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SOME PROPERTIES OF ORDINAL DIAGRAMS

MARIKO YASUGP

The theory of ordinal diagrams has been a most powerful means
for consistency proofs of some systems of second order arithmetic. The
last existing result in this line is the consistency proofs of the systems
with the provably Jg-comprehension axiom and the ^-comprehension
axiom respectively (cf. [6]). In order to pursue the consistency problem
further, one needs investigate the theory of ordinal diagrams in two
directions—refinement and strengthening of the theory.

For this purpose we have begun to search for some properties con-
cerning ordinal diagrams and some variations of the theory of ordinal
diagrams. The reader is requested to refer to §26 of [7] for the basic
knowledge of ordinal diagrams.

§ 1 . Comparison of orderings

Let Oil, A) be a system of ordinal diagrams (o.d.'s), let /be J U {oo}
and let i be an element of / (namely an indicator or oo). Here we shall
compare the order-types of the orderings Z_t for Oil, A) for distinct ί's.

LEMMA 1. Let ί and j be elements of I where i < j . Then Z_t can
be embedded in /_jΛ

Proof. Fix a an element of A, and for every a (of O(I, A)) define
an assignment of connected o.d. a = ii, a, a). This assignment defines
a one-to-one mapping of O(I,A) onto O[ί, a], where

O[ί, a] = {(i, a, a) a e O(I, A)} .

Obviously O[i, a] is a proper subset of Oil, A). &Z.jβ if and only
if a/_iβ since j > i. Thus, the mapping is order-preserving from
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144 MARIKO YASUGI

(Oil, A), Δd into (0(7, A Zi).

PROPOSITION 1.1. Let i and j be indicators where i < j . Then Z<

is embeddable in a proper, initial segment of Z_5.

Proof. Take 0 (the initial element of A) as the a in Lemma 1.

(i,0,tf)Zj(i,0,0)

for every a. So Zi is embedded in ZjΓ(ί\0>0) where, in general,

ZΓa=({β;β<a}, Z).

PROPOSITION 1.2. // ί is an indicator and if there is a value (k,a)

which is greater than (i,0), then /_i is embeddable in a proper, initial

segment of Zoo.

Proof, (i, 0, or) Z oo (k, a, 0).

LEMMA 2. Let j be an indicator. Let Zj denote the ordering Zj

restricted to

Oc(ί) = {β; β is connected and β Z.j 0\0,0)} .

Then

where \/_\ denotes the order type of /_> \A\ denotes the order type of

ZA> and Σli<j l*i ίs the infinite sum of the ordinals μi defined along the

order of I.

Proof. (1) (0(7,4), Zi) ~ (O[i,a\, Zj) (isomorphic) for each a in A

if i < j (Lemma 1).

(2) Oc(j) = Ui<j {d> a, a) α e A and a e 0(7, A)} = Ui<^ UaeA O[i, α].

(3) (ί9 a, a) Z j (i, b, β) if i < j and a < b.

(4) (i,α,α) Zj (k9 b,β) if i < k < j.

(1) through (4) yield the desired equation.

LEMMA 3. Let Z™ denote the ordering Z«, restricted to connected

o.d.'s. Then

From Lemmas 1 and 2 follows immediately;
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ORDINAL DIAGRAMS 145

THEOREM 1. Let Z * be Z.j restricted to the elements below (j, 0,0)

with respect to Z.j if j is an indicator, and let /_J be /_ά if j is oo.

For any j,

§2. Limit properties

Here we shall investigate some ordinals which have certain limit

properties with regards to ordinal diagrams.

PROPOSITION 2.1. Let 0 denote the least element of /. The least

ordinal Ω such that

(*) ya<Ω(\O(T,aχA)\Z0<Ω)

is obtained as follows, (a x A is ordered lexicographically and \B\Δ de-

notes the order type of Z when it is an order of B.)

Define Oι and /_ι for i < ω:

Oo=zO(I,A) and Z° is the order Zo for OQ; Oi+ι = O(I,Ot X A),

where Ot X A is given the lexicographical order, Ot with the order /J-

and /_ί+1 is the order Zo for Oi+1. Define

β = sup|ZΊ-

This Ω will do.

