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Abstract. Some properties of regularized and penalized nonlinear programming formulations
of mathematical programs with equilibrium constraints (MPECs) are described. The focus is on the
properties of these formulations near a local solution of the MPEC at which strong stationarity and a
second-order sufficient condition are satisfied. In the regularized formulations, the complementarity
condition is replaced by a constraint involving a positive parameter that can be decreased to zero. In
the penalized formulation, the complementarity constraint appears as a penalty term in the objective.
Existence and uniqueness of solutions for these formulations are investigated, and estimates are
obtained for the distance of these solutions to the MPEC solution under various assumptions.
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1. Introduction. We consider mathematical programs with equilibrium con-
straints in the form of complementarity constraints:

minx f(x) subject to
g(x) ≥ 0, h(x) = 0,
0 ≤ G(x) ⊥ H(x) ≥ 0,

(1.1)

where f : IRn → IR, g : IRn → IRp, h : IRn → IRq, G : IRn → IRm, and H : IRn → IRm

are all twice continuously differentiable functions, and the notation G(x) ⊥ H(x)
signifies that G(x)T H(x) = 0. These problems have been the subject of much recent
investigation because of both their importance in applications and their theoretical
interest, which arises from the fact that their most natural nonlinear programming
formulations (for example, replacing G(x) ⊥ H(x) by G(x)T H(x) = 0) do not satisfy
constraint qualifications [4, 29] at any feasible point.

In this paper, we study a regularization scheme analyzed by Scholtes [28] in which
(1.1) is approximated by the following nonlinear program, which is parameterized by
the nonnegative scalar t:

Reg(t) : minx f(x) subject to
g(x) ≥ 0, h(x) = 0,
G(x) ≥ 0, H(x) ≥ 0, Gi(x)Hi(x) ≤ t, i = 1, 2, . . . ,m.

(1.2)

We denote the solution of this problem by x(t). Since Reg(0) is equivalent to (1.1),
the regularization scheme can be put to use by applying a nonlinear programming
algorithm to Reg(t) for a sequence of problems where t is positive and decreasing to
0, deriving a starting point for each minimization from approximate minimizers for
previous problems in the sequence.

Scholtes [28, Theorem 4.1], restated later as Theorem 3.1, shows that in the
neighborhood of a solution x∗ of (1.1) satisfying certain conditions, there is a unique
stationary point x(t) for Reg(t) for all positive t sufficiently small. Moreover, this
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local solution mapping is piecewise smooth in t, and thus satisfies ‖x(t)−x∗‖ = O(t).
One of our main results (Theorem 3.7 in Section 3.3) shows that the same conclusion
holds in the absence of one of the less natural assumptions—a strict complementarity
condition—made in [28, Theorem 4.1]. Both results rely on a strong-second order
condition, termed RNLP-SSOSC and defined below.

In Section 3.1, we investigate existence of solutions to Reg(t) near x∗, under
weaker second-order and strict complementarity conditions. Theorem 3.2 replaces
RNLP-SSOSC with a weaker second-order sufficient condition (MPEC-SOSC, also
defined below), and drops the strict complementarity assumptions. This result shows
that Reg(t) has a (possibly nonunique) local solution within a distance O(t1/2) of
x∗. Under RNLP-SOSC, a condition that is intermediate between MPEC-SOSC and
RNLP-SSOSC, Theorem 3.3 gives an improved O(t) bound, still without requiring the
strict complementarity assumptions. Corollary 3.4 shows that a partial strict com-
plementarity condition, in conjunction with MPEC-SOSC, leads to the O(t) estimate
again.

In Section 3.2, we show that Lagrange multipliers for solutions of Reg(t) satisfying
the O(t) estimate are bounded. Section 3.3 contains Theorem 3.7 mentioned above,
which gives sufficient conditions for x(t) to be piecewise smooth and locally unique
for small t > 0.

Section 4 studies properties of solutions of some alternative regularized formula-
tions. Scholtes [28, Section 5.1] also considers the following regularization scheme, in
which the approximate complementarity condition is gathered into a single constraint:

RegComp(t) : minx f(x) subject to
g(x) ≥ 0, h(x) = 0,
G(x) ≥ 0, H(x) ≥ 0, G(x)T H(x) ≤ t.

(1.3)

Section 4.1 points out that analogs of Theorems 3.2 and 3.3 hold for RegComp(t), but
that local uniqueness results like those of Section 3.3 do not hold. In another plausible
regularization, the inequalities of the regularization terms in Reg(t) are replaced by
equalities:

RegEq(t) : minx f(x) subject to
g(x) ≥ 0, h(x) = 0,
G(x) > 0, H(x) > 0, Gi(x)Hi(x) = t, i = 1, 2, . . . ,m.

(1.4)

Section 4.2 shows that an existence result similar to Theorem 3.2 holds for this for-
mulation, but with the O(t1/2) estimate replaced by O(t1/4). (The proof technique
is quite different; unlike the proofs in Section 3.1, it does not rely on the results of
Bonnans and Shapiro [3].)

Finally, in Section 5, we discuss a nonlinear programming reformulation based on
the exact `1 penalty function. For a given nonnegative parameter ρ, this reformulation
is as follows:

PF(ρ) : minx f(x) + ρG(x)T H(x) subject to
g(x) ≥ 0, h(x) = 0, G(x) ≥ 0, H(x) ≥ 0,

(1.5)

We show that this formulation has the appealing property that under standard as-
sumptions, the MPEC solution x∗ is a local solution of PF(ρ), for all ρ sufficiently
large, and that regularity conditions for the MPEC imply regularity of PF(ρ).

While this paper focuses on certain regularization and penalization schemes, there
are several other nonlinear programming approached to (1.1) with similar motivations,
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starting with Fukushima and Pang’s analysis [8] of the smoothing scheme of Facchinei
et al. [6], and including the penalty approaches analyzed by Hu and Ralph [12] and
Huang, Yang, and Zhu [13]. Lin and Fukushima [18] have studied the issue of iden-
tifying active constraints in smoothing, regularization, and penalty methods. More
recently, Anitescu [1] has studied the “elastic mode” for nonlinear programming, in
conjunction with a sequential quadratic programming (SQP) algorithm, and focuses
particularly on MPECs. Anitescu’s formulation is similar to (1.5), but it introduces
an extra variable into the formulation to represent the maximum of G(x)T H(x) and
the violation of the other constraints.

On a slightly different tack, decomposition methods which recognize the disjunc-
tive nature of MPEC constraints are well studied. We mention the globally convergent
methods for MPECs with linear constraint functions proposed or analyzed by Jiang
and Ralph [15] (see [20, Chapter 6] and [16] for local convergence analysis); Tseng
and Fukushima [9], who use an ε-active set method; and Zhang and Liu [30], who use
an extreme-ray descent method. SQP-based methods for MPECs can be found in Liu
et al. [19] and Fletcher et al. [7]. Interior-point methods have been proposed by de
Miguel, Friedlander, Nogales and Scholtes [5] and Raghunathan and Biegler [23], while
Benson, Shanno, and Vanderbei [2] have performed a computational study involving
the LOQO interior-point code and the MacMPEC test set (Leyffer [17]).

An anonymous referee has alerted us to a forthcoming paper by Izmailov [14]. We
do not have access to an English translation of this paper, but believe that it includes
analysis similar to some of that which appears in our proofs below (in particular, the
proof of Theorem 3.2). See the acknowledgments at the end of this paper for further
details.

In the remainder of the paper we use ‖ · ‖ to denote the Euclidean norm ‖ · ‖2,
unless otherwise specified. We write b = O(a) for nonnegative scalars a and b if there
is a constant C such that b ≤ Ca for all a sufficiently small, or all a sufficiently large,
depending on the context. We write b = o(a) if for some sequence of nonnegative
values ak and corresponding bk with either ak →∞ or ak → 0, we have that bk/ak →
0.

2. Assumptions and Background. We now summarize some known results
concerning constraint qualifications and optimality conditions, for use in subsequent
sections. We discuss first-order conditions and constraint qualifications in Section 2.1
and second-order conditions in Section 2.2, concluding with a result concerning local
quadratic increase of the objective in a feasible neighborhood of x∗ in Section 2.3.

2.1. First-Order Conditions and Constraint Qualifications. We start by
defining the following active sets at the point x∗, feasible for (1.1):

Ig
def= {i = 1, 2, . . . , p | gi(x∗) = 0},(2.1a)

IG
def= {i = 1, 2, . . . ,m |Gi(x∗) = 0},(2.1b)

IH
def= {i = 1, 2, . . . ,m |Hi(x∗) = 0}.(2.1c)

Because x∗ is feasible, we have IG ∪ IH = {1, 2, . . . ,m}. The set IG ∩ IH is called the
biactive set.

Our first definition of stationarity is as follows.
Definition 2.1. A point x∗ that is feasible for (1.1) is Bouligand- or B-stationary
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if d = 0 solves the following linear program with equilibrium constraints (LPEC):

mind ∇f(x∗)T d subject to
g(x∗) +∇g(x∗)T d ≥ 0, h(x∗) +∇h(x∗)T d = 0,
0 ≤ G(x∗) +∇G(x∗)T d ⊥ H(x∗) +∇H(x∗)T d ≥ 0.

(2.2)

Checking B-stationarity is difficult in general, as it may require the solution of 2m̄

linear programs, where m̄ is the cardinality of the biactive set IG ∩ IH . However, B-
stationarity is implied by the following condition, which is more restrictive but much
easier to check.

Definition 2.2. A point x∗ that is feasible for (1.1) is strongly stationary if
d = 0 solves the following linear program:

mind ∇f(x∗)T d subject to
g(x∗) +∇g(x∗)T d ≥ 0, h(x∗) +∇h(x∗)T d = 0,
∇Gi(x∗)T d = 0, i ∈ IG \ IH ,
∇Hi(x∗)T d = 0, i ∈ IH \ IG,
∇Gi(x∗)T d ≥ 0, ∇Hi(x∗)T d ≥ 0, i ∈ IG ∩ IH .

(2.3)

Note that (2.3) is the linearized approximation to the following nonlinear program,
which is referred to as the relaxed nonlinear program (RNLP) for (1.1):

minx f(x) subject to
g(x) ≥ 0, h(x) = 0,
Gi(x) = 0, i ∈ IG \ IH ,
Hi(x) = 0, i ∈ IH \ IG,
Gi(x) ≥ 0, Hi(x) ≥ 0, i ∈ IG ∩ IH .

(RNLP)(2.4)

We also mention an interesting and useful observation of Anitescu [1, Theorem 2.2]
that x∗ is strongly stationary if and only if it is stationary for Reg(0), that is, there are
Lagrange multipliers such that the KKT conditions are satisfied for this problem. A
similar result by Fletcher et al. [7, Proposition 4.1] gives equivalence between strongly
stationary points and stationary points of RegComp(0).

