each simplex, $t \in T$, associate the point, q, at the center of the circumsphere of t. If two of more simplices have the same circumcenter, replace these simplices by their union, s. Note that all vertices of such a cell, s, lie on a common sphere.

The circumcenter points, q, associated with the cells of this tessellation satisfy the properties of the set, Q, noted previously. Thus these cells are all Delaunay cells. Since their union covers the convex hull of P, no Delaunay cells are missing, so this is a Delaunay tessellation for P.

References

Akima, Hiroshi (1978), A method of bivariate interpolation and smooth surface fitting for irregularly distributed data points, ACM Trans. Math. Software, 4, 148-159; also Algorithm 526, 160-164.

Barnhill, R. E. and Little, F. F. (1984), Three- and four-dimensional surfaces, The Rocky Mountain Jour. Math., 14. 77-102.

Bowyer, A. (1981), Computing Dirichlet tessellations, The Computer Journal, 24, 162-166.

Cline, A. K. and Renka, R. L. (1984), A storage-efficient method for construction of a Thiessen triangulation, The Rocky Mountain Jour. Math., 14, 119-140.

Grandine, T. A. (1984), The stable evaluation of multivariate B-splines, MRC Technical Summary Report No. 2744, University of Wisconsin Mathematics Research Center, Madison, Wisconsin, 14 pp.

Green, P. J. and Sibson, R. (1978), Computing Dirichlet tessellations in the plane, The computer Journal, 21, 168-173.

Lawson, C. L. (1972), Generation of a triangular grid with application to contour plotting, Jet Propulsion Laboratory Internal Technical Memorandum No. 299, Pasadena, California. Lawson, C. L. (1977), Software for C^{1} surface interpolation, in: J. R. Rice, ed., Mathematical Software III, Academic Press, New York, 161-194.

Lawson, C. L. (1984), C^{1} surface interpolation for scattered data on a spnere, The Rocky Mountain Jour. Math., 14, 177-202.

Renka, R. J. (1984a), Interpolation of data on the surface of a sphere, ACM Trans. Math. Software, 10, 417-436; also Algorithm 623, 437-439.

Renka, R. J. (1984b), Algorithm 624. Triangulation and interpolation of arbitrarily distributed points in the plane, ACM Trans. Math. Software, 10, 440-442.

Sibson, R. (1978), Locally equiangular triangulations, the Computer Journal, 21, 243-245.

