Some Properties of Polynomials Orthogonal
over the Set (1, 2,..., N> (*) (**).

S. K. ZaremBa (DeKalb 111, U.8.A)

Summary. — Using identities being discrete counlerparis of those which are satisfied by the Le-
gendre polynomials, the author proves that if the polynomials (T (m=0,1,..., N—1)
form an orthogonal set over the set {1, 2, ..., N with equal weight- attached to its elements, then

TR0 < [Pa(D)] = [N (t=2,8,..,N—1)

when m{m + 1) < N—1. This result is then extended to a wide class of Hahn polynomials,

1. — Introduction.

Although polynomials orthogonal over discrete sets were considered as early as
the middle of the nineteenth century by Chebyshev, comparatively little attention
had been paid to them until recently. We assume throughout that the discrete set
in question is the set of consecutive integers from 1 or from 0 to N. The present
paper is primarily concerned with the case when these integers are given equal weights,
so that we obtain a discrete counterpart of the Legendre polynomials; this case has
important applications in statistics, and more particularly applications to the fitting
of nonlinear regressions and to trend estimations in time-series analysis (see, for
instance, [3], [4], [5]). However, owing to a very recent result obtained by GEORGR
GASPER [2], the main theorem can be extended without any difficulty to a wide
class of Hahn polynomials (see, for instance, [6]), which are the discrete counterpart
of the Jacobi polynomials, and have also found applications to probability theory
and statisties.

For our present purpose, the most convenient form of the polynomials being the
main object of our study is the following one:

W _ & (—1)mEm - k) (t— 1)
(1.1) Yo (5)—320 (ENE(m—E)! (N—1)"

(m=0,1, .., N—1),

where, as usual, for all #, 2™ =1, and
W =po—1).. (e—k-+1) (k> 0)

(*) Entrata in Redazione il 16 ottobre 1873.
{**} Sponsored by the United States Army under Contract no. DA-31-124-AR0-D-462.
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There is an obvious analogy between these polynomials and the polynomials

5 L (=) (m A k)
Pal®) =2 =1

#= (—1)"Pp(l—20)  (m=0,1,2,..),

where (P, > are the Legendre polynomials. These polynomials satisfy

0 when m = n;

1
(1.3) f P,.(x) P,(x) dz ={
4 1/(2m+ 1) when m = n,.

One of the easiest ways of obfaining the orthogonal properties of the polynomials
<¥I/f,fv )y is [10] by means of combinatorial identities being immediate consequences
of {1.3).

It is easily seen that

(1.4) lim @) =P/} =0 (t=1,2,...,N)

uniformly in £, but nef in m. Interesting resulfs have been obtained concerning the
order of magnitude of this difference as N —o0, and of the corresponding dif-
ference for more general orthogonal polynomials (see for instance, [8], [9]). Unfor-
tunately, these results are not sufficient for some statistical, and possibly other, appli-
cations, notably for those in which the degree m of the polynomial is allowed to
increase with &; in such cages the uniform convergence in m within some prescribed,
but variable bounds would have to be examined. However, from the view point
of such applications a direct study of the polynomials (P> seems to be more pro-
mising.

The properties of (F> are in many ways similar to those of (P,.>, and, there-
fore, of the Legendre polynomials, but there are substantial differences, quite apart
from the fact that the sequence (P> is finite for any N. One of those differences
is that while Legendre, and P,, polynomials always take their biggest absolute values
for the interval over which they are orthogonal at the ends of this interval, this is
the case for ‘P,Ef"} only when m is sufficiently small in relation to N. Indeed, it will
be seen that always

P = PP =1,
but, for instance, according to {1.1),

PO@)=—2, ¥O2)=17/5, and PP©2)=3.

The main purpose of the present paper is to find conditions on m and N under
which

Mty <1 for t=2,3,.., N—1.
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Various identies, which may also be of some intrinsic interest, will be used to prove
the relevant theorem.

2. — Some identities and inequalities.
It is well known that
(2.1) YON—t+1)=(—1)"¥P0)  (¢=1,..,N; m=0,..., N—1).

