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Summary. - Using identities being discrete counterparts o] those which are satis]ied by the Le- 
gendre polynomials, the author proves that i] the polynomials (W~>(t)} (m = 0, 1 . . . . .  _~-- 1) 
]orm an orthogonat set over the set (1, 2 ... . .  N} with equal weight attached to its elements, then 

when m(m + 1)~2f--1 .  This result is then extended to a wide crass o] Hahn polynomials. 

1 .  - I n t r o d u c t i o n .  

Although polynomials orthogonal over discrete sets were considered as early as 
the middle of the n ineteenth  century  by Chebyshev, comparat ively little a t tent ion 
had  been paid to them unt i l  recently.  We assume throughout  t ha t  the discrete set 
in question is the set of consecutive integers from 1 or from 0 to ~Y. The present 
paper is pr imari ly  concerned with  the case when these integers are given equal weights, 
so t h a t  we obtain a discrete counterpar t  of the Legendre polynomials; this case has 
impor tan t  applications in statistics, and more part icular ly applications to the fitt ing 
of nonlinear regressions and to t rend estimations in time-series analysis (see, for 
instance, [3], [4], [5]). However, owing to a very recent result obtained by GEORG~ 
GAsr~,~ [2], the main  theorem can be extended without  any difficulty to a wide 
class of Hahn  polynomials (see, for instance, [6]), which are the discrete counterpart  
of the Jacobi  polynomials, and have also found applications to probabil i ty theory 
and statistics.  

~'or our present  purpose, the most convenient form of the polynomials being the 
main  object of our s tudy  is the following one: 

~. (--1)m-k(m + k)! ( t - - l )  ~1 
T ~ )  (t) (1.1) 

k=o z~ ( k ! ) 2 ( m _ k ) !  ( z y _  1)rk] 
( m =  O, 1, ..., N - - l ) ,  

where, as usual, for all x, x~°~ 1, and 

g ~ ; l = x ( x - - 1 ) . . . ( x - - k J r l )  ( k > O )  

(*) Entrata in Redazione il 16 ottobre 1973. 
(**) Sponsored by the United States Army under Contract no. DA-31-124-ARO-D-462. 
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There is an obvious analogy between these polynomials and the polynomials 

P~(x) = i (--1)'n-~(m -I- k)! x~= (__1),~/) (1 - - fx)  
k=o (k!)2(m--k) ! 

(m = O, 1, 2, ...) , 

where <P,~> are the Legendre polynomials. These polynomials satisfy 

~,(x) dx [ 0  when m # n ;  
(1.3) ; i P , ~ ( x ) =  

o J [ 1/(2m -F 1) when m ---- n. 

One of the easiest ways of obtaining the orthogonal properties of the polynomials 
<T(~ N)} is [10] by means of combinatorial identities being immediate consequences 
of (1.3). 

I t  is easily seen that  

(1.4) lim ~T~)(t)--P~(t/N)} = 0 (t = 1, 2, ... 27) 

uniformly in t, but  not in m. Interesting results have been obtained concerning the 
order of magnitude of this difference as 2¢-->c~, and of the corresponding dif- 
ference for more general orthogonal polynomials (see for instance, [8], [9]). Unfor- 
tunately, these results are not sufficient for some statistical, and possibly other, appli- 
cations, notably for those in which the degree m of the polynomial is allowed to 
increase with 27; in such cases the uniform convergence in m within some prescribed, 
but  variable bounds would have to be examined. However, from the view point 
of such applications a direct study of the polynomials <~v)} seems to be more pro- 
mising. 

The properties of <T~  )> are in many ways similar to those of ( / 5} ,  and, there- 
fore, of the Legendre polynomials, but  there are substantial differences, quite apart  
from the fact that  the sequence <T,(~ )> is finite for any 27. One of those differences 
is that  while Legendre, and P,~ polynomials always take their biggest absolute values 
for the interval over which they are orthogonal at  the ends of this interval, this is 
the case for T,(~ ) only when m is sufficiently small in relation to 27. Indeed, it will 
be seen that  always 

but, for instance, according to (1.1), 

T2(8)(2) ----- --2,  }P'~6)(2) ---- 7/5, and T~4)(2) ---- 3 .  

