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Some Properties of the A + B C Reaction-Diffusion 
System with Initially Separated Components 

Haim Taitelbaum,1 Shlomo Havlin, 1,2 James E. Kiefer, 2 
Benes Trus, 2 and George H. Weiss 2 

We study some properties of the A + B - ,  C reaction-diffusion system with 
initially separated components, first analyzed by means of an asymptotic scaling 
argument by G~ilfi and Rficz. We show that, in contrast to the asymptotic result 
that predicts that the rate of production of C goes like t-t/2, at early times it 
is shown to increase as t ~/2. Deviations from this behavior appear at times 
inversely proportional to the reaction constant. Analogous crossover properties 
appear in the kinetic behavior of the reaction front. A second part of the study 
is concerned with the same chemical reaction on a fractat surface. When the 
substrate is a percolation cluster at criticality, both the maximum production 
rate and the width of the reaction zone differ considerably from those for the 
homogeneous space. 

KEY WORDS:  Reaction-diffusion equation; exact enumeration method; 
percolation system; fractal medium. 

1. I N T R O D U C T I O N  

The kinetic behavior of diffusion-controlled reactions has stimulated an 
enormous amount of research since the initial seminal investigation by 
Smoluchowski/1'2~ However, only within the last 20 years has a part of this 
research been focused on the phenomenon of self-segregation of reactants 
in :reactions taking place in low numbers of dimensions. ~ 7) Most theoreti- 
cal investigations of such reactions are based on the assumption that the 
reactants are initially uniformly mixed. It is, however, difficult to imple- 
ment such conditions in a real chemical system. A simpler system lending 
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itself more readily to experimental study is one in which the reactants are 
initially separated. (8) In that case, one can expect to find phenomena exem- 
plified by an interface or front that separates the reactants and persists in 
time, the characteristics of the interface depending on whether the reaction 
rate is finite or infinite. The presence of a reaction front is a characteristic 
of a variety of biological, chemical, and physical processes. (9 15~ An initial 
step in elucidating the kinetics of pattern formation in such systems 
consists in understanding the kinetics of simplified models which also 
exhibit such phenomena. 

The first investigation of properties of such a system, the reaction 
A + B ~ C, that takes into account an initial separation of reactants, as 
opposed to a uniform mixture, appears to be due to G/dfi and R/tcz. (16) 
They developed a theory based on the assumption that the reaction- 
diffusion equations describing the kinetics of the reaction have a solution 
approaching an asymptotic scaling form. Analysis of the implications 
of such a scaling form leads to specific predictions for the exponents 
appearing in the solution, which have been confirmed in a number of 
experimental systems. (8'17~ For  example, Koo e t a L  (~7~ have verified that 
the reaction rate is proportional to t -1/2 at sufficiently long times, in 
accordance with the prediction of Gfilfi and Rficz. 

In the present paper we examine a number of further aspects of the 
reaction studied by G/dfi and Rficz. In particular, we show, using a pertur- 
bation analysis based on letting a suitable dimensionless reaction rate tend 
toward zero, that at short times the reaction rate increases at a rate 
proportional to t ~/2, followed by a crossover to the predicted t-1/2 behavior 
at sufficiently long times. Other novel crossovers in the kinetics are also 
possible at very short times, as can be determined by the perturbation 
technique. We confirm by the method of exact enumeration that the 
exponents predicted by G/dfi and R/tcz show up at a reasonable time, 
which is to say that the scaling regime does not occur at a time so large 
as to render it physically unobservable. G/dfi and Rficz scaling analysis was 
carried out for the special case in which the diffusion coefficients of the A 
and B species are equal. Since their analysis presumes that a reaction-diffu- 
sion equation describes the kinetics of the reaction, it does not take into 
account fluctuations in concentration. More recently, Jiang and Ebner (18) 
simulated a very similar system, replacing the diffusion process by a 
random walk on a two-dimensional lattice, with the A and B reactants 
initially separated by a line. Their simulations showed that the asymptotic 
scaling assumptions of Gfilfi and Rficz remain valid even when the initial 
densities and diffusion constants are unequal. 