By introducing Lagrange multipliers, we can combine the optimality conditions
for (2.3) with the feasibility conditions for x∗ as follows:

0 = ∇f(x∗)−
∑
i∈Ig

λ∗i∇gi(x∗)−
q∑

i=1

µ∗i∇hi(x∗)(2.5a)

−
∑
i∈IG

τ∗i ∇Gi(x∗)−
∑
i∈IH

ν∗i ∇Hi(x∗),

0 = hi(x∗), i = 1, 2, . . . , q,(2.5b)
0 = gi(x∗), i ∈ Ig,(2.5c)
0 < gi(x∗), i ∈ {1, 2, . . . , q} \ Ig,(2.5d)
0 ≤ λ∗i , i ∈ Ig,(2.5e)
0 = Gi(x∗), i ∈ IG,(2.5f)
0 < Gi(x∗), i ∈ {1, 2, . . . ,m} \ IG,(2.5g)
0 = Hi(x∗), i ∈ IH ,(2.5h)
0 < Hi(x∗), i ∈ {1, 2, . . . ,m} \ IH ,(2.5i)
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0 ≤ τ∗i , i ∈ IG ∩ IH ,(2.5j)
0 ≤ ν∗i , i ∈ IG ∩ IH .(2.5k)

Clearly, the Lagrange multipliers in (2.5) suffice for all 2m̄ of the LPECs in (2.2). For
a strongly stationary point x∗, we can now define the following sets:

I+
g

def= {i ∈ Ig |λ∗i > 0 for some (λ∗, µ∗, τ∗, ν∗) satisfying (2.5)},(2.6a)

I0
g

def= Ig \ I+
g ,(2.6b)

J+
G

def= {i ∈ IG ∩ IH | τ∗i > 0 for some (λ∗, µ∗, τ∗, ν∗) satisfying (2.5)},(2.6c)

J0
G

def= (IG ∩ IH) \ J+
G ,(2.6d)

J+
H

def= {i ∈ IG ∩ IH | ν∗i > 0 for some (λ∗, µ∗, τ∗, ν∗) satisfying (2.5)},(2.6e)

J0
H

def= (IG ∩ IH) \ J+
H .(2.6f)

It is easy to show that there exists a multiplier (λ∗, µ∗, τ∗, ν∗) satisfying (2.5) such
that

i ∈ I+
g ⇒ λ∗i > 0, i ∈ I0

g ⇒ λ∗i = 0,(2.7a)

i ∈ J+
G ⇒ τ∗i > 0, i ∈ J0

G ⇒ τ∗i = 0,(2.7b)
i ∈ J+

H ⇒ ν∗i > 0, i ∈ J0
H ⇒ ν∗i = 0.(2.7c)

(The set of optimal multipliers is convex, so we can simply take an average of the
multipliers (λ∗, µ∗, τ∗, ν∗) that satisfy (2.6a), (2.6c), (2.6e) individually.)

If the MPEC-LICQ (defined next) is satisfied, then the Lagrange multipliers for
(2.3) are in fact unique, and in this case strong stationarity and B-stationarity are
equivalent.

Definition 2.3. The MPEC-LICQ is satisfied at the point x∗ if the following
set of vectors is linearly independent:

{∇gi(x∗) | i ∈ Ig} ∪ {∇hi(x∗) | i = 1, 2, . . . , q} ∪
{∇Gi(x∗) | i ∈ IG} ∪ {∇Hi(x∗) | i ∈ IH}.(2.8)

In other words, the linear independence constraint qualification (LICQ) is satisfied for
the RNLP (2.4).

We have the following result concerning first-order necessary conditions dating
back to Luo, Pang and Ralph [21] but stated in the form of Scheel and Scholtes [27,
Theorem 2].

Theorem 2.4. Suppose that x∗ is a local minimizer of (1.1). Then if the MPEC-
LICQ condition holds at x∗, then x∗ is strongly stationary; and the multiplier vector
(λ∗, µ∗, τ∗, ν∗) that satisfies the conditions (2.5) is unique.

A number of our results use the following weaker Mangasarian-Fromovitz con-
straint qualification (MFCQ).

Definition 2.5. The MPEC-MFCQ is satisfied at x∗ if the MFCQ is satisfied
for the RNLP (2.4); that is, if there is a nonzero vector d ∈ IRn such that

∇Gi(x∗)T d = 0, i ∈ IG \ IH , ∇Hi(x∗)T d = 0, i ∈ IH \ IG,

∇hi(x∗)T d = 0, i = 1, 2, . . . , q, ∇gi(x∗)T d > 0, i ∈ Ig,

∇Gi(x∗)T d > 0 and ∇Hi(x∗)T d > 0, i ∈ IG ∩ IH ; and
∇Gi(x∗), i ∈ IG \ IH , ∇Hi(x∗), i ∈ IH \ IG,

∇hi(x∗), i = 1, 2, . . . , q are all linearly independent.
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(It is easy to show, by using an argument like that of Gauvin [10] for nonlinear pro-
gramming, that MPEC-MFCQ holds if and only if the set of multipliers (λ∗, µ∗, τ∗, ν∗)
satisfying (2.5) is bounded.)

We now define three varieties of strict complementarity at a strongly stationary
point. To our knowledge, the second of these has only appeared before in the con-
ditions for superlinear convergence of the elastic-mode penalty approach to MPCC
analyzed in [1, Section 4].

Definition 2.6. Let x∗ be a strongly stationary point at which MPEC-LICQ is
satisfied.

(a) The upper-level strict complementarity (USC) condition holds if J+
G = J+

H =
IG ∩ IH .

(b) The partial strict complementarity (PSC) condition holds if J+
G ∪ J+

H = IG ∩
IH .

(c) Lower-level strict complementarity (LSC) holds if IG ∩ IH = ∅.
It is obvious that LSC ⇒ USC ⇒ PSC. Strong stationarity and B-stationarity are
equivalent when lower-level strict complementarity holds, since in this case the LPEC
(2.2) reduces to the LP (2.3).

2.2. Second-Order Conditions. The set S̄ of normalized critical directions for
the RNLP (2.4) is defined as follows:

S̄
def= {s | ‖s‖2 = 1} ∩(2.9)

{s |∇h(x∗)T s = 0} ∩
{s |∇gi(x∗)T s = 0 for all i ∈ I+

g } ∩
{s |∇gi(x∗)T s ≥ 0 for all i ∈ I0

g} ∩
{s |∇Gi(x∗)T s = 0 for all i ∈ IG \ IH} ∩
{s |∇Gi(x∗)T s ≥ 0 for all i ∈ J0

G} ∩
{s |∇Gi(x∗)T s = 0 for all i ∈ J+

G} ∩
{s |∇Hi(x∗)T s = 0 for all i ∈ IH \ IG} ∩
{s |∇Hi(x∗)T s ≥ 0 for all i ∈ J0

H} ∩
{s |∇Hi(x∗)T s = 0 for all i ∈ J+

H}.

By enforcing the additional condition that either ∇Hi(x∗)T s = 0 or ∇Gi(x∗)T s = 0,
for all i ∈ J0

G ∩ J0
H , we obtain the set of normalized critical directions S∗ for the

MPEC (1.1) (see Scheel and Scholtes [27, eq. (6) and Section 3]); that is,

S∗
def= S̄ ∩ {s | min(∇Hi(x∗)T s,∇Gi(x∗)T s) = 0 for all i ∈ J0

G ∩ J0
H}.(2.10)

The difference between S∗ and S̄ vanishes if J0
G ∩ J0

H = ∅, that is, if USC, LSC or
PSC is satisfied.

We also define the MPEC Lagrangian as in Scholtes [28, Sec. 4]:

L(x, λ, µ, τ, ν) = f(x)− λT g(x)− µT h(x)− τT G(x)− νT H(x).(2.11)

(Note that the expression in (2.5a) is the partial derivative of L with respect to x at the
point (x∗, λ∗, µ∗, τ∗, ν∗), omitting the terms corresponding to inactive constraints.)

We are now ready to define second-order sufficient conditions.
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Definition 2.7. Let x∗ be a strongly stationary point. The MPEC-SOSC holds
at x∗ if there is σ > 0 such that for every s ∈ S∗, there are multipliers (λ∗, µ∗, τ∗, ν∗)
satisfying (2.5) such that

sT∇2
xxL(x∗, λ∗, µ∗, τ∗, ν∗)s ≥ σ.(2.12)

The RNLP-SOSC holds at x∗ if for every s ∈ S̄, there are multipliers (λ∗, µ∗, τ∗, ν∗)
satisfying (2.5) such that (2.12) holds.

Likewise, we define strong second-order sufficient conditions for the MPEC and
RNLP. For the latter, the normalized critical direction set at x∗ is as follows:

T̄
def= {s | ‖s‖2 = 1} ∩

{s |∇h(x∗)T s = 0} ∩
{s |∇gi(x∗)T s = 0 for all i ∈ I+

g } ∩
{s |∇Gi(x∗)T s = 0 for all i with τ∗i 6= 0} ∩
{s |∇Hi(x∗)T s = 0 for all i with ν∗i 6= 0}.

For the MPECs, the critical directions may be different for every “branch” of the
feasible set containing x∗; see [20] for various “piecewise” optimality conditions using
this motivation. For any partition I ∪ J of J0

G ∩ J0
H , let

T ∗(I, J) def= T̄ ∩{s |∇Gi(x∗)T s = 0 for all i ∈ I}∩{s |∇Hi(x∗)T s = 0 for all i ∈ J}.

Definition 2.8. Let x∗ be a strongly stationary point. The MPEC-SSOSC holds
at x∗ if there is σ > 0 such that for every partition I ∪ J of J0

G ∩ J0
H and each s ∈

T ∗(I, J), there are multipliers (λ∗, µ∗, τ∗, ν∗) satisfying (2.5) such that (2.12) holds.
The RNLP-SSOSC holds at x∗ if for every s ∈ T̄ , there are multipliers (λ∗, µ∗, τ∗, ν∗)
satisfying (2.5) such that (2.12) holds.

When J0
G ∩ J0

H is empty (that is, PSC holds), the index sets I and J in the
definition of MPEC-SSOSC are also empty, so that T ∗(I, J) = T̄ and the strong
second-order sufficient conditions of Definition 2.8 coincide. In general, we have T̄ ⊃
S̄ ⊃ S∗, so that RNLP-SSOSC =⇒ RNLP-SOSC =⇒ MPEC-SOSC. Similarly, we
have MPEC-SSOSC =⇒ MPEC-SOSC. The following example, which will be referred
to again later, shows how the direction sets above are defined and demonstrates that
MPEC-SOSC is strictly weaker than RNLP-SOSC, and that MPEC-SSOSC is strictly
weaker than RNLP-SSOSC. (A similar example appears in Scheel and Scholtes [27,
p. 12].)

Example 1. Let x = (x1, x2) ∈ IR2 and

Q =
[

1 −1
−1 1

]
.