The main purpose of the present paper is to find conditions on m and 27 under 
which 

tT~ff)(t)l < 1 for t=2,3,. . . ,N--1. 
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Various identies, which may  also be of some intrinsic interest,  will be used to prove 
the  re levant  theorem. 

2. - S o m e  ident i t ies  and inequal i t ies .  

I t  is well known t h a t  

(2.1) kV~)(N-- t -~ 1) ---- (-- 1)~ ~,(~3(t) (t = 1 , . . . ,  N;  m = 0, ..., N - - l ) .  

This is easily verified not ing tha t  !P,I~)(N--t + 1) is orthogonal to all polynomials 
of degree lower t han  m, and tha t  its degree in t is precisely m. Since this condition 
uniquely determines the polynomial apar t  from an arb i t ra ry  constant  factor (see, 
for instance, [5] or [6]), a comparison of the leading coefficients concludes the proof. 

According to (1.1), 

(2.2) Ys~f)(1) = (-- ]){~ 

Hence also, by (2.1), 

(2.3) ~N)(N) = 1 

( m : 0 , . . . , N - - 1 ) .  

(m- - - -O , . . . ,N- -1 ) .  

In  what  follows, ](t) being any  function,  Af(t) will denote the difference f ( t-k 1 ) -  
--1(t). Since 

we have for all t 

(2.4) 

A(t- -  1)c~ = k( t - -  1) ~-11 (k --= 1, 2, ...), 

A T(~N) ( t ) : k=zz~ ( k ! )~ (m_k) !  (hr_l)E~t • 

Together wi th  (1.1), this allows us to verify by  substi tution the following rela- 
tion, which corresponds to the fourth  recurrence relation for Legendre polynomials, 
as given by WmTTAKE~ and WATSON [7]: 

(2.5) A T ( ~ ) ( t )  _ A T ~ , ~ )  ( t)  _ 2(2m-- 1) ~(C_ 1)(t) 
I¥-- i 

valid for all t, m = 2, ..., N - -  1, and N = 3, 4, .... 

LE~Z~A 2.1. - The polynomial  

A {(t--l)(N--t ÷m(m + i) I)A¥1~N)(t_I)} 

is orthogonal to every polynomial  of degree lower t han  m over the set <1, 2, ..., N>. 
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PRooP. - Let ~(t) be any polynomial of degree lower than m. Since ( t - - 1 ) ( N - -  
- - t Z r l )  vanishes both for t = l  and for t =  z¥-~1, we find, by the Abel trans- 
formation, 

~v Q(t) A I ( t - 1 ) ( N - t  + 1) AT~ff)(t-- 1)[ = 
] 

N-~ t(N--t) AT(N)(t)Ae(t)=_~ t (Nc t  ) Ae(t)AT~v)(t). 
- -  t=l ~" m(m + 1) t~=o m(m + 1) 

Applying again the Abel transformation to the last expression and noting the obvious 
vanishing of some terms~ we find eventually 

Z~(t) L I N  ~(t-- 1) (.Y _-- t _~- 1) AT~v)(t__ 1) ~ = 
t=~ [ m(m + 1) l 

N-~T(~) t f t(2¢--t) A~(t)}= T(N)(s)3 [ ( s - - 1 ) ( N - - s  + 1) 
,~0 = { + 1 ) z l o T y )  ~=~ t m-~T£)- zJe{s--1)} " 

The degree of 

J ( s - - 1 ) ( N : s  + 1} Ae(s__ 1)~ 
[ m(m + 1) J 

being that  of #(t), which is smaller than m, by the orthogonality property of <T(~N)>, 
the last expression is equal to 0, which proves the Lemma. 

COROLLARY 2.2. - We have for all t 

(2.6) A l / ( t -  1)(2V- tm-(m-+li + 1) zlT~v)(t_ 1)} + [P(+~')(t)= 0 

P~ooF. - By the unicity, up to constant factors, of the orthogonal polynomials, 
it follows from the preceding temma that  

(2.7) A {  ( t - l ) ( N - t +  l) (±') + 1) £1T~ ( t - - l )  

differs from T(~N)(t) by a constant factor~ which is found to be --1 by comparing the 
leading coefficients of the two polynomials. Hence (2.6). 