Finally, the Gfilfi-Rficz analysis assumes that diffusion occurs in a 
translationally-invariant medium. We examine some of the implications of 
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having the reactions occur on a fractal substrate, finding the appropriate 
exponents by a combination of scaling arguments and simulations based 
on the method of exact enumeration. (19'21~ 

2. THE T R A N S L A T I O N A L L Y - I N V A R I A N T  SUBSTRATE 

As a first step in our analysis, we consider a reaction-diffusion system, 
A + B k ~ C, for which the kinetic equations obeyed by the local concen- 
trations pa and Pb are those studied by Gfilfi and Rficz: 

~ P a  ~ rv2 , - -  = J JaY p~--Kp,pb ( la)  
#t 

--=- = v b v  pb--Kpape ( lb)  
fit 

assuming a mean field approach. Equations ( la)  and ( lb)  are to be solved 
subject to the initial conditions 

p~(x, O) = aoH(x), pb(x, 0) = boi l  - H(x) ]  (2) 

in which H(x) is a Heaviside step function, and ao and bo are the initial 
concentrations. That is to say, the reactants are initially separated, the A 
species being uniformly distributed on the right-hand side, and the 
B species uniformly distributed on the left side. Our calculations are carried 
om under the assumption that the system is infinite in either direction. In 
order to study the short-time behavior of the solution to this set of 
equations, we develop a perturbation series based on the idea that reactive 
effects are small relative to diffusive effects, in a suitably dimensionless 
form. 

The system of equations in ( la)  and ( lb)  will be reparametrized in 
te, rms of the initial concentrations by setting 

pa(x, t)=aoC~(x, t), p~(x, t)= b0fl(x, t) (3) 

where ~ and // are now dimensionless concentrations. Two dimensionless 
constants will be defined in terms of the diffusion constants and the initial 
concentrations. These are 

( ~ ) 1 / 2 ,  \bo] (4) 
~@= r=(ao~ 1/2 

both of which we take to be 0(1). At sufficiently early times, the amount 
of mixing of A and B molecules will not be very great; consequently, the 
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amount of the product C will necessarily be small. We can simulate this 
early-time behavior over a longer interval of time by letting the reaction 
rate go to zero in a suitable dimensionless sense. The dimensionless small 
parameter in our problem will be denoted by e, which is defined by 

k 
a = ( a o b o D ~ D b ) l / 2  ( 5 )  

Finally, we introduce a dimensionless time r and a dimensionless space 
variable ~ by 

r = taobo(D,Db) 1/2, ~ = x(aobo) t/z (6) 

Equations (1) can be rewritten in terms of the variables defined in 
gqs. (3) (6) as 

6qO{ ~20{ 
- -  = -~ cq? ( 7 a )  
Or ~ ~-@5 -- r 

aft 1 ~?afi 

These equations are the starting point for a straightforward applica- 
tion of perturbation theory on the assumption that e ~ 1. We expand ~ and 
fl into the series 

] - 0  i = 0  

finding that % and rio satisfy ordinary diffusion equations that must be 
solved subject to the initial conditions ~o((, 0) = H(~),//o(~, 0) = 1 - H(~). 
The solution to these equations that satisfies the given initial conditions is 

~ o ( ~ , ~ ) = ~  , r i o ( i , r ) = l - ~  { ~ (9) 

in which ~(z)  is the normal integral defined by 

~ ( z ) -  1 [~ 
( 2 ~ )  1/2 - ~  oo e-U2/2 d u  (10) 

We follow Gdtlfi and Rficz in defining the local rate at which C is 
produced at position x and time t as R(x, t)= kp~(x, t)pb(x, t), with the 
implied global rate of production of C: 

R(,) = k Ca(X, ,)dX 

=aobo(DaDb)l/2e c~({,r) f l (~,r)d{ (11) 
oo 
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The local rate of production of C can obviously also be expanded in a 
series that goes in powers of e. Useful information on the early-time 
behavior of the global reaction rate can then be obtained from the lowest 
order of perturbation theory, in which the integrand of Eq. (11) is replaced 
by h0(~, r)-=%(~, r)flo(~, r). We will expand the dimensionless reaction 
rate, now regarded as a function of r, R(r), in a perturbation series in the 
small parameter e: 

R(r) = aobo(O~Ob) 1/2 ~[~0( ' c )  + e~l ( ' c  ) + .-- ] (12)  

Tlhe lowest order term in the expansion in Eq. (12) is readily found to be 

No(r) = ~oo ho(~, r) d~ = Co xf~ (13) 
, )  - - z C  

where Co is the constant 

oo t~ 

Tlhus, there is a crossover from the early-time behavior of the reaction rate 
which increases proportional to ~1/2 to the asymptotic r 1/2 behavior 
predicted by the scaling theory of G/tlfi and Rficz. 