The MPEC

min xT Qx subject to 0 ≤ x1 ⊥ x2 ≥ 0

has the origin x∗ = (0, 0) as a global minimizer, and no other local minimizers or
stationary points. The MPEC-LICQ holds at x∗ and, taking G(x) = x1 and H(x) =
x2, and the corresponding multipliers are τ∗ = 0 and ν∗ = 0. Hence, we have

IG = IH = IG ∩ IH = J0
G = J0

H = {1}, J+
G = J+

H = ∅.
7



The Hessian of the MPEC-Lagrangian (2.11) is Q, and we have

S∗ = {(1, 0), (0, 1)}, S̄ = {(s1, s2) ≥ 0 | s2
1 + s2

2 = 1},

and

T ∗({1}, ∅) = {(0, 1), (0,−1)}, T ∗(∅, {1}) = {(1, 0), (−1, 0)},
T̄ = {(s1, s2) | s2

1 + s2
2 = 1}.

It is easy to check that MPEC-SSOSC, hence MPEC-SOSC, holds. However, RNLP-
SOSC does not hold, and neither does RNLP-SSOSC, as there exists a direction of
zero curvature in S̄, namely s = (1/

√
2, 1/

√
2). We mention for later reference that

the solution set of Reg(t) can easily be seen to be a continuum {(x1, x2) : 0 ≤ x1 =
x2 ≤

√
t} for t > 0.

2.3. Local Quadratic Increase. We have the following result concerning quadratic
growth of the objective function in a feasible neighborhood of a strongly stationary
x∗ at which MPEC-SOSC is satisfied.

Theorem 2.9. Suppose that x∗ is a strongly stationary point of (1.1) at which
MPEC-SOSC is satisfied. Then x∗ is a strict local minimizer of (1.1) and in fact for
any σ̂ ∈ (0, σ) (where σ is from (2.12)), there is r0 > 0 such that

f(x)− f(x∗) ≥ σ̂‖x− x∗‖22, for all x feasible in (1.1) with ‖x− x∗‖ ≤ r0.(2.13)

Proof. This result follows from Scheel and Scholtes [27, Theorem 7(2)] and ba-
sic theory concerning quadratic growth for standard nonlinear programming; see for
example Maurer and Zowe [22] and Robinson [26, Theorem 2.2].

We can still prove quadratic increase if we drop the strong stationarity assump-
tion, and assume instead B-stationarity of x∗ along with an SOSC for all nonlinear
programs of the form

minx f(x) subject to
g(x) ≥ 0, h(x) = 0,
Gi(x) = 0, for all i ∈ I ′G,
Gi(x) ≥ 0, for all i /∈ I ′G,
Hi(x) = 0, for all i ∈ I ′H ,
Hi(x) ≥ 0, for all i /∈ I ′H .

where I ′G and I ′H form a partition of {1, 2, . . . ,m} such that I ′G ⊂ IG and I ′H ⊂ IH .
(We do not give a formal statement or proof of this result, since it is not needed for
subsequent sections of this paper.)

Note that if we assume RNLP-SOSC rather than the less stringent MPEC-SOSC,
the quadratic increase result becomes a trivial consequence of standard nonlinear
programming theory; see again Robinson [26].

3. Properties of Solutions of Reg(t). In this section, we investigate the min-
imizers of Reg(t) for small values of t. Our starting point is a result of Scholtes [28,
Theorem 4.1], which we state in a slightly modified form below. This result requires
the RNLP-SSOSC as well as an additional (and somewhat artificial) complementarity
assumption involving the multipliers τ∗i , i ∈ IG \ IH and ν∗i , i ∈ IH \ IG.

Theorem 3.1. Suppose that x∗ is a strongly stationary point of (1.1) at which
MPEC-LICQ, RNLP-SSOSC, and USC are satisfied. Assume in addition that τ∗i 6= 0
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for all i ∈ IG and ν∗i 6= 0 for all i ∈ IH . Then for all t > 0 sufficiently small,
the problem (1.2) has a unique stationary point x(t) in a neighborhood of x∗ that
satisfies second-order sufficient conditions for (1.2) and hence is a strict local solution.
Moreover, we have that ‖x(t)− x∗‖ = O(t).
The original result also notes that x(t) is a piecewise smooth function of t for small
nonnegative t.

Our results in this section are of two main types: existence results and uniqueness
results for solutions of Reg(t). We prove the existence results in Section 3.1. In
Theorem 3.2, we weaken the assumptions in the theorem above by replacing RNLP-
SSOSC by MPEC-SOSC and dropping the complementarity condition. The result
is correspondingly weaker; we do not prove uniqueness of the solution of Reg(t) in
the neighborhood of x∗, and show only that the distance from x(t) to x∗ satisfies an
O(t1/2) estimate. In Theorem 3.3, we recover the O(t) estimate at the expense of
using the RNLP-SOSC instead of MPEC-SOSC.

Section 3.2 demonstrates boundedness of the Lagrange multipliers for Reg(t) at
solutions x(t) for which ‖x(t)−x∗‖ = O(t). In Section 3.3, we discuss local uniqueness
of these solutions, and piecewise smoothness of the solution mapping x(t), making use
of the SSOSC of Definition 2.8.

3.1. Estimating Distance Between Solutions of Reg(t) and the MPEC
Optimum. We now prove our first result concerning existence of a solution to Reg(t)
near the solution x∗ of (1.1) and its distance to x∗. This result is obtained by applying
Bonnans and Shapiro [3, Theorem 5.57] to the problem Reg(0), which is

Reg(0) : minx f(x) subject to
g(x) ≥ 0, h(x) = 0,
G(x) ≥ 0, H(x) ≥ 0, Gi(x)Hi(x) ≤ 0, i = 1, 2, . . . ,m.

(3.1)

Theorem 3.2. Suppose that x∗ is a strongly stationary point of (1.1) at which
MPEC-MFCQ and MPEC-SOSC are satisfied. Then there are positive constants r̂0,
t̄2, and M2 such that for all t ∈ (0, t̄2], the global solution x(t) of the localized problem
Reg(t) with the additional ball constraint ‖x−x∗‖ ≤ r̂0 that lies closest to x∗ satisfies
‖x(t)− x∗‖ ≤ M2t

1/2.
Proof. We prove the result by verifying that the conditions of [3, Theorem 5.57]

are satisfied. First, because x∗ is a strict local solution of (1.1) (and hence of (3.1)),
we can choose r̂0 and impose the additional condition ‖x− x∗‖2 ≤ r̂0 in (3.1). With
this additional constraint, x∗ is the unique global solution of the problem, so the
first condition of [3, Theorem 5.57] holds. Moreover, since the feasible set for Reg(t)
contains the feasible set for Reg(0), we have by applying the additional condition
‖x − x∗‖2 ≤ r̂0 to (1.2) that the feasible set for the latter problem is nonempty and
uniformly bounded, thereby ensuring that the fifth condition of [3, Theorem 5.57] is
also satisfied.

The second condition in [3, Theorem 5.57] is Gollan’s condition [3, (5.111)]. This
condition reduces for our problem to the existence of a nonzero vector d̃ ∈ IRn such
that

∇hi(x∗), i = 1, 2, . . . , q are linearly independent;
∇gi(x∗)T d̃ > 0, for all i ∈ Ig;

∇Gi(x∗)T d̃ > 0, for all i ∈ IG; ∇Hi(x∗)T d̃ > 0, for all i ∈ IH ;
Gi(x∗)∇Hi(x∗)T d̃ + Hi(x∗)∇Gi(x∗)T d̃ < 1, i = 1, 2, . . . ,m.(3.2)

9



The linear independence condition in Definition 2.5 implies that we can choose s ∈ IRn

such that

∇hi(x∗)T s = 0, i ∈ Ig,

∇Gi(x∗)T s = 1, i ∈ IG \ IH , ∇Hi(x∗)T s = 1, i ∈ IH \ IG.

By setting d̃ = d + αs, where d is from Definition 2.5 and α > 0 is sufficiently small,
we can ensure that all conditions but the final one in (3.2) are satisfied. By scaling d̃
by an appropriate factor we can ensure that this condition is satisfied too.

The third condition of [3, Theorem 5.57]—existence of Lagrange multipliers for
(3.1) at x∗—follows from (2.5) in a similar fashion to the proof of [7, Proposition 4.1];
see also the recent result of Anitescu [1, Theorem 2.2]. We seek Lagrange multipliers
λ̄, µ̄, τ̄ , ν̄, and ρ ∈ IRm (the last one for the constraints Gi(x)Hi(x) ≤ 0) such that

0 = ∇f(x∗)−
∑
i∈Ig

λ̄i∇gi(x∗)−
q∑

i=1

µ̄i∇hi(x∗)(3.3a)

−
∑
i∈IG

(τ̄i − ρiHi(x∗))∇Gi(x∗)−
∑
i∈IH

(ν̄i − ρiGi(x∗))∇Hi(x∗),

0 = hi(x∗), i = 1, 2, . . . , q,(3.3b)
0 = gi(x∗), i ∈ Ig,(3.3c)
0 > gi(x∗), i ∈ {1, 2, . . . , q} \ Ig,(3.3d)
0 ≤ µ̄i, i ∈ Ig,(3.3e)
0 = Gi(x∗), i ∈ IG,(3.3f)
0 < Gi(x∗), i ∈ {1, 2, . . . ,m} \ IG,(3.3g)
0 = Hi(x∗), i ∈ IH ,(3.3h)
0 < Hi(x∗), i ∈ {1, 2, . . . ,m} \ IH ,(3.3i)
0 ≤ τ̄i, i ∈ IG,(3.3j)
0 ≤ ν̄i, i ∈ IH ,(3.3k)
0 ≤ ρi, i = 1, 2, . . . ,m.(3.3l)

Note that, in contrast to (2.5j) and (2.5k), nonnegativity is required of all τ̄i, i ∈ IG

and all ν̄i, i ∈ IH , not just the components in the biactive set IG ∩ IH . Given any set
of multipliers (λ∗, µ∗, τ∗, ν∗) satisfying (2.5) and (2.7), we can set

λ̄i = λ∗i , i ∈ Ig,(3.4a)
µ̄i = µ∗i , i = 1, 2, . . . , q,(3.4b)
τ̄i = τ∗i + ρiHi(x∗), i ∈ IG,(3.4c)
ν̄i = ν∗i + ρiGi(x∗), i ∈ IH ,(3.4d)

where the multipliers ρi, i = 1, 2, . . . ,m satisfy

ρi ≥ ρ̄i
def= max

(
0,

−τ∗i
Hi(x∗)

)
, i ∈ IG \ IH ;(3.5a)

ρi ≥ ρ̄i
def= max

(
0,

−ν∗i
Gi(x∗)

)
, i ∈ IH \ IG;(3.5b)

ρi ≥ ρ̄i
def= 0, i ∈ IG ∩ IH .(3.5c)
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It is easy to check that the resulting multipliers satisfy (3.3). Note in particular that

τ∗i = τ̄i, ν∗i = ν̄i, i ∈ IG ∩ IH .(3.6)

The fourth condition in [3, Theorem 5.57] requires second-order sufficient condi-
tions for (3.1) to hold. Because of (3.6), the critical direction set for this problem is
S̄—the same as for the RNLP (2.4). Defining L̄ to be the Lagrangian for (3.1), it is
easy to see from the relations (3.4) that