This is easily verified noting that ?Pﬁ,f’)(N —t-+4 1) is orthogonal to all polynomials

of degree lower than m, and that its degree in ¢ is precisely m. Since this condition

uniquely determines the polynomial apart from an arbitrary constant factor (see,

for instance, [5] or [6]), a comparison of the leading coefficients concludes the proof.
According to (1.1),

(2.2) POy =(—1)" (m=0,.., N—1).
Hence also, by (2.1),
(2.8) PNy =1 (m=0,.. N—1).
In what follows, f{t) being any function, Af(t) will denote the difference f(t- 1) —
—f(t). Since
A—1)W = F(t—1)E1  (k=1,2,...),
we have for all ¢

L)k (m + k) !k (t—1)-0
N2(m—k)! (N——l)””'

2.4 AP (1) S
24) % (k

Together with (1.1), this allows us to verify by substitution the following rela-
tion, which corresponds to the fourth recurrence relation for Legendre polynomials,
as given by WHITTAKER and WaTgoN [7]:

2(2m —1)

9. ) W)
(2.5) AT — APt = =5

PPy,

valid for all {, m =2, .., N—1, and N =3,4,....

LemmaA 2.1. — The polynomial

(=N —t+1)
A{ e APE (tw-l)}

is orthogonal to every polynomial of degree lower than m over the set <1,2,..., N).
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Proor. — Let g(f) be any polynomial of degree lower than m. Since {{ —1)(¥ —
—t-+ 1) vanishes both for =1 and for t= N + 1, we find, by the Abel trans-
formation,

¥ t—1)(N— 1

NS Ul —1)

V—1) @
TR TR

HN

)
=0mm+1) do(t) AP,”() .

Applying again the Abel transformation to the last expression and noting the obvious
vanigshing of some terms, we find eventually

Sema =l ap— ) -

=1 m(m + 1)
Ny [[H(N —1) ) (s—1)(N—s+1)
tgoglm (t -+ 1)A 1W Ag(t)}-wsglglm (S)A { m(m T 1 4 (8—1)} .
The degree of
(s—1)(N—s+1)
A{ mim 1) Ag(s—l)}

being that of p(t), which is smaller than m, by the orthogonality property of (F™>,
the lagt expression is equal to 0, which proves the Lemma.

COROLLARY 2.2. — We have for all ¢

(=N —14+1) m
i 1) a4¥,

(2.6) A { (t— >} + PPy =0.

Proor. — By the unicity, up to constant factors, of the orthogonal polynomials,
it follows from the preceding lemma that

differs from ¥(t) by a constant factor, which is found to be —1 by comparing the
leading coefficients of the two polynomials. Henece (2.6).
Working out the first in term (2.6), and then substituting ¢ 1 for ¢, we find

N—2t—
mim + 1)

(t+1)(N—t—

(N) (N) _
1) L g+ w® 41y =0.

(2.8) D g2p®) o+

This is the discrete counterpart of the second-order differential equation satisfied by
Legendre polynomials and, more generally, by Legendre functions (see, for instance,
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[6] or [7]). It can be re-written thus:

¢+ 1N —1—1)

(2:9) m(m 4+ 1)

A -+ {1 Nz

(W) Ny __a.
”‘m} ATm (t) + S-Um (t) =0 *

both forms of this difference equation will be useful in what follows.
Differencing (2.8) yields

(5 DN —1=2) fopm o F—2—3 oy,
mm D 4 Oy 40
2 ™ @™ .
—m D AV, (@) + AP, (1) =0,

and, substituting in the third term AP(t+ 1)— A2P(1) for AP (1), we find

(t -+ 2)(N —1—2)

3y (@) G N—20—2 5
(2.10) mm 1) AW (E) + 2 mim - 1) AT () +
2 (,N) .
Hence
F+2)N—1—2) 35m ) _
(2'11) m(m+l) {A 5-Um (t) 'JT' Ag]m (t‘l_l)}“—
2t +2—N t4+2)(N—1t—2)+2—~m(m+ 1)

APy 4+ ( AP 41y,

m{m + 1) mim + 1)
Note that the coefficient on the left-hand side of the last identity is positive when-
ever 0 <t<N—2. When ¢>N/2—1, the coefficient of A*¥(1) is nonnegative.
The coefficient of AP (¢4 1) decreases when ¢>N/2 —2. However, if N —3 is
substituted for ¢, the numerator becomes N + 1 —m(m--1). It is, therefore, posi-
tive whenever m(m -+ 1)< N —1.