Proof. (1) {|Z*|}< i s a n increasing sequence of ordinals.

Suppose Ω does not satisfy the condition (*). Then

(3) for some a < Ω, \O{I,a x A)\Δo > Ω.

On the other hand, (2) implies that there is an i such that

(4) *<|ZΊ.

From (3) and (4) follows

Ω < \O(I, a X A)\Δo Z \O(I, Oi X A)\Zo = | + 1 | >

contradicting the definition of Ω. Thus Ω satisfies (*).

Suppose next there is another Ω' such that (*) holds for Ω\ Taking

a to be 1, we have

(5) |ZΊ<β'
(6) Assume \Zί\< Ω\ Taking a to be Oι with the order ZS we
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146 MARIKO YASUGI

obtain |O < + 1 | Z β <fl / , or \Zi+1\<Ω'.

From (5) and (6) we can conclude that Ω is the least ordinal

satisfying (*).

PROPOSITION 2.2. The Ω in Proposition 2.1 is primitive recursive,

presuming that the orderings of I and A are.

Proof. (1) Define Ot by

Oi = {(i a) or e 0,}

and (5 by

<5 = U Oi.

Define an ordering Z for 0 :

(ΐ; α) Z 0"; i8) if and only if i < or i = j Λ a Z* β. Z is primitive

recursive.

(2) Define 0* as follows.

Of = <30; O*+1 = O* U β n + 1 .

Define n Z for O* to be the order Z restricted to 0*.

(3) | n Z I = I Z Ί for every n < ω.

This is proved by induction on n. Assume | T O Z| = lZ n l Then

| n Z | < |Zn + 1 |> hence

iTO+i / I i/ i* II λ I / I TO / I I I sn+i\ | sn+i\

since those order types are limit ordinals.

(4) | Z | = sup n < . | »Z | .

IZI = Ω follows from (3) and (4), and by (1) Ω is primitive recursive.

The following proposition is proved in a like manner.

PROPOSITION 2.3. The least ordinal Ω which satisfies

( * ) vα < Ω (a > 0 3 |O(/, ά)\Δo < Ω A |O(/, A)\Zo < Ω)

is obtained as follows.

Define Ot and Z S i < ω:

O0 = O(I,A) and Z° is the order Zo for O(I,A); Oi+1 = 0(1,00 and

Z.ί+1 is the order Zo for Oi+ι. Define Ω = s u p ί < ω | Z * |

Furthermore there is a primitive recursive order for such Ω.
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PROPOSITION 2.4. Let {In}n be an increasing sequence of well-ordered

sets; namely In is embeddable in In+1. Let I be \imln, or I = {JnIn with

the order induced from those of {In}n. Assume the same for {An}n and

A. Then

Proof. (1) O(In, An) c 0(/m, Am) if n < m and Un O(In, An) = 0(7, A)

as sets.
(2) For every i in In, {OiIn,An),Z.i) is embedded in (O(Im,AJ, Z<)

if n < m.

(3) (OfJniA,), Zί) is embedded in (O(I,A), Z*) for every ΐ in 7n and

every n.

(4) {(O(/n, Λn), Zo)}« is an increasing sequence of well-ordered sets,

(cf. (2) above.)

(5) (2)-(4) imply that

U (O(/n, An), Zo) = (0(7, Λ), Zo) ,
n

or

As a special case of Proposition 2.4 we have

THEOREM 2. Define On as follows.

O0 = O(I,A); On+1 = O(On,On), where On is ordered by Zo Then

Thus Ω defined as this is a fixed point for the theory of ordinary
diagrams.

§ 3 . A generalization of ordinal diagrams

By introducing a third basic (well-ordered) set, Λ, one can either
refine or strengthen the theory of ordinal diagrams. The elements of
A act as classifiers, namely classifying the power of values.

The theory defined in this section is a straightforward generalization
of the original one in [7]. The theory of approximations can be developed
as before; only in a more uniform manner (without the irregularity
for the first values).

https://doi.org/10.1017/S0027763000021838 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000021838


148 MARIKO YASUGI

DEFINITION 3.1. The elements of O(A,I,A) are defined in a manner
similar to those of O(I, A) if (λ, i,a) is in A x / x A and if a is an
element of O(Λ,I,A), then U,i,α,α) is an element of O(A,I,A). The
elements of A are called classifiers.