Working out the first in term (2.6), and then substituting t-~ 1 for t, we find 

(2.8) (t + 1)(.N'-- t - - l )  zl2~}~)(t) + 
m(m + 1) 

N - -  2t-- 1 AT(N)(t) ,~,(Nbt + ~ &  t + 1 ) = 0 .  
m(m + 1) 

This is the discrete counterpart of the second-order differential equation satisfied by 
Legendre polynomials and, more generally~ by Legendre functions (see, for instance, 
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[6] or [7]). I t  can be re-written thus: 

(2.9) (t +m(m÷l)l)(N- t - -1)  ~A2T(N)(t~,~, ~÷ { 1 +  ~m(m ÷ 1) J - - 2 t  _--:1~ ATI~)(t) ÷ T(N)(t)= 0 ; 

both forms of this difference equation will be useful in what follows. 
Differencing (2.8) yields 

( t + 2 ) ( 2 ~ - - t - - 2 )  s (N) t A T°~ ( ) + 2 - -  
m(m ÷ 1) 

2/ - -  2t--  3 A2T~)(t ) _ 
m(m + 1) 

2 
m(m ~- I) 

~T~)( t )  + ~ , ~  ~o + 1) = o ,  

and, substituting in the third te rm glT~!~')(t+ 1)--A~T~.*')(t) for AT~:~)(t), we find 

(2.10) 

Hence 

(2.11) 

(t + 2)(2V-- t - -  2) A3T(:v)(t) + 2 
m(m + ] ) 

N - -  2 t - -2  A2T(~)(t ) + 
m(m + 1) 

2 } (~) 
+ 1 m(m~- l )  AT~ ( t ~ - l ) = 0 .  

(t + 2)(~v-- t - -  2) 
m(m ÷ 1) {A3~P~'~)(t) -~- A ~ ) ( t  + 1)} = 

2 t - ~ 2 - - N  2 (~) 
m(m ÷ 1) L1 T,~ (t) ~- 

(t + 2 ) ( N - - t - - 2 )  + 2 - - m ( m  ÷ 1) AT(N)(t ÷ 1). 
m(m + 1) 

:Note tha t  the coefficient on the left-hand side of the last identity is positive when- 
ever 0 < t < 2 / - -  2. When t ~> 2i/2 --  1, the coefficient of A2T(,~)(t) is nonnegative. 
The coefficient of zJT(~N)(t-~ 1) decreases when t>~N/2--2. However, if N - - 3  is 
substituted for t, the numerator becomes N +  1 - - m ( m +  1). I t  is, therefore, posi- 
tive whenever m ( m ~  1)~<N--1. 

Summing up, we see, assuming m(m-~-1)4N--1 ,  that  the coefficient of the 
left-hand side of (2.11) is positive and that  of the coefficients of the right-hand side 
one is nonnegati~ce and the other is positive whenever 

<2.12) N / 2 - - 1 < t < N - - 3 .  

This proves the following lemma: 

L E ~ A  2.3. - Let m(m 4z 1)<2~T--1. 
and AT[~')(t+ 1) have the same sign, 

2 (N) Then, if (2.12) is satisfied~ and if zl ~ (t) 

/PT(N)(t,~ , ) -~ AT~)(t  + 1) 

also has the same sign. 
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COROLLARY 2.4. -- Under the assumptions of the preceding lemma, a fo r t i o r i  

(N) 2AT~)(t  + 1) A T,~ (t)+ 

(20 (N) has the same sign as A T,, (t) and AT~ ( t+  1). 

3. - An auxiliary function. 

The polynomial in t 

t (N-- t)  {AT~)(t)}~ 
m(m + 1) 

is a discrete counterpart of a similar auxiliary function introduced in order to inve- 
stigate the local extrema of the Legendre polynomials (see, for instance, [6], p. 163). 
Clearly, 

(3.2) P ~ ) ( N -  t) = _F~-)(t) (Vt). 