∇2
xxL̄(x∗, λ̄, µ̄, τ̄ , ν̄, ρ) = ∇2

xxL(x∗, λ∗, µ∗, τ∗, ν∗)

+
m∑

i=1

ρi

(
∇Gi(x∗)∇Hi(x∗)T +∇Hi(x∗)∇Gi(x∗)T

)
.(3.7)

By using Definition 2.7 and the definition (2.10) of S∗, we can find an ε > 0 such that
for each

s ∈ S̄ ∩ {s | min(∇Hi(x∗)T s,∇Gi(x∗)T s) ≤ ε for all i ∈ J0
G ∩ J0

H},(3.8)

there exists a tuple of MPEC multipliers (λ∗, µ∗, τ∗, ν∗) (satisfying (2.5)), hence a
corresponding tuple of multipliers (λ̄, µ̄, τ̄ , ν̄, ρ) satisfying (3.4) and (3.5), such that

sT∇2
xxL̄(x, λ̄, µ̄, τ̄ , ν̄, ρ)s ≥ sT∇2

xxL(x∗, λ∗, µ∗, τ∗, ν∗)s ≥ σ/2

where σ is from Definition 2.7. For all s ∈ S̄ but not in the set (3.8), we have
∇Hi(x∗)T s > ε and ∇Gi(x∗)T s > ε for at least one i ∈ J0

G ∩ J0
H , so that

sup
(λ̄,µ̄,τ̄ ,ν̄,ρ)

sT∇2
xxL̄(x, λ̄, µ̄, τ̄ , ν̄, ρ)s

≥ sup
(λ∗,µ∗,τ∗,ν∗)

sT∇2
xxL(x∗, λ∗, µ∗, τ∗, ν∗)s + 2 min

i∈J0
G
∩J0

H

ρiε
2

where, here and below, the supremum at left (right) is taken over the multipliers for
(3.1) (MPEC multipliers, respectively). In addition to (3.5), we now require that
ρi ≥ ρ̂ for all i ∈ J0

G ∩ J0
H , where ρ̂ is large enough that the following condition holds:

inf
s∈S̄

sup
(λ∗,µ∗,τ∗,ν∗)

sT∇2
xxL(x∗, λ∗, µ∗, τ∗, ν∗)s + 2ρ̂ε2 ≥ σ/2

Under these additional conditions on ρ, we have that

sup
(λ̄,µ̄,τ̄ ,ν̄,ρ)

sT∇2
xxL̄(x, λ̄, µ̄, τ̄ , ν̄, ρ)s ≥ σ/2, for all s ∈ S̄.

Hence, second-order sufficient conditions for (3.1) are satisfied at x∗, so the fourth
condition of [3, Theorem 5.57] is also satisfied.

The result now follows immediately from [3, Theorem 5.57].
When the RNLP-SOSC replaces MPEC-SOSC and MPEC-LICQ replaces MPEC-

MFCQ, we can strengthen the bound to ‖x(t)− x∗‖ = O(t).
Theorem 3.3. Suppose that x∗ is a strongly stationary point of (1.1) at which

MPEC-LICQ and RNLP-SOSC are satisfied, and let r̂0 be the positive constant defined
in Theorem 3.2. Then there is a value t̄3 > 0 and a constant M3 such that for all
t ∈ (0, t̄3], the global solution x(t) of the localized problem Reg(t) with the additional
ball constraint ‖x− x∗‖ ≤ r̂0/2 that lies closest to x∗ satisfies ‖x(t)− x∗‖ ≤ M3t.
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Proof. We prove the result by invoking [3, Theorem 4.55]. Our task is to show
that the three conditions of this theorem are satisfied by the limiting problem (3.1).
We discuss these three conditions in the order (i), (iii), (ii).

To make the connections with the notation in [3], we write Reg(t) in the following
general form:

min f(x) subject to C(x, t) ∈ K,(3.9)

where K in our case is a polyhedral convex cone (a Cartesian product of zeros and
half-lines), and t appears in the constraints C(x, t) as the linear term tv, where v
is a vector consisting of zeros, except for −1 in the locations corresponding to the
constraints Gi(x)Hi(x)− t ≤ 0.

Condition (i) of the cited theorem requires the Lagrange multiplier set for (3.1)
to be nonempty and a “directional regularity” condition to be satisfied. We verified
existence of Lagrange multipliers already in the proof of Theorem 3.2, while the
directional regularity condition reduces for this problem to Gollan’s condition, which
has also been verified in our earlier proof.

Condition (iii) is automatic for our problem since K above is polyhedral and
convex; see [3, Remark 4.59].

We turn now to condition (ii), which is a second-order sufficient condition [3,
(4.139)]. Note first that the σ term in [3, (4.139)] can be ignored because of the
polyhedral convex nature of our set K in (3.9). We start by expanding on results in
the proof of Theorem 3.2, and then discuss the set of optimal multipliers for Reg(0)
and define linearized dual problem for Reg(t) in terms of this set.

Let us introduce the Lagrangian L̃ for Reg(t), where

L̃(x, t, λ, µ, τ, ν, ρ)(3.10)

= f(x)− λT g(x)− µT h(x)− τT G(x)− νT H(x) +
m∑

i=1

ρi(Gi(x)Hi(x)− t).

Note that when t = 0, we have

L̃(x, 0, λ, µ, τ, ν, ρ) = L̄(x, λ, µ, τ, ν, ρ),(3.11)

for L̄ defined in the proof of Theorem 3.2. As shown there, the set of optimal mul-
tipliers for Reg(0) can be defined by taking the union, over all MPEC multipliers
(λ∗, µ∗, τ∗, ν∗) (satisfying (2.5)), of the corresponding multipliers (λ̄, µ̄, τ̄ , ν̄, ρ) de-
fined in (3.4), (3.5), where ρ ≥ ρ̄ and the components of ρ̄ are defined in (3.5). Since
we assume MPEC-LICQ, the MPEC multiplier (λ∗, µ∗, τ∗, ν∗) is in fact unique, so
the multipliers (λ̄, µ̄, τ̄ , ν̄, ρ) depend only on ρ, a dependence we indicate explicitly by
writing (λ̄(ρ), µ̄(ρ), τ̄(ρ), ν̄(ρ), ρ). The linearized dual problem for Reg(0), following
the general definition in [3, (4.46)], is as follows:

max
(λ̄(ρ),µ̄(ρ),τ̄(ρ),ν̄(ρ),ρ);ρ≥ρ̄

DtL̃(x∗, 0, λ̄(ρ), µ̄(ρ), τ̄(ρ), ν̄(ρ), ρ),(3.12)

From the definition (3.10), this problem reduces to

min
(λ̄(ρ),µ̄(ρ),τ̄(ρ),ν̄(ρ),ρ);ρ≥ρ̄

m∑
i=1

ρi,

whose (unique) solution is obviously (λ̄(ρ̄), µ̄(ρ̄), τ̄(ρ̄), ν̄(ρ̄), ρ̄).
12



The condition [3, (4.139)] now reduces to the following:

sT∇2
xxL̃(x∗, 0, λ̄(ρ̄), µ̄(ρ̄), τ̄(ρ̄), ν̄(ρ̄), ρ̄)s > 0, for all s ∈ S̄,(3.13)

since, as we mentioned in the proof of Theorem 3.2, the critical direction set for (3.1)
is the same as the critical direction set S̄ (2.9) for the RNLP (2.4). From (3.7) and
(3.11), we have that

∇2
xxL̃(x∗, 0, λ̄(ρ̄), µ̄(ρ̄), τ̄(ρ̄), ν̄(ρ̄), ρ̄)

= ∇2
xxL(x∗, λ∗, µ∗, τ∗, ν∗) +

m∑
i=1

ρ̄i

(
∇Gi(x∗)∇Hi(x∗)T +∇Hi(x∗)∇Gi(x∗)T

)
,

so that

sT∇2
xxL̃(x∗, 0, λ̄(ρ̄), µ̄(ρ̄), τ̄(ρ̄), ν̄(ρ̄), ρ̄)s

= sT∇2
xxL(x∗, λ∗, µ∗, τ∗, ν∗)s + 2

m∑
i=1

ρ̄i

(
∇Gi(x∗)T s

) (
∇Hi(x∗)T s

)
.

Because s ∈ S̄, and because (λ∗, µ∗, τ∗, ν∗) is the unique multiplier satisfying (2.5), we
have by RNLP-SOSC (Definition 2.7) that the first term on the right-hand side of this
equation is at least σ > 0. Moreover, since ρ̄ ≥ 0, ∇G(x∗)T s ≥ 0, and ∇H(x∗)T s ≥ 0,
the summation in the final term is nonnegative. We conclude that (3.13), and hence
condition (ii) of [3, Theorem 4.55] is satisfied.

We conclude that the three conditions of [3, Theorem 4.55] are satisfied, so our
result follows directly from the cited theorem.

The next result follows immediately from Theorem 3.3 when we note that the
MPEC-SOSC and RNLP-SOSC conditions are identical when PSC holds.

Corollary 3.4. Suppose that x∗ is a strongly stationary point of (1.1) at which
MPEC-LICQ and MPEC-SOSC are satisfied, and that the partial strict complemen-
tarity (PSC) condition holds. Then there is a value t̄3 > 0 and a constant M3 such that
for all t ∈ (0, t̄3], the global solution x(t) of the localized problem Reg(t) with the addi-
tional ball constraint ‖x−x∗‖ ≤ r̂0/2 that lies closest to x∗ satisfies ‖x(t)−x∗‖ ≤ M3t,
where r̂0 is as defined in Theorem 3.2.

We conclude this subsection by illustrating the difference between Theorems 3.2
and 3.3 using Example 1. There we can take x(t) = (

√
t,
√

t), hence ‖x(t) − x∗‖ =
O(t1/2). The O(t) estimate of Theorem 3.3 does not hold because RNLP-SOSC is not
satisfied.

3.2. Boundedness of Lagrange Multipliers in Reg(t). We now establish a
companion result for Theorem 3.3 and Corollary 3.4 concerning boundedness of the
Lagrange multipliers at the solutions of Reg(t) described in those results. The main
result, Proposition 3.6, is proved after the following simple technical preliminary.

Lemma 3.5. Consider any i ∈ IG ∩ IH and suppose that ∇Gi(x∗) and ∇Hi(x∗)
are nonzero vectors. Then there exist a neighborhood Ui of x∗ and positive constant
ci such that for any x ∈ Ui and t ≥ 0 with Gi(x)Hi(x) = t, we have ‖x−x∗‖ ≥ ci

√
t.