Sections are defined for indicators and orderings are defined for the
elements of /; the classifiers are disregarded for those matter. For
example, the i-section of (λ,i, α, a) is a.

U, i, a, a) Zoo (μf j , b, β) if and only if

Q,j,a)<(μ,j,b) or (λ,i,ά) = (μ,j, b) A a Z.iβ ,

where A x / x A are lexicographically ordered.
For an indicator i9 Z* is defined as usual for connected elements.

For non-connected elements, the orderings are defined as before.
We omit all the proofs that can be carried out as in [7].

PROPOSITION 3.1. O(A,I,A) as defined above is linearly ordered for

every /.i

LEMMA 1. 1) // a is an i-section of a9 then σ /.ta. 2) If σ is

connected and β is a proper i-subsection of a, then β Z j a for every

ί < i-

PROPOSITION 3.2. O(A, /, A) is well-ordered by z.% for every i in I.
PROPOSITION 3.3. (O(l,A), Z*) is embedddble in (O{A,I,A), Z*) for

every i; or (O(I,A),Zi) is isomorphic to (O(A,I,A),/_i) when A is a
singleton.

THEOREM 3. The theory of approximations can be developed for

To develop the theory of approximations, we shall quote the num-
berings of [7] with*: Def. 26. 41* means Definition 26. 41 in [7], and
remark where to make adjustments. We shall, however, omit obvious
alterations.

The "values" in the definitions in § 26* are here of the form (λ, i, a).

DEF. 26. 41*. (1) when (λ, ίy a) is the outermost value of a connected
o.d., λ is the outermost classifier and i is the outermost indicator.

(2) Kernels are defined as original; only the indicators matter.

Proof of Prop. 26. 43*. Let vQ{j,ά) be U,i,α). (1) η is 0 or of
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the form (μ, k, b9 η') where k < j . Since η is y-active in β and vo(j, β)

< U,i, α), (μ, k, b) < U, i, α). Thus η Zmtt, h ^i) if j < w> < °° and if

(λ9ί9a9γ) is /-active in a.

D E F . 26. 44*. (1) Let (λ, i, a) = i>00"> <*)• Define the O-th /-approxima-

tion of a as original, replacing (ί9a) by (Λ, i9 α).

Proo/ 0/ (3) 0/ Lemma 26. 45*. Let 37 be (μ, fc, 6,37O where k<j.

Let tf0 be (Λ,ί,α,αO (μ,k,b) < (λ9 i, α). 37 Zoo α is obvious by virtue of

the condition on αro For an m such that / < m < 00, there is no m-

section of η, hence η /_ma0.

Proof of (4) 0/ Lemma 26. 45*. (i) reads at it stands.

(ϋ) η = (μ, fe, 6,5/), fc > y. If (μ, k, b) = U, i, α), then η Z.maQ for all

m > i. If j > i, this will do. / < i and / < m < ί, then use the in-

duction hypothesis. Suppose (μ, k, b) < (λ, i, a). Then η Z.ma0 for all

m > k. For an m, j < m < k, use the induction hypothesis.

Remark. (5) of Lemma 26. 45* does not hold for this system as

shown below. This is, however, an isolated proposition, and hence it

will not affect the main story of the theory of approximations.

(5) Let vo(j, a) be (λ, i, a) and let δ19 , δm be all the /-subsections

of a. Then

a0 = a p r (0, j , a) = max (βlf δ2, , δj .
Zi + i

Counter-example. Consider 0(2,2,2), j = 0 and α0 = (1> 0, 0, 0), hence

χ = 1, i = 0, α = 0, a! = 0 and α = (0, 1, 0, αr0). vo(j, a) = (1, 0, 0). But

0̂ Zi α where 1 = i + 1.

PROP. 26. 47*. Lei η be a jsubsectίon of a that contains an a0 and

let a\, al, , a™ be all occurrences of a0 (as the 0-th j-approximation) in

η. Let qk be the least indicator in η connected to a\9 k — 1,2, , m,

and let q = q(ή) = max (q19 -, qm). Then η Z P <*o for every p > q.