Having obtained the lowest order approximation to the overall 
reaction rate, we next inquire as to the range in time for which we expect 
this approximation to be valid. For this purpose we first calculate the first- 
order correction in the perturbation expansion in Eq. (8). The equation 
satisfied, for example, by :q(~, r) is 

&~__2= ~ c~2~1 _1 ho(~, r) (15) 
0z c~ 2 r 

w]hose solution can be found in terms of the Green's function for the diffu- 
sion equation. The result can be expressed in terms of a double integral as 

Cq(~, r ) =  1 f ~  f ]  dr' 
r(47z~)1/2 ~ d2 (T ~ ) 1 / 2  h0("]" r ' )  

x e x p {  4 ~ ( r - r ) J  (16) 

The solution for ill({, r) has the same form, except that r is to be replaced 
by 1/r and ~ is to be replaced by 1/9. We note first that ho(~, r) is a 
function only of ~/x/r; specifically, 
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where f ( u )  is defined by the equation. It follows from this observation that 
cq({, z) can be written in the generic scaling form 

~1(~, 17)=--rg ( ~ ) = - - ~ g ( p )  (18) 
v 

where p is defined to be ~ / ~  and the function g(p) can be expressed in 
terms of a double integral. The form of g(p) is found from Eq. (16), by 
changing the variables of integration to u and A, defined by 

u = , A = -- (19) ,/7 
The Jacobian of this transformation is readily found to equal z 3/2 x/A.  In 
terms of the new set of variables the function cq({, r) becomes 

~1(~, "C) = r(4g~)l/2 z oo du dA k ~ /  f ( u )  

{ ( P - u ~ - - ~  2} (20) 
x exp 49(1 

We see that the value of the double integral is a function of p only, which, 
together with the multiplicative factor z, confirms the scaling behavior 
shown in Eq. (18). A similar consideration applied to the function ill({, z) 
suffices to show that it also has the same scaling form as that shown in 
Eq. (18). 

We now proceed to calculate the correction to the global reaction rate 
in Eq. (12). The correction term, ~l(Z), is given by 

f 
o o  

&(r) = [~0(~, ~) fl,(g, ~) + ~1(~, ~) fl0(~, ~)2 a~ (21) 

By inserting the scaling form of the different functions that appear in the 
integrand, one finds the short-time behavior of N~(r) to be 

~ ( z )  = ClZ 3/2 (22) 

where C1 is a constant expressible in terms of a double integral that 
depends not only on ~ ,  but also on the ratio of initial reactant concentra- 
tions. This first correction enables us to predict the time at which one first 
can detect deviation from the initial z 1/2 behavior of the reaction rate. As 
a combination of the fact that No(z) is proportional to r 1/2 and the time 
dependence in Eq. (22), one finds that the deviation occurs at values of the 
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dimensionless time rd~Co/(C~e) ,  where these constants are defined in 
Eqs. (13) and (22). If we make use of the parametrization in Eqs. (5) and 
(6), we find 

Co 
t a ~ Clk(aobo)l/2 (23) 

with the implication that an increase in reactant concentration is 
equivalent, in effect, to an increase in the rate constant. 

We now apply the same type of analysis to study the short-time limit 
of the kinetic behavior of the reaction front. Let ~I be the center of the 
reaction zone, which is defined as the position at which the local reaction 
rate is a maximum. To zeroth order in 5, the local reaction rate is given by 
ho(i, ~), whose form is shown in Eq. (17). Since it has the scaling behavior 
indicated there, the lowest order behavior of ~f is 

i f  ~ s(2r) 1/2 (24) 

in which the parameter s is a constant, which can be calculated as that 
point at which the function 

is a maximum. In the special case Da = Db or, equivalently, @ = 1, one 
finds that the position of the maximum is specified by s = 0, so that the 
reaction zone center to order z 1/2 remains fixed in position. In that case we 
must retain the next-order term in the perturbation expansion of the 
dinaensionless local reaction rate ~/(i, r) to determine the short-time 
behavior of ~f. We then find that 

~(~,  z) ~ f ( p )  + evm(p) + --- (26) 

where rm(p) is essentially the integrand of Eq. (21). Since the condition 
@--= 1 implies that to lowest order i f  = 0, which is valid at the very shortest 
times, in order to find the behavior of this quantity at slightly longer times, 
we expand both terms in Eq. (26) around p = 0, noting that in this limit 
g(0) =const .  On expanding both ~(p)  and m(p) in the neighborhood of 
p = 0, we find that the lowest order terms in the series for ~(~, r) are 