Proof. Suppose for contradiction that there is a sequence tk ↓ 0, and corresponding
xk with Gi(xk)Hi(xk) = tk, Gi(xk) > 0, Hi(xk) > 0, such that

√
tk/‖xk − x∗‖ → ∞.(3.14)
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By taking a subsequence if necessary, we have that either Gi(xk) ≥
√

tk for all k, or a
similar bound on Hi(xk). In the former case, for all k sufficiently large, we have from
∇Gi(x∗) 6= 0 that

√
tk ≤ Gi(xk) = Gi(xk)−Gi(x∗) = ∇Gi(x∗)(xk − x∗) + o(‖xk − x∗‖)
≤ 2‖∇Gi(x∗)‖‖xk − x∗‖,

which contradicts (3.14). A similar contradiction occurs in the latter case.
Proposition 3.6. Let x∗ be a strongly stationary point of (1.1) at which the

MPEC-LICQ holds. If the regularized solution x(t) satisfies ‖x(t) − x∗‖ = O(t) for
small positive t, then

(i) Gi(x(t))Hi(x(t)) < t for each small positive t and each i ∈ IG ∩ IH ; and
(ii) the Lagrange multipliers corresponding to x(t) are bounded as 0 < t → 0.
Proof. Because of MPEC-LICQ, we have that each biactive pair ∇Gi(x∗) and

∇Hi(x∗) are linearly independent. Apply Lemma 3.5 to each i ∈ IG∩IH and combine
the results to obtain a neighborhood U of x∗ and positive constants ĉ and t̂ with the
following property: If 0 ≤ t ≤ t̂, x ∈ U and Gi(x)Hi(x) = t for some biactive index
i ∈ IG ∩ IH , then ‖x − x∗‖ ≥ c

√
t. Since ‖x(t) − x∗‖ = O(t), we have for small

t > 0 that x(t) ∈ U , 0 ≤ t ≤ t̂, and ‖x(t) − x∗‖ < c
√

t. Hence the constraint
Gi(x(t))Hi(x(t)) ≤ t must be inactive, proving (i).

It follows from (i) that δi(t) = 0 for all i ∈ IG∩IH and all t sufficiently small. From
Scholtes [28, Theorem 3.1], we have the following convergence result for multipliers
of Reg(t):

λi(t) → λ∗i , for all i ∈ Ig,(3.15a)
µ(t) → µ∗,(3.15b)

τi(t)− δi(t)Hi(x(t)) → τ∗i , for all i ∈ IG,(3.15c)
νi(t)− δi(t)Gi(x(t)) → ν∗i , for all i ∈ IH .(3.15d)

Since δi(t) = 0 for i ∈ IG ∩ IH , it follows from (3.15c) and (3.15d) that τi(t) → τ∗i
and νi(t) → ν∗i for these indices. For i ∈ IG \ IH , we cannot have both Gi(x(t)) = 0
and Gi(x(t))Hi(x(t)) = t, so either or both of τi(t) and δi(t) must be zero. Check-
ing (3.15c) in each case shows that the resulting multipliers τi(t) and δi(t) must be
bounded. Boundedness of νi(t) and δi(t) likewise follows from (3.15d), for i ∈ IH \IG.
This completes the proof of (ii).

3.3. Local Uniqueness of Solutions to Reg(t). In this subsection, we present
a further refinement of Scholtes’ result [28, Theorem 4.1] that has been mentioned
several times above. The main difference between Theorem 3.7, below, and the exis-
tence results of Section 3.1 is that, in addition to an O(t) bound on ‖x∗ − x(t)‖, it
provides local uniqueness of x(t) under RNLP-SSOSC. While a strong second-order
sufficient condition is to be expected as a sufficient condition for uniqueness, one might
hope to use the weaker MPEC-SSOSC. However, Example 1 dispels this hope: the
MPEC-LICQ and MPEC-SSOSC hold at the strongly stationary point x∗ = (0, 0),
but the solution of Reg(t) is not unique for positive t.

We present two main results below. In the first, Theorem 3.7, we weaken the
assumptions of [28, Theorem 4.1] by dropping LSC altogether, while retaining similar
conclusions. The second result, Corollary 3.9, assumes MPEC-SSOSC instead of
RNLP-SSOSC and replaces LSC by the weaker PSC condition.

Theorem 3.7. Suppose that x∗ is a strongly stationary point of (1.1) at which
MPEC-LICQ and RNLP-SSOSC are satisfied. Then there exist a neighborhood U of
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x∗, a scalar t̄ > 0, and a piecewise smooth function z : (−t̄, t̄) → U such that x(t) =
z(t) is the unique stationary point of Reg(t) in U for every t ∈ [0, t̄). A consequence
of piecewise smoothness is that, for s, t ∈ [0, t̄), we have ‖x(s)− x(t)‖ = O(|s− t|); in
particular ‖x(t)− x∗‖ = O(t).

The proof of the theorem relies first on showing that x(t) is one of finitely many
local solution mappings of strongly stable NLPs and, second, on a somewhat involved
argument to establish uniqueness of x(t) within a neighborhood of x∗. By contrast,
under LSC, the good behavior including uniqueness of x(t) follows immediately by
observing that it is the solution of a single, strongly stable nonlinear program whose
constraints are identified by the sign of the multipliers of the active constraints of G
and H; see [28].

A key step toward the proof of Theorem 3.7 is the following technical result.
Lemma 3.8. Let f , g, h, γ, and φ be functions from (x, t) ∈ IRn × IR to IR, IRl,

IRm, IR, and IR respectively. Suppose that each of the following parametric problems
is strongly stable about (x∗, 0), meaning that there is a neighborhood of x∗ such that
for small perturbations of t about zero the parametric problem has a unique solution
(stationary point or local minimizer) in that neighborhood:

min
x

f(x, t) subject to

g(x, t) ≥ 0, h(x, t) = 0;
(3.16a)

min
x

f(x, t) subject to

g(x, t) ≥ 0, h(x, t) = 0, γ(x, t) ≥ 0;
(3.16b)

min
x

f(x, t) subject to

g(x, t) ≥ 0, h(x, t) = 0, φ(x, t) ≥ 0.
(3.16c)

Suppose further, for each x near x∗ with g(x, t) ≥ 0 and h(x, t) = 0, that γ(x, t) ≤ 0
implies φ(x, t) ≥ 0; and φ(x, t) ≤ 0 implies γ(x, t) ≥ 0. Then the problem

min
x

f(x, t) subject to

g(x, t) ≥ 0, h(x, t) = 0, γ(x, t) ≥ 0, φ(x, t) ≥ 0
(3.17)

is also strongly stable at (x∗, 0), and the local solution mapping x(t) for this problem
is a selection of the local solution mappings for the previous problems.

Proof. Let x1(t), x2(t), and x3(t) denote the local solution mappings of (3.16a),
(3.16b) and (3.16c) respectively. We discuss existence and uniqueness of the solution
x(t) of (3.17) in turn.

a) Existence. If any one of x1(t), x2(t), and x3(t) is feasible for (3.17) then it is a
solution of this problem because the feasible set of (3.17) is contained in the feasible
set of each of the other problems. Suppose x1(t) is not feasible for (3.17), for example
γ(x1(t)) < 0 and, of course, x1(t) 6= x2(t). Then γ(x2(t)) = 0, otherwise γ(x2(t)) > 0,
in which case x2(t) is a local minimizer of both (3.16a) and (3.16b), which implies
x1(t) = x2(t) by uniqueness, a contradiction. Now use the relationship between γ
and φ, which requires that φ(x2(t)) ≥ 0, i.e. x2(t) is a solution of (3.17). A similar
argument exchanging the roles of γ and φ shows that x3(t) is a solution of (3.17) if
φ(x1(t)) < 0.

b) Uniqueness. Let x4(t) be a solution of (3.17) near x∗, for t near 0. If γ(x4(t))
and φ(x4(t)) are both positive then x4(t) is also a solution of (3.16a), hence coincides
with x1(t) by uniqueness of the latter. Similarly, x4(t) = x2(t) if γ(x4(t)) = 0 <
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φ(x4(t)) and x4(t) = x3(t) if γ(x4(t)) > 0 = φ(x4(t)). That is, x4(t) is a selection of
{x1(t), x2(t), x3(t)}.

If x1(t) and x2(t) are both solutions of (3.17) then obviously the former is also
a solution of (3.16b), and they coincide by uniqueness of the latter. Likewise if x1(t)
and x3(t) are both solutions of (3.17) then they coincide.

Finally, let x2(t) and x3(t) be solutions of (3.17). We show by contradiction that
x1(t) must be feasible for this problem, hence x4(t) = x1(t) = x2(t) = x3(t). Assume
x1(t) is infeasible for (3.17), say γ(x1(t)) < 0. The relationship between γ and φ
requires that φ(x1(t)) ≥ 0, i.e. x1(t) is feasible for (3.16c) and therefore coincides
with x3(t). But x3(t) is feasible for (3.17), a contradiction. A similar argument shows
a contradiction if we assume φ(x1(t)) < 0.

Proof of Theorem 3.7. To unburden notation we assume without loss of gener-
ality, by exchanging Gi with Hi if necessary, that IG = {1, . . . ,m}. Define I0 = {i ∈
IG \ IH : τ∗i = 0}; note that the corresponding set {i ∈ IH \ IG : ν∗i = 0} is empty.

Define “minimal core” constraints as follows:

g(x) ≥ 0, h(x) = 0,
Gi(x) ≥ 0, if i ∈ IG ∩ IH or τ∗i > 0
Hi(x) ≥ 0, if i ∈ IG ∩ IH or ν∗i > 0
Fi(x) ≤ t, if τ∗i + ν∗i < 0.

Define “core” constraints as any set composed of the minimal core as well as, for each
i ∈ IG \ IH with τ∗i = 0, at most one of Gi(x) ≥ 0 and Fi(x) ≤ t.

Choose any set of core constraints and consider the corresponding “core NLP”
which is parametric in t,

min
x

f(x) subject to x satisfies the chosen core constraints.

When t = 0, because of MPEC-LICQ, x∗ is a solution of this core NLP at which the
LICQ and SSOSC hold; hence classical perturbation theory [3, 26] says that the core
NLP is strongly stable at (x∗, 0) and the local solution mapping is piecewise smooth
in t. Call this problem NLP(1). Take i ∈ I0 such that neither Gi(x, t) ≥ 0 nor
Fi(x, t) ≤ t is in the core. Define NLP(2) by adding the constraint Gi(x, t) ≥ 0 to
NLP(1); and NLP(3) by adding the constraint Fi(x, t) ≤ t to NLP(1). Then each of
NLP(1)-(3) is a core NLP (using a different set of core constraints), hence is strongly
stable at (x∗, 0). It is easy to see that Lemma 3.8 can be applied by taking (3.16a),
(3.16b), (3.16c) as NLP(1), NLP(2), NLP(3) respectively, yielding strong stability of
the new problem (corresponding to (3.17)): minx f(x) subject to the constraints of
NLP(1) and also constraints

Gi(x, t) ≥ 0 and Fi(x, t) ≤ t.(3.18)

The lemma also says that the local solution mapping for the fourth problem (call it
x(4)(t)) is a selection of the local solution mappings of NLP(1)-(3), therefore x(4)(t) is
also piecewise smooth. Thus we have fulfilled the following induction hypothesis for
k = 1.