Differencing (3.1), we find 

N - - 2 t - - l  {A~)(t)}~.+ (t + l ) ( N - - t - - 1 )  ~ (z~,) ~ (~v) 2 (z~.) 
-}- m(m -}- 1) m(m + 1) t2A~,~ (t) + A ~,,,. (t)} A ~,~ (t) 

=2AT(N)tt ' I  ( t + l ) ( N - = t - 1 )  2 `m (1 N--2t--1]AW(N)(t)+Tt}~')(t)}+ 
°~ "i mT~-qU A v;~ (t) + + ~-(;--~-iil 

,.~C)(t) l~t + 1 ) ( z c - t - 1 )  . (~) A~)(t)  + ~,~)(t)l ; + m(m + 1) A [P,,~ (t) + 
t / 

subtracting from the contents of each pair of curly brackets the left-hand side of (2.9), 
we find eventually 

(3.3) AF(~v)(t ) 2 t -  N + 1 Akp(N)(t) (~) - A T . ,  (t + 1 ) .  
m(m + 1) 

Thus, if t> (N- -1 ) /2 ,  then A/~'~')(t)>0 unless (~') (ze) d ~  (t)dT~ (t+ 1 ) < 0 .  However, 
we have the following: 

L E ~ A  3.1. - Assuming m(m+ 1 ) < N - - 1 ,  if AT(~m(t)A~(~v)(t+ 1 ) < 0 ,  and 
( N - - 1 ) / 2 < t < N - - 2 ,  then 

(3.4) AF~)(t) + (~) AF,~ ( t ÷ l ) > 0 .  
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PRoom - Let AT}f)(t) > 0, the case of ATS~[)(t) < 0 being exactly similar. 
(N)( + 1 in our cuse A~P~ t ) <  0, which also entails 

A T,,~ ( t ) < O .  (3.5) 2 (x) 

:Now 

AT~-)(t-F 2) = AT(~N)(t-F 1)H- AST(~m(t) + A2T~)(t) . 

Thus 

Consequently, by (3.5) and Lemma 2.3, 

a ~(~N)(t + 2) < 0 ,  

which entails AF( t+  1 ) > 0 .  Hence, by (3.3), 

2 t - N  + 1 a ~:,},~.)( t + 1) {a~( ; ) ( t )  + ~ ~(~v),~ (t + 2)} . /IF~)(t) -~ AF~)(t + 1) > m(m -F 1) 

But 

A~£N)(t)+a~Z)(t+2) 2A~.(D(t+I)+A ~ (t) 0 

according to Corollary 2.4. Since (zq) AT,~ ( t+ 1 ) < 0 ,  (3.4) follows owing to (3.3). 
Some particular values of ~v)(t) ,  A~(m(t) and F(~N)(t) are easily computed. By (1.1) 

and (2.1), 

(3.6) 

(--1)~T~)(1) = T ~ ) ( N ) =  1 ; 

,4 ( ~  9, (z~) m ( m  + 1) 
(--1) T,., (.) = T~ (N--l)-- 1 - -  ~T_I ; 

2m(m + 1) 
"~ (~) 7'(~N)(N--2) 1 (--1) ~,,. (3 )=  = 

N - - 1  
( m - - 1 ) m ( m  + 1)(m + 2) + 

2 ( N -  1)(~v-2)  

But it follows from (2.1) that  

(~) t) (3.7) AW~,~ (N- -  = (--1)~-~ATJ~N)(t), 

and either from (3.6) or directly from (2.4) we obtain 

(3.8) 

(_  1),~_IA~(N)(1)_-- A~(zC)(N_ 1 ) _  m(m + 1). 
2V--1 ' 

(_  1)~,-1AW(~)(2) (N) m(m + 1) = ATJ,~ ( N - - 2 ) =  N - - 1  
(m--1)m(m + 1)(m + 2) 

2(lv--  1)(bT-- 2) 
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Furthermore,  by (2.4) and (3.7), if 6<m(m@l)<<.N--1, 