1 i 2 + ~ m'(0) m"(0) + .-. (27) N(~ , r )  4 4 ~  + e r  m(0) x ~  + ~  



880 Taitelbaum e t  al.  

If we retain terms up to quadratic order in 3, we find that the maximum 
of N(~, r) behaves as a function of time as 

i f  ~ eKz 3/2 (28) 

where K is a constant readily calculated in terms of m(p) from Eq. (27). 
This behavior replaces the proportionality indicated in Eq. (24). Hence, 
there can be as many as three distinct regimes for the behavior of ~I when 

= 1. At the very shortest times ~y is approximately equal to a constant 
then it is approximately proportional to ~3/2, and at much longer times it 
approaches proportionality to rl/2. The early-time crossover for @ = 1 can 
be seen in simulated data, as will be shown later. 

We next consider the time dependence of the width of the reaction 
zone w(r), which is defined in terms of ~I by 

w~(~) =~_%~ (3 - ~j)~ R(~, ~) d~ (29) 

This width is, in the lowest order of approximation, found to be propor- 

tional to xf~. The local production rate at if,  which we define to be 
proportional to ~(~s, r) fl(~J, r), is, to the same order found to be 
approximately equal to a constant. These results may be contrasted with 
those of Gfilfi and Rficz, which are valid at long times, and which predict 
that the width of the reaction zone will grow, at long times, as ~1/6, and 
that the maximum production rate at the center of the reaction zone 
decreases with time as r-2/3. The physical origin of these results is readily 
understood through the consideration that at the very earliest times, when 
the reactants have only had time to mix in a very narrow region, the rate 
of production of C will be correspondingly small, and the main observed 
results are those due to diffusion rather than reaction. 

Finally, we consider the width of the depletion zone, which is, roughly 
speaking, the zone in which substantial reaction has taken place. To 
characterize this zone, we use a dimensionless distance A~I/2, defined as the 
distance between the points at which the concentration profiles of A and B 
fall to half of their initial values. The half-height of the concentration of A 
is found at value of ~ that is the solution to ~(~, ~) = 1/2. To lowest orders 
in our perturbation scheme, we need to solve the equation 

~o(~, ~) + ~1(~, T) = r - ~ g ( p )  = (3o) 
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where g(p) is the function defined in Eq. (18). A similar equation is valid 
for/~(~, v). If we neglect the term proportional to e, we find that the solu- 
tion to Eq. (30) is ~ = 0; hence we expand the equation around this value, 
finding that ~1/2(A) is proportional to ~3/2 at sufficiently early times. Thus, 
for this measure of depletion, we can also have as many as three dis- 
tinguishable regimes in time. The point ~1/2(B) has the same behavior, 
which implies that the distance between these points will also show the 
same dependence on time. This is valid for ~ # 1 as well as for @ = 1. 

3. S O M E  N U M E R I C A L  RESULTS 

In order to check some of the features of both G/tlfi and Rficz and our 
own analysis, we simulated the diffusion-reaction process, making use 
of a modification of the exact enumeration method, which is basically 
equivalent to a discretization of Eqs. ( la)  and ( lb)  both in time and 
space. (19-21) Essentially the same technique was used to generate results for 
a related problem by Muzzio and Ottino. (22 24) 

Let us consider one formulation of the changes required in the exact 
enumeration method to deal with our present problem of a reaction 
between two species of particles. For  this purpose we need to keep track of 
two :sets of registers, rather than a single set, and we further split the 
process into a part reflecting diffusion and a part reflecting the reaction 
kinetics. The first part of the simulation consists of a stage simulating 
diffusion without reaction. Since the simulation is done on a lattice rather 
than a continuum as in Eqs. ( la)  and (lb), we require the analog of two 
types of parameters, the first consisting of the pair of diffusion constants, 
and the second being the reaction constant k. Since the simulation is 
carried out in discrete time, this set of parameters is replaced, in our 
simulation technique, by a set of probabilities. For  example, the diffusion 
constant along the x-direction is simulated, in the exact enumeration 
me, thod, by permitting a random walker to make one of three choices on 
a given step. At any step of the process it is allowed to make a step to the 
right, to the left, or to make no step. Thus, for a symmetric random walk, 
we have a probability equal to 6 of moving to the right or to the left, and 
q of remaining in place, with 26 + ~ = 1. In this picture the analog of the 
diffusion constant can be identified with the probability 2& This parameter 
can take on different values for each of the reactants. Finally, the reaction 
constant k that appears in Eqs. ( la)  and ( lb)  is also replaced by a prob- 
aNlity which we denote by 0, in the nth step of the simulation. The actual 
form of this probability will be discussed after our description of the 
diffusive part of the calculation. 