Induction hypothesis1 k: Choose any distinct i1, . . . , ik ∈ I0 and any set of core
constraints that includes neither Gi(x, t) ≥ 0 nor Fi(x, t) ≤ t for i = i1, . . . , ik. Then

1The assumption IG = {1, . . . , m} means we need not also consider pairs of constraints Hi(x, t) ≥
0 or Fi(x, t) ≤ t.
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the NLP with constraints given by the chosen core and (3.18) for all i = i1, . . . , ik
is strongly stable at (x∗, 0), and the associated local solution mapping is piecewise
smooth in t.

Let k be at least one and less than the cardinality of I0. We now show that
the induction hypothesis holds for k + 1. Choose any distinct i1, . . . , ik+1 ∈ I0 and
any set of core constraints that includes neither Gi(x, t) ≥ 0 nor Fi(x, t) ≤ t for
i = i1, . . . , ik+1. Consider three NLPs, each with the objective function f . The first
problem, NLP(i), has constraints given the by chosen core with the additional con-
straints (3.18) for i = i1, . . . , ik. The second (third resp.) problem NLP(ii) (NLP(iii)
resp.) is derived from NLP(i) by adding the constraint Gik+1(x) ≥ 0 (Fik+1(x) ≤ t
resp.). The constraints of each of NLP(i)-(iii) can be written as the union of a core
set together with (3.18) for i = i1, . . . , ik, i.e. in the form of the NLP specified in
Induction Hypothesis k. This is obvious for NLP(i). For NLP(ii), take the core to be
the chosen core as well as Gik+1(x) ≥ 0; and for NLP(iii), the chosen core as well as
Fik+1(x) ≤ t. Hence each NLP(i)-(iii) is strongly stable at (x∗, 0). Lemma 3.8 says
that the NLP with objective f and constraints consisting of the chosen core and the
pair (3.18) for all i = i1, . . . , ik+1 is also strongly stable at (x∗, 0), and that its local
solution mapping, denoted x(iv)(t), is the selection of the local solution mappings of
NLP(i)-(iii); so x(iv)(t) is also piecewise smooth.

The last result here follows from the above theorem simply because, under PSC,
MPEC-SSOSC implies (is equivalent to) RNLP-SSOSC.

Corollary 3.9. The conclusions of Theorem 3.7 hold if x∗ is a strongly sta-
tionary point of (1.1) at which MPEC-LICQ, MPEC-SSOSC, and PSC hold.

4. Alternative Regularized Formulations. We now consider the alternative
regularized formulations RegComp(t) and RegEq(t), and discuss the possibility of
results like Theorems 3.2 and 3.3 holding for these formulations.

4.1. Properties of Solutions of RegComp(t). For RegComp(t), in which
the individual constraints Gi(x)Hi(x) ≤ t are replaced by a single “approximate com-
plementarity” constraint G(x)T H(x) ≤ t, the feasible region contains that of the
original problem (1.1) and is a subset of the feasible region for Reg(t). Analogs of
Theorems 3.2 and 3.3 hold, with RegComp(t) replacing Reg(t), and the proofs are
quite similar. (We omit the details.) However, local uniqueness of the solution of
RegComp(t) is difficult to ensure. Scholtes [28] mentions a private communication
of Hu which shows that [28, Theorem 4.1] does not extend to RegComp(t). In Hu’s
counterexample, which is presented in [11, Example 2.3.2], all conditions of [28, The-
orem 4.1], hence of Theorem 3.7 above, are shown to hold but the solutions of the
RegComp(t) are not unique.

4.2. Properties of Solutions of RegEq(t). A result like Theorem 3.2 holds
for the RegEq(t) formulation (1.4) as well, but only if the O(t1/2) estimate is replaced
by a weaker O(t1/4) estimate. The following result differs from Theorem 3.2 also in
that MPEC-LICQ is assumed in place of MPEC-MFCQ. The result [3, Theorem 5.57]
cannot be applied here, as Gollan’s directional regularity condition (constraint qual-
ification) does not hold for this formulation. Our proof is based on more elementary
results.

Theorem 4.1. Suppose that x∗ is a strongly stationary point of (1.1) at which
MPEC-LICQ and MPEC-SOSC are satisfied. Then there are positive constants r̂2,
t̄4, and M7 such that for all t ∈ (0, t̄4], the global solution x(t) of the localized problem
RegEq(t) with the additional ball constraint ‖x − x∗‖ ≤ r̂2 that lies closest to x∗
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satisfies ‖x(t)− x∗‖ ≤ M7t
1/4.

Proof. Our strategy is to define two balls about x∗ with the following properties:
• The inner ball has radius O(t1/4), while the outer ball has a constant radius;
• There is at least one feasible point z(t) for RegEq(t) in the inner ball;
• All feasible points for RegEq(t) in the annulus between the two balls have a

larger function value than f(z(t)).
It follows from these facts that the minimizer x(t) described in the proof of the theorem
lies inside the inner ball, so the O(t1/4) estimate is satisfied.

Consider first the following projection problem, a nonlinear program parametrized
by t:

min
x

1
2‖x− x∗‖22 subject to(4.1)

g(x) ≤ 0, h(x) = 0,

Gi(x) = t1/2, Hi(x) = t1/2 (i ∈ IG ∩ IH),
Gi(x)Hi(x) = t (i /∈ IG ∩ IH).

When t = 0, the solution is x∗ and the gradients of the active constraints are linearly
independent, by the MPEC-LICQ assumption (Definition 2.3). Since the objective
is strongly convex, standard perturbation theory shows that the solution z(t) of this
problem satisfies

‖z(t)− x∗‖ ≤ M6t
1/2,(4.2)

for some constant M6 > 0 and all t sufficiently small.
We now choose r̂2 such that the following properties hold:

r̂2 ≤ r0,(4.3a)
r̂2 ≤ r1,(4.3b)

‖∇f(x)‖ ≤ 2‖∇f(x∗)‖ for all x with ‖x− x∗‖ ≤ r̂2,(4.3c)

where r0 is defined in Theorem 2.9 and r1 is defined in Lemma A.2. We now define
a constant M7 large enough that the following are true:

M7 ≥ 2M1,(4.4a)
σ̂M2

7 ≥ 16M1‖∇f(x∗)‖,(4.4b)
σ̂M2

7 ≥ 32M6‖∇f(x∗)‖,(4.4c)

where M1 is defined in Lemma A.2 and σ̂ is defined in Theorem 2.9. We further define
t̄4 small enough that the following conditions hold:

t̄4 ≤ 1,(4.5a)

M6t̄
1/2
4 ≤ r̂2/2,(4.5b)

M7t̄
1/4
4 < r̂2/2,(4.5c)

M1t̄
1/2
4 ≤ r̂2/2.(4.5d)

From (4.2) and (4.5b) and (4.3c), we have

f(z(t)) ≤ f(x∗) + 2M6t
1/2‖∇f(x∗)‖, for all t ∈ (0, t̄4].(4.6)
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For a given t ≤ t̄4, we define the radius of the inner ball to be M7t
1/4 and of the

outer ball to be r̂2/2. (Because of (4.5c), the inner ball is truly contained in the outer
ball.) Now let x be any point in the annulus between the two balls that is feasible
for RegEq(t). Since ‖x − x∗‖ ≤ r̂2/2 < r1, we have from Lemma A.2 that there is a
z feasible for (1.1) such that

‖z − x‖ ≤ M1t
1/2.(4.7)

Since from (4.5d) we have

‖z − x∗‖ ≤ ‖z − x‖+ ‖x− x∗‖ ≤ M1t
1/2 + r̂2/2 ≤ r̂2/2 + r̂2/2 = r̂2,

we have using (4.3c) again that

|f(z)− f(x)| ≤ 2‖∇f(x∗)‖ ‖z − x‖ ≤ 2‖∇f(x∗)‖M1t
1/2.(4.8)

Moreover, we have from (4.7) and the definition of x that

‖z − x∗‖ ≥ ‖x− x∗‖ − ‖z − x‖ ≥ M7t
1/4 −M1t

1/2 > 0,

where the final inequality follows from (4.5a) and (4.4a). Hence, from Theorem 2.9
and (4.8), we have

f(x)− f(x∗) ≥ f(z)− f(x∗)− |f(z)− f(x)|
≥ σ̂‖z − x∗‖2 − 2‖∇f(x∗)‖M1t

1/2

≥ σ̂[M7t
1/4 −M1t

1/2]2 − 2‖∇f(x∗)‖M1t
1/2.(4.9)

Because of (4.5a) and (4.4a), we have M1t
1/2 ≤ (1/2)M7t

1/4, so

σ̂[M7t
1/4 −M1t

1/2]2 ≥ (1/4)σ̂M2
7 t1/2.

By substituting into (4.9) and using (4.4b), we have

f(x)− f(x∗) ≥ (1/4)σ̂M2
7 t1/2 − 2‖∇f(x∗)‖M1t

1/2 ≥ (1/8)σ̂M2
7 t1/2.(4.10)

By comparing with (4.6), and using (4.4c), we have

f(x) ≥ f(x∗) + (1/8)σ̂M2
7 t1/2

≥ f(z(t))− 2M6t
1/2‖∇f(x∗)‖+ (1/8)σ̂M2

7 t1/2 ≥ f(z(t)) + (1/16)σ̂M2
7 t1/2,

thereby confirming that any feasible point for RegEq(t) in the space between the two
balls has a higher function value than the point z(t) defined by (4.1), which is feasible
for RegEq(t) and which lies inside the inner ball. This observation establishes the
result.

The stronger O(t1/2) estimate of Theorem 3.2 cannot apply, at least not under
the assumptions of Theorem 4.1.

Example 2. The simple MPEC

min x1 + 1
2x2

2 subject to 0 ≤ x1 ⊥ x2 ≥ 0

has a strongly stationary point x∗ = (0, 0) at which MPEC-LICQ and RNLP-SSOSC
(hence MPEC-SOSC) hold, with MPEC-multipliers τ∗ = 1 and ν∗ = 0. RegEq(t) is

min x1 + 1
2x2

2 subject to x1x2 = t, x1, x2 > 0.
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It can be easily shown, starting from KKT conditions, that RegEq(t) has a unique
solution x(t) = (t2/3, t1/3), so that ‖x∗ − x(t)‖ = O(t1/3) 6= O(t1/2).

We demonstrate this fact more generally for the case in which IG ∩ IH 6= ∅ and
exactly one of τ∗i and ν∗i is nonzero for each i ∈ IG ∩ IH .