Summing up, we see, assuming m{m -+ 1)<<¥ —1, -that the coefficient of the
left-hand side of (2.11) is positive and that of the coefficients of the right-hand side
one ig nonnegative and the other is positive whenever

(2.12) Ni2—1<t<N—3.
This proves the following lemma:

LEMMA 2.3. — Let m(m -+ 1)< N —1. Then, if (2.12) is satisfied, and if A*PP (1)
and AP(1--1) have the same sign,

AP ) 4+ AP+ 1)
also has the same sign.
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CoROLLARY 2.4. — Under the assumptions of the preceding lemma, a fortiori
AP+ 24P+ 1)

has the same sign as A2¥P%(1) and APP(14-1).

3. — An auxiliary function.

The polynomial in ¢

HN —1)

(W) gy D) (¥}
8.1) P (1) =¥ () ¥n (1 + 1) + mim T 1)

(AP0

is a discrete counterpart of a similar auxiliary function introduced in order to inve-
stigate the local extrema of the Legendre polynomials (see, for instance, [6], p. 163).
Clearly,

(3.2) FON—3)=FP@) (V).
Differencing (3.1), we find

AFD @) = (PP ) + APD (1)} 24Pty + AP} +

N—2t—1 @ ,,nz 4+ DN —1—1) W p | 42 2,50
-+ ;;;(m+1} {Agjm (t}} -+ mim - 1) {ZAgjm {t) ’TA Yo {3)}-4 gym {t)
P AN —f—1 N —92—1
zzd%{”(t){( +m)(f,n t ) 4w (H:W(m +1>) A%N’(tww}f)m} n
Cozg®o [ DN —t—1) 50 0 @l .
+ 4RI g 1 2w + PR 0}

subtracting from the contents of each pair of curly brackets the left-hand side of (2.9),
we find eventually

2t +1
m

(3.3) AP (1) = ;f;i) AP AP+ 1) .

Thus, if ¢>(N—1)/2, then AFY(1)>0 unless APY (1) AP®(1+ 1)< 0. However,
we have the following:

LEMMA 3.1. — Assuming m(m+ 1)<N —1, if APP@ AP+ 1) <0, and
(N —1)/2<t< N —2, then

(3.4) AFD @)+ AFPG+1)>0.
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PROOF. — Let AP(t) > 0, the ecase of APY(1) < 0 being exactly similar. Thus
in our case AW (1--1)< 0, which also entails

(3.5) AP <o,

Now

AP+ 2) = AP+ 1)+ LP0) + 4P
Consequently, by (3.5) and Lemma 2.3,
APt 42)<0,
which entails AF(¢t-}-1)> 0. Hence, by (3.3),

20—N+1

ey ()
APy (t) + AF 4+ 1) > mim 1)

AP 4+ 1) {APD (1) + APt +2))
But

AP + AP+ 2) = 24P V(1 + 1) + A4AP() <0

according to Corollary 2.4. Since A’?,ﬂﬁv)(t—{— 1)< 0, (3.4) follows owing to (3.3).

Some particular values of (1), AP (1) and FU(1) are easily computed. By (1.1)
and (2.1),

(1" PP = PPNy =1,
3.6 | CVER@) =N —1)= 1,.%.;'}__:*_11_) ,
L e =
But it follows from (2.1) that
3.7) AFON —1) = (— )" A4PD(t),

and either from (3.8) or directly from (2.4) we obtain

(1" AP (1) = AP (N —1) = ﬁg,n_ill«) ;

1) AP (2 — Py gy D) —Lymim £ 1)(m + 2)

N—1 AN —1)(N—2)

(3.8) ]
|
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Furthermore, by (2.4) and (3.7), if 6<m{m+ L)< N —1,

APEIN —3) = (—1)" AP (3) =

_m(m+1) (m—1)ym(m <+ 1)(m + 2) 2(m -+ 3)!
D 2= E § G Y5 g 3121 m—3) [ (N—1)#
>m(m+1)_(m—1}m(m+1}(m+2}

N1 N—nHv—2 ’

and since (m—1)(m -+ 2) = m(m+ 1) —2 < N—2 under our assumption,

(3.9) AP(N —3)>0),
and all the more

(3.10) API(N —2)>0.