= (_ 1)~-~AT~'7)(3)= 

m(m @ 1) (m--1)m(m+l)(m+2) 2(m-~ 3)! 
- -  _ _  + 

N ~ I  ( ~ - -  1)(N--  2) 3!2! (m--3)!  ( N - - l )  TM 

m(m + 1) (m--1)m(m + 1)(m + 2) > 
~ - - 1  (N--  1)(~v--2) ' 

> 

and since (m--1)(m@ 2) = m(m-~ 1)- -2  < ~Y.--2 under our assumption, 

(3.9) 

and ~tt the more 

(3.10) 

~ ~,(~)(lV-- 3) > 0, 

3~ ; ' ) (N- -  2) > o.  

According to (3.1), (3.6), and (3.8), 

(3.11) F(~) (N--  1) = 1.  

Owing to (3.3) and (3.8), it follows that 

N - - 3  (3.12) p~)(~T_ 2 ) =  1 
N - - 1  

_ _  [ m ~ l )  (m--1)m(m+l)(m +2)}  
2(N--  1)(N--  2) " 

But if 6 < m ( m +  1 ) < N - - 1 ,  the first factor in the right-hand side of (3.3) with 
t----N--3 is positive. Consequent]y, by (3.9) and (3.10), 

z~Z')(_~'-  3) > o .  

Hence, by (3.12), whenever 6<re(m@ 1 ) < N - - l ,  

(3.13) F ~ ) ( N - -  3) < 1 - -  ~¢_-----i 
(m--1)m(m + 1)(m + 2)] 

2(2¢--  1)(2¢--  2) ~ " 

In view of Lemma 3.1, it follows from (3.12) and (3.13) that  if 6<re(m@ 1)<<, 
< 27 --  1, then 

(3.14) / ~  ( t )<l  N - - ~  2(N--1)(N--2) 

whenever ( 2 q - - 1 ) / 2 < t < N - - 2 .  Furthermore, owing to (3.2), we have, more gene- 
rally: 

COROLLARY 3 . 2 . -  If 6<m(m@l)<N--1 ,  then (3.14) holds whenever 2 < t <  
<2Y--2. 



S. K. Z~Fm)[BA: Some properties o/polynomials orthogonal, etc. 341 

4 .  - T h e  m a i n  t h e o r e m .  

1 tT$)(t ) + T(~v)(t + 1)t<]- (4.1) ff 

PI~OOP. - According to (3.1), 

or 

LE~fMA 4.1. -- I f  6<m(m+l)<N--1  and 2<t<N--2,  then 

.N--3 {m(~21 ) (m--2_l)m(m+l)(mJ:2)~ 
2(~v'-- 1) 2(N--1)(N--2) 1" 

"~ " J ~ ~ r e ( m + 1 )  ' 

{ T~)(t) 

But ,  under  our assumptions,  

Hence  

t(N-- 1) <~.~ + T~'(t + l)}~= P~"(t) + m ~  i-)} {AT~ (t)}~ " 

1 t ( N -  t) 
< 0 .  

4 m(m + 1) 

T~ (t+ 1)[< 

while i t  follows f rom Corollary 3.2 t h a t  

(m--1)m(m-~- 1)(m + 2) / 
2 ( N - -  1 ) ( N - -  2) l 

and (4.]) is an immedia te  consequence of the  last  two inequalities. 

COROLLARY 4.2. - I f  6<m(m4-1)<N--t ,  2 < < t < N - - 2 ,  and 

A T~')(t) A~)(t + 1) < 0, (4.2) 

t h en  

(4.3) IT~)(t + 1)I < 

1 2(3~-- 1) 
(m - i)m(m + i)(m + 2!l 

2(N-- 1)(~" --2) I 

P • o o r . -  Since (4 .2) impl ies  HT~)(t)[<IA2~<~)(t)], (4.3) is an immedia te  con- 
sequence of (4.1). 