Logic like that of Scholtes [28, Theorem 3.1] can be used to show that first-order
sufficient conditions hold at the solution of RegEq(t), so we have

∇f(x(t)) =
∑
i∈Ig

λi(t)∇gi(x(t)) +
q∑

i=1

µi(t)∇hi(x(t))

−
m∑

i=1

δi(t) [Gi(x(t))∇Hi(x(t)) + Hi(x(t))∇Gi(x(t))] ,(4.11)

for t sufficiently small. Consider now the limit of this expression as t ↓ 0 (and therefore
x(t) → x∗). Suppose that for some i ∈ IH \ IG, we have δi(t)Hi(x(t)) 6→ 0. Then
since i ∈ IH and hence Hi(x∗) = 0, it follows that |δi(t)| → ∞, and since Gi(x∗) > 0,
we have |δi(t)Gi(x(t))| → ∞ and that eventually Gi(x(t)) � Hi(x(t)). Likewise, if
there is i ∈ IG \ IH for which δi(t)Gi(x(t)) 6→ 0, we have that |δi(t)Hi(x(t))| → ∞
and eventually Hi(x(t)) � Gi(x(t)). If there exist indices i that fall into one of these
two categories, we therefore have that

max
(

max
i∈Ig

λi(t), max
i=1,2,...,q

|µi(t)|, max
i∈IG

|δi(t)Hi(x(t))|, max
i∈IH

|δi(t)Gi(x(t))|
)
→∞,

so by dividing both sides of (4.11) by this largest absolute multiplier, and taking limits
as t ↓ 0, we have that there is a vector (λ̂, µ̂, τ̂ , ν̂) with ‖(λ̂, µ̂, τ̂ , ν̂)‖∞ = 1 such that

0 =
∑
i∈Ig

λ̂i∇gi(x∗) +
q∑

i=1

µ̂i∇hi(x∗)−
∑
i∈IG

τ̂i∇Gi(x∗)−
∑
i∈IH

ν̂i∇Hi(x∗).

However, the MPEC-LICQ condition now implies that (λ̂, µ̂, τ̂ , ν̂) = 0, a contradiction.
We conclude therefore that δi(t)Hi(x(t)) → 0 for all i ∈ IH \IG and δi(t)Gi(x(t)) → 0
for all i ∈ IG \ IH . A comparison of (4.11) with (2.5a) then yields that

λi(t) → λ∗i , for all i ∈ Ig,(4.12a)
µ(t) → µ∗,(4.12b)

−δi(t)Hi(x(t)) → τ∗i , for all i ∈ IG,(4.12c)
−δi(t)Gi(x(t)) → ν∗i , for all i ∈ IH .(4.12d)

These limits suggest that the multipliers (λ(t), µ(t), δ(t)) are bounded if IG ∩ IH = ∅;
that is, if LSC holds. Otherwise, we see from (4.12c) and (4.12d) that the multiplier
δi(t) → ∞ for all i ∈ IG ∩ IH such that either τ∗i > 0 or ν∗i > 0. Moreover, if for
any index i ∈ IG ∩ IH we have that exactly one of τ∗i > 0 and ν∗i > 0 is zero, then
the solution x(t) cannot satisfy the O(t1/2) error estimate. For contradiction, let i be
such an index, and assume without loss of generality that τ∗i = 0 and ν∗i > 0. By
multiplying (4.12c) and (4.12d) and using Gi(x(t))Hi(x(t)) = t, we obtain that

δi(t)2Gi(x(t))Hi(x(t)) = δi(t)2t → τ∗i ν∗i = 0,

so that |δi(t)| = o(t−1/2). Then from (4.12d) we have that Gi(x(t)) → ν∗i /|δi(t)| =
ν∗i /o(t−1/2), which is incompatible with Gi(x(t)) = O(‖x(t)− x∗‖) = O(t1/2).
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5. Properties of Solutions of PF(ρ). In this section, we prove results con-
cerning exactness of the penalty formulation (1.5). We show first that the penalty
function formulation (1.5) is exact, in the sense that a strongly stationary point of
(1.1) is a local minimizer of (1.5) under certain assumptions. Note in particular that
no strict complementarity condition is required.

Theorem 5.1. Suppose that x∗ is a strongly stationary point of (1.1). Then for
all ρ sufficiently large, the following claims are true.

(a) x∗ is a stationary point of PF(ρ).
(b) If MPEC-LICQ holds at x∗, then LICQ holds for PF(ρ) at x∗. If MPEC-

MFCQ holds at x∗, then MFCQ holds for PF(ρ) at x∗.
(c) If MPEC-SOSC (Definition 2.7) is satisfied at x∗, then there is ρ̂ > 0 such

that SOSC is satisfied for PF(ρ) at x∗ for all ρ ≥ ρ̂.
Proof. We start by proving (a). The KKT conditions for (1.5) will be satisfied at

x∗ if we can find Lagrange multipliers λ̄, µ̄, τ̄ , and ν̄ such that the following conditions
hold:

0 = ∇f(x∗)−
∑
i∈Ig

λ̄i∇gi(x∗)−
q∑

i=1

µ̄i∇hi(x∗)(5.1a)

−
∑
i∈IG

(τ̄i − ρHi(x∗))∇Gi(x∗)−
∑
i∈IH

(ν̄i − ρGi(x∗))∇Hi(x∗),

0 ≤ µ̄i, i ∈ Ig,(5.1b)
0 ≤ τ̄i, i ∈ IG,(5.1c)
0 ≤ ν̄i, i ∈ IH ,(5.1d)

where Ig, IG, and IH are the index sets defined in (2.1). Given (λ∗, µ∗, τ∗, ν∗) satis-
fying (2.5) and (2.7), we set

λ̄i = λ∗i , i ∈ Ig,(5.2a)
µ̄i = µ∗i , i = 1, 2, . . . , q,(5.2b)
τ̄i = τ∗i + ρHi(x∗), i ∈ IG,(5.2c)
ν̄i = ν∗i + ρGi(x∗), i ∈ IH ,(5.2d)

and choose ρ to satisfy

ρ ≥ ρ̂1
def= 1 + max

(
0, max

i∈IG\IH :τ∗
i

<0

−τ∗i
Hi(x∗)

, max
i∈IH\IG:ν∗

i
<0

−ν∗i
Gi(x∗)

)
,(5.3)

it is easy to verify by comparison with (2.5) that the conditions (5.1) are satisfied.
For (b), we note first that the LICQ condition for (1.5) follows immediately from

MPEC-LICQ (Definition 2.3). Since we established in the proof of Theorem 3.2 that
MPEC-MFCQ implies existence of a vector d̃ satisfying (3.2), then MPEC-MFCQ
implies MFCQ for PF(ρ) at x∗ as well, since MFCQ for PF(ρ) consists of all conditions
in (3.2) except the final one.

We now prove (c). First, it is easy to show that for ρ and the multipliers (λ̄, µ̄, τ̄ , ν̄)
defined as in (5.2), and denoting the Lagrangian for (1.5) by L̂(x, λ̄, µ̄, τ̄ , ν̄; ρ), we have

∇2
xxL̂(x∗, λ̄, µ̄, τ̄ , ν̄; ρ) = ∇2

xxL(x∗, λ∗, µ∗, τ∗, ν∗)

+ ρ
m∑

i=1

(
∇Gi(x∗)∇Hi(x∗)T +∇Hi(x∗)∇Gi(x∗)T

)
.(5.4)
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In a similar fashion to the proof of Theorem 3.2, we can show that the critical direction
set for PF(ρ) at x∗ is again S̄, the critical direction set for the RNLP (2.4). We can
now apply an almost identical argument to the one in the proof of Theorem 3.2 to
deduce that there is a threshold ρ̂ such that for all ρ ≥ ρ̂ we have

sT∇2
xxL̂(x∗, λ̄, µ̄, τ̄ , ν̄; ρ)s ≥ σ/2, for all s ∈ S̄,

where σ is the quantity from Definition 2.7. Hence, the SOSC for PF(ρ) is satisfied,
as claimed.

Part (c) of the theorem above is quite similar to the recent result [1, Corollary 3.2],
the essential difference being that we show that MPEC-SOSC implies SOSC for PF(ρ),
while [1] proves a similar implication for the quadratic increase condition.

We now prove a partial converse of Theorem 5.1, showing that local solutions of
(1.5) for which G(x)T H(x) = 0 are local solutions of (1.1).

Theorem 5.2. Suppose that x∗ is a stationary point for PF(ρ) (1.5) and that
G(x∗)T H(x∗) = 0. Then x∗ is strongly stationary for (1.1).

If in addition x∗ satisfies LICQ for PF(ρ) at x∗, then (1.1) satisfies MPEC-LICQ.
Suppose in addition to stationarity that SOSC is satisfied for PF(ρ) at x∗. Then

MPEC-SOSC is satisfied at x∗, so that x∗ is a strict local minimizer of (1.1).
Proof. Stationarity of x∗ for PF(ρ) means that the conditions (5.1) are satisfied

for some λ̄, µ̄, τ̄ , and ν̄, for Ig, IG, and IH defined by (2.1). Since G(x∗)T H(x∗) = 0,
we have IG∪IH = {1, 2, . . . ,m}. If we define λ∗, µ∗, τ∗, and ν∗ by the relations (5.2),
we see that (2.5) are satisfied, so that x∗ is strongly stationary for (1.1), as claimed.

The LICQ condition for PF(ρ) is exactly the condition (2.8), so that MPEC-LICQ
is satisfied at this point also.

For the final statement of the theorem, we need to show that there is some σ > 0
such that for any s ∈ S∗, there are multipliers (λ∗, µ∗, τ∗, ν∗) satisfying (2.5) such
that (2.12) holds. Since S∗ ⊂ S̄, and since S̄ is the critical direction set for PF(ρ), we
have from the SOSC for x∗ in (1.5) that there exist multipliers (λ̄, µ̄, τ̄ , ν̄) for (1.5)
such that

sT∇2
xxL̄(x∗, λ̄, µ̄, τ̄ , ν̄, ρ)s ≥ σ̂,

where σ̂ > 0 is a constant. Defining (λ∗, µ∗, τ∗, ν∗) from (λ̄, µ̄, τ̄ , ν̄) using (5.2), and
using (5.4), we have that

sT∇2
xxL(x∗, λ∗, µ∗, τ∗, ν∗)s = sT∇2

xxL̂(x∗, λ̄, µ̄, τ̄ , ν̄, ρ)s ≥ σ̂,

since a close examination of the conditions defining S∗ show that the final term in
(5.4) contributes nothing to the product. Hence, we have shown that MPEC-SOSC
conditions are satisfied at x∗ for σ = σ̂.

The condition G(x)T H(x) = 0 appears to be essential. As observed by Hu and
Ralph [12], there is nothing to stop an approach based on (1.5) to get stuck at a
minimizer of the “limiting” problem

minx G(x)T H(x) subject to
g(x) ≤ 0, h(x) = 0, G(x) ≥ 0, H(x) ≥ 0,

(5.5)

Under the PSC assumption, we are able to prove an extension of the results of
Theorems 5.1 and 5.2, in which all stationary points for PF(ρ) in the neighborhood
of a strongly stationary point x∗ for (1.1) are also strongly stationary for (1.1).

22



Proposition 5.3. Suppose that x∗ is a strongly stationary point of (1.1) and
that MPEC-LICQ and PSC hold at x∗. Then there is a neighborhood U of x∗ and
a scalar ρ∗ > 0 such that for all ρ ≥ ρ∗, every stationary point for PF(ρ) in U is a
strongly stationary point for (1.1).