Proof. The original proof goes through; eliminate the condition

P < i

The irregularity for the first valuation and the first approximation

in the original theory is absent in our case in fact that irregularity is

only a consequence of the subsequent, uniform treatment when I x A

is lexicographically ordered for O(I9A). Thus we can omit Def. 26.

48*-Prop. 26. 52*.

https://doi.org/10.1017/S0027763000021838 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000021838


150 MARIKO YASUGI

DEF. 26. 53*. Let i0 be the indicator in vo(j,ά). (a09iQ)9

- y (an> in) are defined as before, reading (μ, k, b9 γ) in the place of

(k, b9 γ). Note that j < iTO+1 < im if m > 1, but nothing can be said of i0.

The rest of the material, viz., Cor. 26. 54*-Prop. 26. 61*, goes

through with some minor notational changes.

Remark. 1) The theory O(Λ,I,A) is a natural generalization of

the one in [7], which is isomorphic to O(1,I,A). If 7 x ^ 4 is anti-

lexicographically ordered, then O(I,A) is isomorphic to 004,7,1). This

is worth noting in connection with the fact that in the existing con-

sistency proofs (cf. [3], [4], [5], [6]), the order of (i, α) is immaterial.

2) O(Λ,I,A) can be extended to any basic (well-ordered) sets Bl9

• , Bm9 where one Bt is designated as the set of indicators and Bx x

• x Bm is (well-) ordered in any way.

§ 4 . A variation of ordinal diagrams

We are to study a variation of the theory O(Λ9I9A).

DEFINITION 4.1. The elements of O*{Λ9I9A) are those of O(Λ9I9A)

(cf. Definition 3.1). Sections and orderings are defined as for O(Λ9I9A)

except the order Zoo for connected elements.

Let & be {λ, j , a, a) and β be (μ9 k, b,β). a Z~ β if one of the follow-

ing holds.

0) 0', a) < (fc, 6), where the order of / x A is predetermined.

In the subsequent cases, (j, a) = (k, b) is assumed.

1) X = μ and a /_ s β.

2) λ < μ and a Z j β.

3) λ > μ and a Zjβ.

The following two lemmas are valid for any existing theory of

ordinal diagrams and can be established prior to the linearity of the

orderings.

DEFINITION 4.2. Consider a sequence of i-sections in a: a = σ09σ19

• >tfπ> where σ£+1 is an i-section of σe and σn is a last one. A sequence

like this is called an i-chain of a.

LEMMA 1. For any a, a = a and only this relation holds for any

a and σ, where σ is in an i-chain of a, σ Z.i<x cmd only this relation

holds.
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Proof. It suffices to deal with the case where everything is con-

nected. The proof is by induction on £(ά), the complexity of a.

0 = 0 and only this relation holds.

Suppose the proposition holds for every β where £(β) < £(ά).

Let σ0 = a, σ19 , σn be an i-chain of a. To establish σ$ Z.i<x for

every £9 1 < £ < n, we proceed as follows. σ£ Z i ^ - i by definition. σ£_x

is an i-section of σ£_2, hence by definition σt Z_iσί^. σ^2 is an i-section

of σ£_3, hence again by definition, σ*Z«tf*-3> and so it goes until we

reach σg Z.iθt. σέ Φ a is obvious.

Suppose a Z* ot also holds. When w = 1, .# = w = 1 and α Z< <*ι is

reduced to ^ Z ̂ 0 v\ for some /0 > i and <5 Z ί <*\ for every ^ an i-section

of a. δ can be σλ\ but ^(σx) < £(ά), so by the induction hypothesis

<*\ Z Ϊ ^ I is impossible. When w > 1, we show that α / , ^ is impossible

by induction on n — £.

It β z= n, then σ2, , σn is an i-chain of σ1 and £(σχ) < -^(α). α Z< <fn

is reduced to the fact that a /_hσn for some j0 > i and δ /_ισn for every

5 an i-section of a. δ can be σx\ but σx Z i ^ w is impossible by the in-

duction hypothesis. Assume a Z.ιθe+ι is impossible and suppose a /_ισ€.
Case 1. a Ziσ£+1. The induction hypothesis prevents this.