According to (3.1), (3.6), and (3.8),
(3.11) 9N —1)=1.

Owing to (3.3) and (3.8), it follows that

(3.12) FON—2)=1—

N—-3mm+1) m—1ymm-+ L)m-+2)
N—1| ¥N—=1 = 2N—1)(N—2)

But if 6 <m(m+ 1)< N —1, the first factor in the right-hand side of (3.3) with
t= N —3 is positive. Consequently, by (3.9) and (3.10),

AF(N —3)>0.

Hence, by (3.12), whenever 6<m(m 4+ 1)< N —1,

(3.13) FYN—-3)<1

N—S{m(m +1)  (m—1)ym(m + 1)(m + 2)}

TN—1| N—1 2N —1)(N—2)

In view of Lemma 3.1, it follows from (3.12) and (3.13) that if 6<m{m -+ 1)<
<N —1, then

(3.14) F)<1

N—3{mm+1) (m—l)m(m+1)(m+2)}
T N—1| N—1 = 2N—1)(N—2)

whenever (N —1)/2<t< N 2. Furthermore, owing to (3.2), we have, more gene-
rally:

COROLLARY 3.2. — If 6<m{m+ 1)< N—1, then (3.14) holds whenever 2<i
<N —2.
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4. — The main theorem.

Lemuma 41, - If 6<m(m -+ 1)< N —1 and 2<t< N —2, then

(4.1) ;; ) + PP+ 1}s<1—2N_3 {m(m ) tmeLmim & )im + 2)}-

N—1)| N—1 2N —-1)(¥—2)

Proor. — According to (3.1),

PO+ 1) = () — %%}‘r% (AP,
or
{W Gt 1)}2 = P00 + {i-—— m“——~£7n‘:1))} Awmye.
But, under our assumptions,
i_wtb((ﬁ?rtl)) <0.

Henece

D@ + PP+ 1)< VEDQ) ,

while it follows from Corollary 3.2 that

SET N—3 [mm-+1) (m—1)m(m--1)(m+ 2)
‘/F’")(tKl_z(N.-—l){ N1 T e N—1)(V—2) }’

and (4.1) is an immediate consequence of the last two inequalities.
CoroLLARY 4.2, — I 6<m{m+ 1)< N —1, 2<i<N —2, and

(4.2) AP AP+ 1)<0,
then

4.3) [P+ 1)<

N—3 {m(m+ 1)  (m—1)ym{m + 1)(m + 2)

1“2(1\7—1) N—1 2(N —1)(N¥ —2)

b+ 31w,

ProoOF. — Since (4.2) implies [APP(t)|< |A2P(@)), (4.3) is an immediate con-
sequence of (4.1).
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THEOREM 4.3. — For any m>0 and N satisfying m(m -+ 1)< N —1, we have
(4.4) PRml<t (@=1,..,N),
equality occurring only when m =0 or t=1 or t = N;

(4.5) APy <R

equality occuring only when m =0, or t =1, or ¢t =N —1; and

m—1)m(m + 1)(m -+ 2)
2(N—1)(N —2)

(16) || < (t=1,.., N—2; N>3),

equality occuring only when m<1, or t=1, or t =N —2.

Proor. — The proposition is trivial when m =0 or m=1. When ¢ is equal to
1,2, N—1, or N, (4.4) follows from (3.6), because m(m-- 1)< N—1 is equivalent to

(4.7) (m—1)(m—+2)<N —3.

For the same reason, (4.5) with ¢ equal to 1,2, or ¥ —1, is a consequence of (3.8),
and so is (4.6) with ¢ equal to 1 or N —2.

Now we proceed by induction. Given m>2 and N satisfying m(m 4+ 1)< N —1,
assume that the statement of the theorem holds with g and » substituted for m and ¥
respectively whenever y<<m and u(u-+1)<v—1. We note that the last inequa-
lity holds in particular when y<m —1 and » =N —1.