Proof. Given the point x∗ that is strongly stationary for (1.1), we note that,
because of MPEC-LICQ, the multiplier vector (λ∗, µ∗, τ∗, ν∗) is uniquely defined. We
now define the neighborhood U and the threshold value ρ∗ for the penalty parameter
ρ. We first define the constant ε > 0 as follows:

ε = (1/2)min
(

min
i/∈IH

Hi(x∗), min
i/∈IG

Gi(x∗), min
i | τ∗

i
>0

τ∗i , min
i | ν∗

i
>0

ν∗i

)
.

Now choose U small enough that

x ∈ U ⇒ Hi(x) ≥ ε for all i /∈ IH and Gi(x) ≥ ε for all i /∈ IG.

By using the MPEC-LICQ property, we can shrink U further if necessary such that if x
is any point in U for which there exist multipliers (λ, µ, τ, ν) satisfying∇xL(x, λ, µ, τ, ν) =
0, then we have

‖(λ, µ, τ, ν)− (λ∗, µ∗, τ∗, ν∗)‖∞ ≤ ε.(5.6)

Choose ρ∗ large enough that

ρ∗ε + τ∗i − ε > 0 and ρ∗ε + ν∗i − ε > 0 for all i = 1, 2, . . . ,m.

Let x̄ ∈ U be stationary for PF(ρ) for some ρ ≥ ρ∗. We aim to show that x̄ is
feasible for MPEC, in particular, G(x̄)T H(x̄) = 0. Once we have established this fact,
the proof follows immediately from Theorem 5.2.

By choice of U , IG(x̄) ⊂ IG and IH(x̄) ⊂ IH , where IG(x̄) contains the indices
for which Gi(x̄) = 0, and similarly for IH(x̄). To show MPEC feasibility of x̄, we first
select some index i ∈ IG \ IH . As shown in (5.1a), stationarity of x̄ for PF(ρ) implies
that there are multipliers (λ̄, µ̄, τ̄ , ν̄) such that ∇xL(x̄, λ̄, µ̄, τ̄−ρH(x̄), ν̄−ρG(x̄)) = 0.
Hence, from (5.6),

‖τ̄ − ρH(x̄)− τ∗‖∞ ≤ ε, ‖ν̄ − ρG(x̄)− ν∗‖∞ ≤ ε.

Hence, for the given i ∈ IG \ IH , we have that τ̄i ≥ ρHi(x̄) + τ∗i − ε > 0. From
complementarity of τ̄i with Gi(x̄) in the KKT conditions for x̄ in PF(ρ), we deduce
that Gi(x̄) = 0. Similar logic yields that Hi(x̄) = 0 for all i ∈ IH \ IG.

Next, select i ∈ IG(x∗) ∩ IH(x∗). Because of the PSC assumption, either τ∗i or
ν∗i is positive. Suppose τ∗i > 0. From (5.6) we have τ̄i − ρHi(x̄) ≥ τ∗i − ε, where the
quantity at right is positive by definition of ε. Since ρHi(x̄) ≥ 0, we see that τ̄i > 0.
Hence, complementarity of τ̄i with Gi(x̄) yields that Gi(x̄) = 0. Likewise, if ν∗i > 0
then Hi(x̄) = 0.

We have shown that for all i, at least one of Gi(x̄) and Hi(x̄) is zero, so that x̄ is
not only stationary for PF(ρ) but also feasible for the MPEC (1.1). The result now
follows from Theorem 5.2.

Let x∗ be strongly stationary point that satisfies PSC and U and ρ∗ be given by
Proposition 5.3. An immediate corollary of this result is that U is a “neighborhood
of finite termination” for the penalty method: If ρk → ∞ and, for each k, xk is a
stationary point of PF(ρk), then for any iterate with ρk ≥ ρ∗ and xk ∈ U we have
strong stationarity of xk, hence termination of the penalty approach.
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6. Conclusions. We have examined several properties of the solutions to the
regularized formulation Reg(t) (1.2) to the MPEC (1.1)—distance between solutions
of (1.2) and (1.1), boundedness of Lagrange multipliers, local uniqueness, and smooth-
ness of the solution mapping—under various assumptions on (1.1) at a local solution
x∗. We have obtained similar results for the alternative regularized formulations (1.3)
and (1.4). We have also looked at the penalty formulation PF(ρ) (1.5), deriving
relationships between solutions of this problem and solutions of the original MPEC.

Further work is needed on making use of the observations above in algorithms
based on Reg(t). It may be possible to devise a method with an overall superlinear
convergence rate (and desirable global convergence properties) by applying an SQP-
like method to approximately solve Reg(t) for a decreasing sequence of t values. Near
x∗, it may be possible to decrease t at a “superlinear” rate while taking only one SQP
step for each t. For the penalty formulation, an SQP strategy in conjunction with a
technique to find an appropriately large value of ρ is needed. For both regularization
and penalization techniques, we are also interested in algorithms that converge when
LICQ conditions are replaced by corresponding MFCQ conditions.
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Appendix A. Perturbation Results for Regularized Formulations.
We start by stating a special case of Robinson [25, Theorem 1].
Lemma A.1. Suppose that x∗ is a feasible point for the system

c(x) = 0, d(x) ≤ 0,(A.1)

where c : IRn → IRnc and d : IRn → IRnd are continuously differentiable at x∗. Suppose
that MFCQ is satisfied at x∗, that is, the vectors ∇ci(x∗), i = 1, 2, . . . , nc are linearly
independent and there exists a vector v 6= 0 such that

∇ci(x∗)T v = 0, for all i = 1, 2, . . . nc,

∇di(x∗)T v < 0, for all i = 1, 2, . . . , nd such that di(x∗) = 0.

Then there exists a radius r > 0 and a constant M > 0 such that for all x with
‖x− x∗‖ < r, there is a vector z ∈ IRn satisfying (A.1) such that

‖z − x‖ ≤ M

∥∥∥∥(
c(x)

max(d(x), 0)

)∥∥∥∥ .

Next, we show that in a neighborhood of x∗, any point x that is feasible for (1.2)
is at most a distance O(t1/2) from a point that is feasible for (1.1).

Lemma A.2. Let x∗ be a solution of (1.1) at which strong stationarity and
MPEC-LICQ are satisfied. Then there exist a radius r1 > 0 and a constant M1 > 0
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such that the following property holds. When x is a feasible point for Reg(t) defined
in (1.2) for t ∈ [0, 1], and in addition ‖x − x∗‖ ≤ r1, then there is a point z feasible
for (1.1) such that ‖z − x‖ ≤ M1t

1/2. If LSC holds, this estimate can be improved to
‖z − x‖ ≤ M1t.

Proof. Consider any subset IP ⊂ IG ∩ IH , and define the following system of
inequalities

Gi(z) = 0, i ∈ IG \ IH ,

Gi(z) = 0, i ∈ IP ,

Gi(z) ≥ 0, i ∈ IH \ IP ,

Hi(z) = 0, i ∈ IH \ IG,

Hi(z) = 0, i ∈ Ic
P ,

Hi(z) ≥ 0, i ∈ IG \ Ic
P ,

gi(z) ≥ 0, i = 1, 2, . . . , p,

hi(z) = 0, i = 1, 2, . . . , q,(A.2)

where Ic
P denotes (IG ∩ IH) \ IP . Note first that any z satisfying (A.2) is certainly

feasible for (1.1). Note too that x∗ is feasible for this system, for all choices of IP ,
and that the active constraint gradients at x∗ are simply the vectors in (2.8), which
are linearly independent by assumption. Hence, the MFCQ condition of Lemma A.1
is satisfied by (A.2) at x∗.

Next, define r̄ such that the following properties hold for all x with ‖x−x∗‖ ≤ r̄:

Gi(x) ≥ 1
2Gi(x∗), i ∈ IH \ IG,(A.3a)

Hi(x) ≥ 1
2Hi(x∗), i ∈ IG \ IH ,(A.3b)

gi(x) ≥ 1
2gi(x∗), i /∈ Ig.(A.3c)

We now apply Lemma A.1 to (A.2) at x∗. By this result, we can choose r̄(IP ) ∈ (0, r̄]
and M̄(IP ) > 0 such that for any x with ‖x − x∗‖ ≤ r̄(IP ), there is a solution z of
(A.2) such that the following condition is satisfied:

‖z − x‖ ≤ M̄(IP )

 ∑
i∈IP∪(IG\IH)

|Gi(x)|+
∑
i∈Ic

P

max(−Gi(x), 0)

+
∑

i∈Ic
P
∪(IH\IG)

|Hi(x)|+
∑
i∈IP

max(−Hi(x), 0)

+
∑
i∈Ig

max(−gi(x), 0) +
q∑

i=1

|hi(x)|

 .(A.4)

(We have used the equivalence of the 1 and 2−norms and have omitted certain terms
from the right-hand side of the bound because of the inactivities (A.3).) Let us now
define r1 and M̂1 as follows:

r1
def= min

IP⊂IG∩IH

r̄(IP ), M̂1
def= max

IP⊂IG∩IH

M̄(IP ).

Consider any x feasible for Reg(t) (1.2) that also satisfies ‖x−x∗‖ ≤ r1. For this
x, we define IP as follows:

IP = {i ∈ IG ∩ IH |Gi(x) ≤ Hi(x)}.
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For this x, we have from the constraints in (1.2) that

Gi(x) ≥ 0, Hi(x) ≥ 0, Gi(x)Hi(x) ≤ t ⇒ 0 ≤ Gi(x) ≤ t1/2, for all i ∈ IP .

Similarly, we have 0 ≤ Hi(x) ≤ t1/2 for all i ∈ Ic
P . We have from r1 ≤ r̄ and (A.3)

that

0 ≤ Gi(x) ≤ t/Hi(x) ≤ 2t/Hi(x∗), i ∈ IG \ IH ,

0 ≤ Hi(x) ≤ t/Gi(x) ≤ 2t/Gi(x∗), i ∈ IH \ IG.

We also have for all x feasible in (1.2) that G(x) ≥ 0, H(x) ≥ 0, g(x) ≥ 0 and
h(x) = 0. Hence, by applying (A.4) for this choice of IP , we find that there is a z
satisfying (A.2) (and hence feasible for (1.1)) such that

‖z − x‖ ≤ M̂1

 ∑
i/∈IH

2t/Hi(x∗) +
∑
i∈IP

t1/2 +
∑
i/∈IG

2t/Gi(x∗)
∑
i∈Ic

P

t1/2


= 2M̂1t

 ∑
i/∈IH

1/Hi(x∗) +
∑
i/∈IG

1/Gi(x∗)

 + M̂1|IG ∩ IH |t1/2

≤ M1t
1/2

for all t ∈ [0, 1] and for an obvious definition of M1. For the final statement of the
theorem, we have IG ∩ IH = ∅, so that the final bound can be strengthened to M1t
(for a different value of M1).
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