822/65/5-6-4 
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Let us focus on the changes required at a single lattice site, call it j, 
during a single step of the simulation. There are two registers, one 
associated with A's and the second with B's. Let the contents of the 
Aregister corresponding to site j be denoted by an(j) and that of the 
B register be denoted by bn(j). The recursive step used in our implementation 
of the recursion will be written in terms of quantities 

Fn(j) = rlA an(j) + ~SA [an(j + 1 ) + an(j--  1) ] 

f2 n(j) = rl sbn(j)  + 6B[bn(j + 1) + b n ( j -  1)3 
(31) 

a s  

an+l( j )=Fn( j ) [1- -On]  
(32) 

b . + , ( j )  = o . ( j ) [ 1  - 0 h i  

and the initial conditions are ao(j)= ao for j>~O, ao ( j )=0  for j <  0; and 
bo(j) = bo for j <~ O, bo(j) = 0 for j > 0. 

The second phase of the calculation takes the reaction step into 
account, by emulating the dynamics embodied in Eqs. ( la)  and (lb), in the 
absence of diffusion. In this way it is possible to convert the reaction con- 
stant into a probability. When diffusion is neglected, which is equivalent to 
an assumption of perfect mixing, the kinetic equations are ~i =/ ;  = -kab .  
Let the initial conditions for the solution of these equations be a(n)= An 
and b ( n ) = B . ,  where n denotes the discrete step number. After a 
(continuous) time t, the concentrations calculated from the differential 
equations for the kinetics are 

A . B . [ 1  - R(t)]  
A.  - a(t) = B. - b(t) - (33) 

A . - B . R ( t )  

in which R ( t ) =  e x p [ - k ( A . - B . ) t ] .  When A. = B. we can take the limit 
in this equation to find 

An 
a(t) (34) 

1 + A . k t  

In our calculations we used the value t = 1, corresponding to a single step 
in the discrete time domain. It follows from the results given in the last two 
equations that 

R(1)] } 
O~=min A _ B ~ R ( 1 ) , I  , A ~ r  

A~k 
= 1 + A . k '  A ~ = B .  (35) 
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Fig. I. A plot of the reaction rate as a function of the number of steps n. These results were 
obtained by an exact enumeration calculation using the parameters 6A = 5B = 1/2, r/A = ~/B = 0, 
and k = 4 • 10 -4. Solid lines are drawn with slopes of _+ 1/2 for comparison. The initial slight 
deviation from the slope of - 1 / 2  is probably the effect of discretization. 

It is pertinent to mention that it is not always possible to separate diffusion 
from the reaction step in a simulation, as has recently been pointed out by 
Muzzio and Ottino. (22-24) 

A number  of results for our system are immediately verifiable using 
exact enumeration. Figure 1 shows a graph of the reaction rate as a function 
of step number, where the points have been obtained from an exact 
enumeration analysis. Our perturbation analysis predicts that the rate 
increases initially as n 1/2, followed by a crossover to the n -~/2 behavior 
predicted by the scaling theory of Gfilfi and Rficz. The two straight lines 
drawn in the figure have slopes equal to + 1/2 and - 1/2, respectively. The 
parameters used to generate the graph are r/A = t/B = 0, 5 A = fiB= 1/2, and 
k:= 4 • 10 4. Our  numerical procedure was also used to check the other 
crossover predictions. The data plotted in Fig. 2 illustrate the crossover 
from the dependence n l/2 to that of rt 1/6 for the width of the front, and the 
crossover in the production rate at the center of the reaction zone from 
early time constancy to n -2/3. Figure 3 shows the three-regime behavior 
predicted for ~I when ~ = 1, and Fig. 4 shows that the width of the depletion 
zone shares the same behavior independent of the value of 9 .  