Case 2. a /_tσ4 for some c > ί and δ Ai^e for every δ an i-section

of a. δ can be σλ. But then σ2, ,σn is an i-chain of σλ and ^(σi) <

£(ά), hence σx /_ισe is impossible. (If ^ = 1, σ2 Z<^i is impossible.)

Suppose now a/_ta. We lead a contradiction by induction on

<0'£(ά) + c(ί;ά). Let a = (λ,j,b,β). If i is oo, then α r Z i ^ is reduced

to β Z.jβ9 contradicting the induction hypothesis. If i is an indicator,

then there are two cases.

Case 1. a ΔiG for some σ an i-section of α. But this has been

crossed out.

Case 2. a Z_ha where jQ = /0(i α) and ( 7 / ^ for every σ an ΐ-section

of a. But a Z.jooc contradicts the induction hypothesis.

LEMMA 2. Let a be a connected o.d. and let σ be a j-sectίon of a.

If a <jβ for a β, then σ <jβ

Proof. By induction on £(β). If β is not connected, consider the

relation for a component of β. Suppose β is connected.

Case 1. aZjδ for a δ a ^'-section of β. Then σ /_3δ either by

Lemma 1 or by the induction hypothesis. So by definition a Z.j β-
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Case 2. <χZjoβ for some / 0 >/ and η Zjβ for every η a /-section
of a. Let Ϊ) be σ.

PROPOSITION 4.1. 0*04, /, A) is linearly ordered for every Zι-

Proof. The proof of Proposition 26.8 in [7] goes through except
for the case i is oo, which will be dealt with here. Let a = (Λ,/, α, or),
β = (μ, k, δ, β) and f = 0, m, c, f).

I. Suppose a Zooβ and β Z~y. If 0\ α) < (m, c), then 5 Zoo ? by 0)
of Definition 4.1. So, let us assume (/, a) = (k, b) = (m, c).

Case 1. Λ = μ = y. a Zjβ and β Zjγ By the induction hypothesis

# Zi r> a n ( i hence & Zoo f by 1).
Case 2. Λ = /̂  < v. a Z.j β and β /_3γ. By the induction hypothesis

a /.rf, hence ^ Zoo /§ by 2).
Case 3. λ = μ>v. aZ.jβ and β Δόγ. It suffices to show that

a Z.j β- But a /_j β implies a Z.j β> for /3 is a /-section of β, and a Z.j β
and α Zoo/5 imply ά Z.jβy for α: is the /-section of 5.

Case 4. λ < μ = v. a Z.jβ and β ΔjΊ- It suffices to show that
β Δjϊ- But, since β Δ^y and β is the /-section of β, β Zjf will imply
the desired relation, β Zjf follows from β Z.jϊ a n d the fact that γ is
/-section of f.

Case 5. λ<μ<v. a/_jβ and β Z.j? It suffices to show that
jS Z* f But β Zoo f and i8 Z^ f imply that ^ ^ f̂.

Case 6. λ < μ and μ> v. a Z.j β and β Δ3y. a /_$y by the induc-
tion hypothesis.

Case 6.1. Λ = v. a Z.jγ implies & Zoo f by 1).
Case 6.2. A < y. For each component of a, say σ, σ Z.jγ, hence

<y Z.jf* Thus a: Zi f> hence a Zoo j8 by 2).
Case 6.3. λ > v. It needs be shown ά Z.jβ But a Z.«>β and α Zy β

where a is the /-section of a, so a Z.jβ
Case 7. λ> μ = v. a Zj β and β /_5y. By the induction hypothesis

oί l_3 γ, hence a Zoo f by 3).
Case 8. λ> μ> v. a Zjβ and β Z3γ. a Zj β, hence # Z ̂  r by the

induction hypothesis, which implies a Zoof
Case 9. Λ > /ί and μ < v. a Zjβ and β Zjf a Zjf by the induc-

tion hypothesis.
Case 9.1. Λ = v. a Zjΐ- If this is so because a Zάγ (γ is a /-

section of f), then by Lemmas 1 and 2 α ; / ^ (α is a /-section of a),
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hence a /_^γ. If a /_ j f because a Zoo f and a Z_jf, then a Zoo f by the
assumption.