According to the inductive assumption and owing to (2.5),

(m—2)m—1) . 22m—1) mlm -+~ 1)

x) S = =1,..,N—
AP0y < - S 3 (t=1,.., N—1),

equality occurring only when ¢=1 or =N —1.
Differencing (2.5) yields
_2(2m—1)

AEO W) — AW o(0) == AP

Hence, under the inductive assumption,

(m—3)(m—2)(m—1)m _ 2(2m—1) (m—1)m

2y (V)
A D5y —2 ¥—1 N_2

(t=1,.., N—2)

which is nothing else but (4.6), and it is clear that equality occurs only when ¢ =1
or t=N—2.
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What remains to be proved now is only
ML) <l (t=2,.., N—2),

but obviously we can confine ourselves to extreme values of Y& over this set, which
enables us to apply Corollary 4.2. Substituting (4.6) in (4.3), we find

P+ 1)<

N—3 [mim+ 1)  (m—I)m(m + 1)(m -+ 2)} (m—21)ym(m + 1)(m + 2)

1"’2(1\7—1)[ N—1 N —1)(N—2) 4N —1)(N—2)

But if m(m 4 1)< N —1, the right-hand side of this inequality is smaller than, or
equal to, 1. Indeed, the last statement is equivalent to

m(m+1)> (N——l +1) (m—T1)m(m +1)(m +2)  (m—1)m(m -+ 1)(m + 2)
N—1 “\N—3 AN—1)(N—2) (N—1)(FN—3) '

which in turn is equivalent to (4.7). Hence the proof is complete.

5. — Hahn polynomials.

Following GASPER’s {2] notations, for any « and g bigger than —1, and for any »
smaller than N, we can write the corresponding Hahn polynomial in the following
form

) (=t ot A+ 1) (— o)k
Qn(w; , B, N) -—kgo o (@ + 1) (— F)s N

where (a)y=1, (a)s 1= (a)e(a-+ k) (k=0,1,...). These polynomials are orthogonal
over the set (0,1,..., N> with weights

(L )052)
N4atp+1
(")

o(w) =

(=0,1,.., N)

and tend to the corresponding Jacobi polynomials when ¥ —oc.
Omne verifies easily that identically

(5.1) .05, 8, N) =1
and

(5.2) Qu(®; 0,0, N) = (—1)" P V(24 1).
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Obviously, one can always write a projection formula

(5.3) Qu(w; a,b, N) =
k

Ve

B(n, k)Qy(@; x, B, N),

where the coefficients B(n, k) depend also on «,p,a, and b (a,b,a, § > —1).

Using a result by ASKEY and GASPER [1], the latter found some necessary and some
sufficient conditions under which the coefficients B(n, k) are all non-negative. In
particular, when — 1 < « = <0, these coefficients are all non-negative if, and only
if, a<d and

(e 4 2)(a®+ b?)—2(a+ 1) ab — (¢ — 2)(a + b) — 4 >0 .
When o= f =0, the last inequality reduces to
(5.4) at+b2—ab+a-+b>0;
this is the case when Q,.(xz; «, 8, N) is given by (5.2). Then, in view of (5.1),
[
2B, k)=1,
k=0
and owing to Theorem 4.3, we arrive, by (5.2) and (5.3), at the following conclusion:

TaEOREM 5.1. ~ If a»b>—1, and if (5.4) is satisfied, then, for every » and N
such that n(n -+ 1)< N,

@a(2;5 ay b, N)[<1 (x=0,1,...,N),

equality being impossible when 0 <2< N and #> 0.

The shape of the domain defined by ¢ >b > — 1 and (5.4) is easily seen, since (5.4)
defines the outside of an ellipse which is symmetric with resepect to the line y =z,
is centered at the point (—1,—1) and passes through (0, 0) and (0, —1).

Since the Hahn polynomials tend to the corresponding Jacobi polynomials as
N — oo, we must have, for a>b, a> —%, and b>—1, the inequality

[Qn(w; @, b, N)[<1 (r=0,1,..., N)

when N is sufficiently large in relation to n. One might. therefore, be tempted to
wonder whether the conditions of Theorem 5.1, could not be relaxed by substituting
the inequality a > — 3 for (5.4): however, the answer is negative, as can be seen,
for instance from

1 1 o 4n?  4ni(n—1) 5
N)_l N T 3N(N—1) 3

Qn (2§ T3 Ty

when N = n2,
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