4. THE FRACTAL SUBSTRATE 

Consider first the reaction A + B ~ C occurring on a homogeneous 
surface whose coordinates are (x, y). The initial conditions will be 

p~(x,  y ; O ) = a o H ( Y ) ,  pb(x,  Y; 0) = b0[1 - H ( y ) ]  (36) 
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Fig. 2. P lo t  of the (a) wid th  w(n) and  (b) local  reac t ion  rate at  the center  of front  R(~/, n) 
as a funct ion of the n u m b e r  of  s teps for var ious  values of k and  for the pa rame te r  values  ~ = 1 
and  r = x/'2. In  bo th  par t s  of the figure we see crossover  behav io r  as a funct ion of n. The 
j agged  edges in bo th  g raphs  are artefacts of the discrete s imula t ion .  
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Fig. 3. Several curves of ~f as a function of n, which illustrate the three-regime behavior for 
N =  1. Crossovers are seen from the very early constant  to n 3/2, and from n 3/2 to the 
asymptotic n 1/2. The transition point clearly depends on the rate coefficient k. 
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r=/2- + , 
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I0 10 2 10 5 10 4 10 5 10 6 

rl 

Fig. 4. A plot of A~I/2 [equal to I~I/2(A)- ~uz(B)I ] as a function of n, showing that the very 

earliest dependence is constant,  following which there is a crossover to proportionality to n 3/2, 
and finally to the asymptotic n x/z. The specific parameters used are ~ = . , ~  and r = , ~ .  
Similar results are obtained for ~ = 1. 

1o 3 
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so that the reactants are initially separated by the line y = 0. The size of the 
system along the x coordinate is taken equal to L whereas it is assumed to 
be infinite along the y axis. When the reaction-diffusion equation is that 
shown in Eqs. ( la)  and (lb),  we expect that both the results derived for the 
short-time behavior in Section 2 and the scaling theory of G&lfi and Rficz 
will remain basically unchanged. ~ This is due to the mean-field nature of 
our model. 

In order to observe any deviations from predictions based on the reac- 
tion-diffusion equations ( la )  and (lb),  we consider the reaction to occur on 
a fractal surface. Specifically, we will model the transport  process in terms 
of a random walk on a percolation system rather than as a diffusion process 
in a homogeneous medium. The numerical analysis of the random walk to 
confirm our scaling predictions was also carried out in this case by the 
method of exact enumeration. Let d/ be the fractal dimension of the 
medium in which the reaction-diffusion process takes place, and let dw be 
the diffusion exponent, defined in terms of the mean-squared displacement 
after n steps, ( r2 (n ) ) ,  through the relation 

lim {r2(n))/n 2/d~ = const 
n ~  

The length of the interface, because of the irregular structure, is of the 
order of magnitude of L + 1. 

A crude scaling argument can be used to suggest analogs to the 
predictions of Gfilfi and Rficz. The amount  of C produced in n steps in 
time, Nc(n) ,  is approximately proportional  to the length of the interface 
multiplied by a typical displacement, r ( n ) - ( r 2 ( n ) )  ~/2, during that time. 
Hence we can write 

No(n) ~ L dj lr(n) ~ L ai- lnl/a" (37) 

where we have omitted some constants which play no role in our argu- 
ment. Hence our argument predicts that the rate of production of C, 
obtained by differentiating Eq. (37), is asymptotically proportional to 
n (l-l/dw) This reduces to the correct prediction for the homogeneous 
medium, in which dw = 2. 

To check our prediction in the more general case, in addition to deter- 
mining the time dependence of the height at the reaction center and the 
width of the reaction zone, we carried out a simulation study, using as a 
model of the fractal a two-dimensional percolation system approximately 
at criticality, i.e., the probability that a site is blocked was set equal to 0.4, 
so that the proport ion of sites available for transport  is 0.6. This is close 
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to the percolation threshold value Pc ~ 0.593. The results in our numerical 
investigation represent an average of data taken on 200 realizations of the 
percolation system. The initial conditions set a particle, A or B, on each 
live site, the A's in the right-hand plane, and the B's in the left-hand plane, 
and each particle must move at each step with equal probability to each 
unoccupied site. The reaction probability was taken equal to 1, so that 
reaction on collision is a certainty. 