342 S. K.  ZAI~E.~]~.~: Some properties o] polynomials orthogonal~ etc. 

THEOnE)~ 4.3. - Fo r  a n y  m > 0  and  _% sa t i s fy ing  m(ra~-l)<_%--l ,  we have  

(4.4) ]T$)(t)l < 1  (t = 1, . . . ,  _%), 

e q u a l i t y  occu r r ing  on ly  w h e n  ra = 0 or t = 1 or t = _%; 

m(m -4- 1) 
(4.5) ] d ~ ) ( t ) l <  

N - - 1  
(t= i, ..., _%--1; _%>2) , 

e q u a l i t y  occu r ing  only  when  m = 0, or t = 1, or  t = _%--1;  and  

( 4 . 6 )  2 (~v) [A ~',~ ( t)[< 
( m - -  1) m(m .4- 1)(m + 2) 

2 ( i v -  1 ) ( N -  2) 
( t =  1, ..., _%--2;  N>~3) , 

e q u a l i t y  occu r ing  only  when  m < l ,  or t =  1, or t = _ % - - 2 .  

PROOf. - The  p ropos i t i on  is t r iv i a l  when  m =- 0 or  m = 1. W h e n  t is equal  to  

1, 2, _%--1, or  _%, (4.4) follows f r o m  (3.6), because  re(m+ 1 ) < _ % - - 1  is equ iva len t  to 

(4.7) ( m - - 1 ) ( m ~ - 2 ) < N - - 3 .  

For  t he  sume reason,  (4.5) w i t h  t equal  to  1, 2, or _% - -  1, is a consequence  of (3.8), 

and  so is (4.6) w i t h  t equal  to  1 or  _%--2 .  

N o w  we p roceed  b y  induc t ion .  Given  m > 2 and  _% sa t i s fy ing  m(m ~ 1 ) <  N - - 1 ,  

assume t h a t  the  s t a t e m e n t  of the  t h e o r e m  holds wi th  # and  ~ subs t i t u t ed  for  m and  _% 

respec t ive ly  w h e n e v e r  # < m and  # ( # - ~  1 ) < ~ - - 1 .  We  n o t e  t h a t  t he  las t  inequa-  

l i ty  holds in p a r t i c u l a r  w h e n  # < m - - 1  and  v =  N - - 1 .  

A c c o r d i n g  to  the  i nduc t i ve  a s s u m p t i o n  and  owing  to  (2.5)~ 

(m--2)(m--1)  2 ( 2 m - -  1) m(m .4- 1) 
]A~'~;'~)(t)l< _%--1 .4- _ % - - 1 -  _%--1 (t = 1 ,  ..., _%--1) , 

equa l i ty  o c c u r r i n g  only  when  t = 1 or  t = _%--1. 

Dif ferencing  (2.5) yie lds  

A2~p(N)tt ~ A2m(~') ~t ~ __ 2 ( 2 m - - 1 )  AT(y-1)~t~ 

Hence ,  u n d e r  t he  i nduc t i ve  assumpt ion ,  

~}p(N) t <(m--3)(m--2)(m--1)m 
IA = 

2 ( 2 m - -  1) ( m - - 1 ) m  
.4- N - - 1  N - - 2  

(t ---- 1 ,  . . . ,  N - -  2)  

which  is n o t h i n g  else b u t  (4.6), and  it  is clear  t h a t  e q u a l i t y  occurs  on ly  when  t = 1 

or t = N - - 2 .  
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What remains to be proved now is only 

I~)( t -}-  1) [ < 1 (t---- 2, ..., _~--2), 

but obviously we can confine ourselves to extreme values of T~-) over this set, which 
enables us to apply Corollary 4.2. Substituting (4.6) in (4.3), we find 

I~(~)(t + 1)I < 

(m--1)m(m4-1)(m4-2) N - 3  I m ~ + n  ( m - - n m ( ~ + ~ ) ( m + 2 !  + 
1 2 ( ~ - - 1 ) [  2¢--i 2(~v--1) (~- -2)  4 ( N - - 1 ) ( ~ - - 2 )  

But if m(m ~-1)<N--1 ,  the right-hand side of this inequality is smaller than~ or 
equal to, 1. Indeed, the last s tatement is equivalent to 

m(m 4- 1 ) ( N - - 1  ) (m--1)m(m 4-1)(m 4- 2) (m--1)m(m 4-1)(m 4- 2) 
N~--f-- > N ~  q- 1 2(N--I)(2V--2) -- (N--I)(N--3) ' 

which in turn  is equivalent to (4.7). Hence the proof is complete. 