Case 9.2. λ < v. From a Z_jf follows a Z.jΐ by Lemma 2, so

^Zoof

Case 9.3. λ > v. If a /_3f because a Δ5y, then a Zoo? by 3). If
this is so because a Zoo f and α/jf, then a Zoo f by the assumption.

III. Suppose #^/3. If (j,d) > (k,b) or (j,a) < (k,b), then ά*. \ β
or # Zoo β accordingly. Suppose (j, a) = (k, b). lί λ = μ9 then a Z j β or
βZjoc and only one of those holds, hence exactly one of #Zoo/3 or
β Zoocc. Suppose λ < μ. a /ij β or β Zjoc by the induction hypothesis.
So a Zoo β by 2) or /? Zoo & by 3) as the case may be.

PROPOSITION 4.2. Let a and β be connected elements of O*(Λ,I,A)
which share a same outermost value, say (i,a). Then ά Z.ίβ implies
oc Δvβ for every p > i.

Proof. Let a be (λ,i, a, a) and let β be (μ,ί,a,β). Assume a /_tβ
and suppose β /_*>&. Then

( * ) άZiβ.

There are three cases: μ = λ and β /_ιoc\ μ < λ and β /_ioc\ λ< μ and
β Aid. In any case, β/_i& follows, contradicting (*). Thus a Zoo/3
must be the case, hence & Z_vβ for every p > i.

THEOREM 4. O*(Λ,I,A) is well-ordered by Z* for every i in I U {oo}.

Proof. The proof of Theorem 26. 14 in [7] almost goes through.
Only Lemma 26. 28 requires some supplement.

LEMMA 26. 28*. Every element of F^ is Z^-accessible in F^.

Proof. Suppose not, that is, suppose there is a sequence {άn}n of
elements of F^ which is strictly decreasing with respect to Zoo. We
may assume that an's are connected. Recall that for Zoo those elements
are first compared by their outermost values (i, α). Since those values
are well-ordered, a decreasing sequence of values must be finite. Thus,
after a certain stage, the outermost values of άn will be constant, say
0', b). To make the discussion simple, we assume this is the case for
every n, n = 1,2, -. So άn has the form (λn9j, b,an). Since A is well-
ordered, there is an increasing sequence of subscripts, {ίn}n9 such that
hm < λim+1 for every m. If = holds for infinitely many m's, we may
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assume that it is the case for all m, thus aim+ί Zjccίm for all m. If j

is the maximal element in /, then ά^eF^ means that every '̂-section

of it is Z ̂ -accessible in Fj. If j is not the maximal element of /, then

aimeFJ+1 and hence every /-section of it is /_ ̂ -accessible in Fs. In

either case, there cannot be an infinite decreasing sequence of such j-

sections, hence {aim}m cannot exist. Suppose next /_ holds for infinitely

many m's. We may assume this is so for all m. Then άim+1 Z j aίm

(cf. 3) of Definition 4.1), hence aim+1 Zjccim. With the same reasoning

as above, we are led to a contradiction. Thus follows the accessibility

of F^ with regards to Zoo.

THEOREM 5. The theory of approximations can be developed for

O*(Λ,I,A).

The proof is similar to that of Theorem 3, § 3. Here we return to

the original value, however: a value is an element of / x A. We shall

only point out a few aspects which did not arise in §3.

LEMMA 26. 45*. (2) δ Z.ιy does not necessarily hold in O*(A,I, A),

but a! Zm#o> w& > ί, does hold, by virtue of Proposition 4.2.

(4) (ii) (fc, b) = (i, a), η Zm #o> m>ί, by (2) above.

(5) is not guaranteed as was remarked in §3.

PROPOSITION 26. 46*. (2) in the proof follows from Proposition 4.2.

PROPOSITION 26. 47*. Read as in §3.

The rest of the material in §3 goes through.

A remark on fundamental sequences.

Fundamental sequences can be constructed uniformly both for

O(A,I,A) and O*(A,I,A). We do not elaborate on this matter now,

since, a routine work though it may be, it takes enormous time and

space to actually execute the construction. It will not be too late if we

take it up when one of those systems is applied to a consistency proof.

(See [8] and [9] for the detail.)
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