Figure 5 contains a log-log plot of the rate of production of C as a 
function of the time, the slope found from our simulated data being equal 
to -0.664,  compared with the predicted value, which is known 
approximately (21) to be quite close to - ( 1 -  1 / d w ) ~ - 0 . 6 5 .  Because of 
local fluctuations in properties of the lattice, one expects to see a wider 
reaction zone than is the case for a random walk on a uniform lattice. In 
Figs. 6a and 6b we present results for the width and height of the reaction 
zone as a function of n. These results are consistent with the scaling forms 

w(n)  ~ n t/Jw (38a) 

h(n)  ~ n - t  (38b) 

at sufficiently large step numbers. 
Both of the exponents in (38a) and (38b) differ significantly from the 

values predicted by GS_lfi and RS.cz for diffusion in a homogeneous space. 
The differences are undoubtedly due to spatial fluctuations in the structure 
of the substrate, which allows particles of a given variety to easily penetrate 
the part of the lattice initially occupied by a lesser number of particles of 
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Fig. 5. The reaction rate plotted as a function of n for a two-dimensional percolation system 
very close to criticality. The slope is found to be approximately equal to -0 .664,  as against 
the expected -0 .65 .  
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the complementary species. This effect does not occur on a translationally 
invariant lattice, where the diffusion process remains homogeneous over 
the entire substrate. Some evidence in support of this qualitative explana- 
tion is provided by a plot of the concentration of one of the species as a 
function of distance from the interface at a number of times, as shown in 
Fig. 7. The curves shown represent data from an average of 100 runs. The 
somewhat surprising feature of these curves is that the concentration very 
close to the interface increases rather than decreases with increasing 
time. This does not occur in a homogeneous system in which reaction is 
instantaneous. The difference between these two cases is due to the fact that 
in the former case one of the species of reactant particles can migrate into 
the region without finding a corresponding member of the second species 
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Fig. 6. Data  for (a) the width w(n) and (b) the height h(n) as a function of step number.  The 
indicated slopes are 0.375 for the width and - 0 . 9 9  for the height, which are very close to the 
values given in (38a) and (38b). 
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Fig. 7. Plots of the concentration profile for one of the species shown as a function of y, for 
n = 100 (--), 300 (..-), and 600 ( - - )  for a percolation substrate in two dimensions that is 
close to criticality. The interesting feature in this figure is the increase in c(y, n) for y <0. 

wi th  which  to react.  In  Fig. 8 we replo t  the c o n c e n t r a t i o n  profile c(y ,  n) at 
different  t imes as a f unc t i on  of  the scal ing p a r a m e t e r  

= y(n ) / yo (n  ) (39) 

where,  for large n, the offset p a r a m e t e r  yo(n) is p r o p o r t i o n a l  to rtl/d'L Such 

a scal ing form appea r s  to be  va l i da t ed  by  o u r  data.  The  l inear  s lope f o u n d  
in  the  semi log  p lo t  in  Fig. 8 at  smal l  va lues  of ~ suggests  tha t  in  this r ange  

In c(y ,  n) = In c(~) ~ U -  V~ (40) 
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Fig. 8. A semilog plot of data for the concentration profile of one of the species as a function 
of the similarity parameter ~=y/n l/s~ with the indicated scaling behavior at lower values of 
this parameter. 
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where U and V are constants. A heuristic argument  can be advanced to 
support  this form of the concentra t ion profile. When  reaction is instan- 
taneous in a uniform cont inuum there can be no particles at the point  
y = 0. This proper ty  does not  necessarily hold in the case of an irregular or  
fractal substrate, which suggests that  c(y,  n)  can be expanded to lowest 
order  in ~ as 

c ( y , n ) ~ c o + c l ~ ,  c o C O  (41) 

which agrees with the first term in the expansion of Eq. (40) in a power 
series in ~. If  one combines Eq. (40) with the two scaling assumptions of 
Gfilfi and R/tcz, one easily finds the exponents for the width and height of 
the reaction zone given in (38a) and (38b). 

Finally, we ment ion that  we have studied another  quanti ty relevant for 
one-dimensional  systems in which the reaction between two particles that  
meet is certain. This is the average of the closest distance separating an 
A B pair after a time t. This can be regarded as a much simplified model  
for the self-segregation effect operative in low-dimensional systems. It has 
been shown (25-27) that  when there is a single B which is a t rap (i.e., the 
reaction is A + B --* B) the expected distance between the B and the closest 
unt rapped A scales as t 1/4 at sufficiently long times. Our  Monte  Carlo 
simulations indicate that for the A + B--* C reaction the scaling behavior  
of  the nearest-neighbor distance also scales a s  t 1/4 for all sets of diffusion 
constants. This work will be presented elsewhere. 
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