5.  - H a h n  p o l y n o m i a l s .  

Following GASPER'S [2] notations, for any ~ and fl bigger than --1, and for any n 
smaller than N, we can write the corresponding Hahn polynomial in the following 
form 

(-- n)~ (n 4- ~ 4-/~ 4- 1)~ (-- x)k Qdx; N) 
k=o ~ k! (a 4- 1)~(--N)k 

where (a)o= 1, (a)~+~= (a)k(aq- k) (k = O, 1, ...). These polynomials are orthogonal 
over the set <0, 1, ..., ~> with weights 

o(x)= (N4-~4-f14-1)N (x=O, l~ . . . ,N)  

and tend to the corresponding gacobi polynomials when 27-+ cx~. 
One verifies easily that  identically 

(5.1) 

and 

(5.2) 

G(o ;  ~, ~, ~T) = 1 

Q.(x; o, o, ~) = ( -  1)~T~'+l)(x + 1). 
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Obviously, one can always wri te  a project ion formula 

(5.3) Q~(x; a, b, 5[) = ~ B(n, k)Qk(x; :~, ~, 5[), 
k = 0  

where the coefficients B(n, k) depend also on ~, fi, a, and b (a, b, ~, fl > - - 1 ) .  
Using a resul t  by  ASKEY and GAsPEa [1], the l a t t e r  found some necessary and some 

sufficient conditions under  which the  coefficients B(n, k) are all non-negative.  In  
par t icu lar ,  when - -  1 < ~ =- fi < 0, these coefficients are all non-negat ive  if, and only 
if, a < b  and 

( ~ -  2) (a2+ b 2 ) - - 2 ( a +  1)ab - - (~ - -2 ) (a+  b ) - - 4 ~ > 0 .  

~Vhen ~----fl = O, the last  inequal i ty  reduces to 

(5.4) a~-[- b~--ab-F a ~ b~O ; 

this is the  case when Q,(x; :¢, fi, 5?) is given by  (5.2). Then,  in view of (5.1), 

n 

~: B(~, k) = 1 ,  
k=O 

and owing to Theorem 4.3, we arr ive,  by  (5.2) and (5.3), at  the ~ollowing conclusion: 

TgEORE)[ 5.1. - If  a > b ~ - - l ~  and if (5.4) is satisfied, then,  for every  n and 5[ 
such t ha t  n(n~-  1)~<5[, 

]Q,(x; a, b, N ) I < I  (x = 0, 1, ..., 5[) ,  

equal i ty  being impossible when 0 < x < N and n > 0. 
The shape of the  domain  defined by  a>~b > - -  1 and (5.4) is easily seen, since (5.4) 

defines the outside of an ellipse which is symmetr ic  with rescpect  to the line y =- x, 
is centered at  the  point  ( - - 1 , - - 1 )  and passes through (0, 0) and ( 0 , - - 1 ) .  

Since the  H a h n  polynomials t end  to the  corresponding Jacobi  polynomials as 
5 [ ->c~ ,  we must  have,  for a>~b, a ~ - - ½ ,  and b ~ - - l ,  the  inequal i ty  

IQ~(x; a, b, 5[)I<1 (x = 0, 1, ..., 5[) 

when 5[ is sufficiently large in re la t ion to n. One might,  therefore,  be t empted  to 
wonder  whether  the  conditions of Theorem 5.1, could not  be relaxed by  subst i tut ing 
the  inequal i ty  a > - - ½  for (5.4); however,  the  answer is negative,  as can be seen, 
for instance from 

1 1 5[)  ---- 1 4n2 4n~(n2- -1 )  _ 5 
Q~ 2; 2 '  2 '  - - N -  -~ 35[(5[ - -1)  3 

when 5[ = n 2. 
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