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Abstract. In this paper, we generalize the definition of a closure operator for a finite

matroid to a pi-space and obtain the corresponding closure axioms. Then we discuss some

properties of pi-spaces using the closure axioms and prove the non-existence for the dual

of a pi-space. We also present some results on the automorphism group of a pi-space.

1. Introduction and preliminaries

With the development of matroid theory, we have new tools to consider infinite
matroid-like structures. Also, studying on these infinite structures will accelerate
research in matroid theory. But we should notice that Oxley [17] pointed out:“There
is no single class of structures that one calls infinite matroids. Rather, various
authors with differing motivations have studied a variety of classes of matroid-like
structures on infinite sets.”

We may observe that recently, most of results on infinite matroids are relative
to pi-spaces, independence spaces and matroids of arbitrary cardinality (cf. [1,
6-15, 17, 20] and the references in [1, 6-15, 17, 20]). On the other hand, the
definition of an independence space (cf. [17&20, p. 387]) directly indicates that an
independence space is a pi-space. Additionally, from the concept of a matroid of
arbitrary cardinality (cf. [1]) and the discussion in [20, Chapter 20], we can know
that a matroid of arbitrary cardinality is an independence space, and so, a pi-space.
In one word, a class of structures in infinite matroids which has been most fruitfully
used seems to be pi-spaces. We may equivalently state that pi-spaces are one of the
more frequently studied classes of infinite matroids.

[18, 20, 21] show that closure operators of finite matroids are a bridge between
finite matroids and geometries. [7] obtains the relation between geometric lattices
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and simple matroids of arbitrary cardinality with the help of the closure operators
of matroids of arbitrary cardinality. Using this relation, [8-10,12,14,15] deal with
some properties of matroids of arbitrary cardinality. These results represent that it
is important to notice the properties of closure operators of matroids of arbitrary
cardinality. Similarly to the discussion for finite matroids and matroids of arbitrary
cardinality, we should better find out the relationship between pi-spaces and closure
operators. Unfortunately, to our knowledge, few authors have searched out the
relationships between pi-spaces and closure operators. Hence, to study on pi-spaces
more detailed, the first step is to solve the closure axiom systems for pi-spaces. The
second is to deal with the properties of the closure operator for a pi-space.

The purpose of this paper is to generalize the notation of closure operator from
finite matroids to pi-spaces and find out the closure axiom systems for a pi-space.
Simultaneously, it deals with the non-existence of the dual of a pi-space by the hand
of a successful example. At the last part, for a pi-space, it discusses some properties
of its automorphism group under the help of closure operator.

Initially, we will recall and present some basic knowledge. In the following, we
will work over a ground–possibly infinite–set S; the set of all subsets of S will be
denoted by 2S ; X ⊂⊂ Y indicates that X is a finite subset of Y . A set system over
S is a non-empty family contained in 2S . Let A ⊆ 2S be a set system. We say that
a basis of a subset A ⊆ S in A is a (inclusion-wise) maximal element of A in A.

Throughout this paper, all the knowledge of lattice theory are referred to [2]
and [3]; group theory is come from [4]; finite matroid theory is seen [18], [20] and
[21].

Definition 1. (1)[17&20] A pi-space M is a set S together with a collection I of
subsets of S(called independent sets) such that

(i1) I ̸= ∅.
(i2) If A ∈ I and B ⊆ A, then B ∈ I.
(i3) If A,B are finite members of I with |A| = |B|+1, then there exists a ∈ A\B

such that B ∪ a ∈ I.
(2)[20, p.386] With a pi-space (S, I), we associate a rank function taking values

from {0, 1, 2, . . . ,∞} and defined for X ⊆ S by ρ(X) = sup{|Y | : Y ∈ I, Y ⊂⊂ X}.

As finite matroids, we define the closure operator of M = (S, I) as follows.

Definition 2. A function σ : 2S → 2S is the closure operator of pi-space M if
σ(X) = {y ∈ S : ρ(X ∪ y) = ρ(X)}. X is called a closed set of M if σ(X) = X.

In the following, M = (S, I) denotes a pi-space with σ, ρ as its closure operator
and rank function respectively. By Definition 2, we see that for a pi-space M , the
construction of F of set of closed sets of M is seemingly simpler than that of I.
Actually, F = {X : σ(X) = X}. Hence, studying on F is perhaps better to the
research on some properties of M . In addition, we may easily know σ(A) = A∪{y ∈
S \ A : ρ(A ∪ y) = ρ(A)} for A ⊆ S. Therefore, in Section 2, we mainly study on
the closure axioms with assistance of ρ and I.
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Some people will think that this literature is not new because of [5, 19]. But the
following reasons and analysis will indicate that the paper is valuable to be read.

(RI) [5] is one of the most important references of [19] (cf. [19, p. 348 etc.])
and most of results of [5] relative to matroids are contained in [19]. Hence, we pay
attention to [19].

(RII) [20] informs us that MacLane’s condition is important to finite matroids,
especially for closure operators of matroids. Pi-spaces are the generalization of
finite matroids. Hence, when we consider pi-spaces, MacLane’s condition is in the
consideration. In other words, we should pay our attention to closure operators of
pi-spaces.

(RIII) Using lattice theory, for finite and infinite cases, [19] has discussed some
results about semimodular lattices, in particular, MacLane’s condition on semi-
modular lattices. But it does not use matroid theory to their discussion, and in
addition, it does not discuss the relation between matroids and semimodular lat-
tices. Of course, it does not touch upon the closure axioms of infinite matroids,
especially pi-spaces.

(RIV) [20] points out:
(α) There are correspondent relationships between finite matroids and finite geo-
metric lattices. In addition, for a finite geometric lattice, we may find a unique
simple matroid to correspond with this geometric lattice under isomorphism.
(γ) For non-simple matroids, the above corresponding will not be true.

(α) and (γ) demonstrate that lattice theory will not replace matroid theory.

(RV) [20] indicates that it is not easy to translate the language from matroids
to geometric lattices, and vice versa, though this is essential to the study between
matroids and lattices. [19] does not realize the translation of language from lattice
theory to matroid theory.

The two views together verifies that the results in [19] can not replace the
discussion to pi-spaces applying matroid theory language.

(RVI) Using the language of matroid theory, this paper finds out the closure
axioms for a pi-space, some properties of pi-spaces on lattice theory and some other
results. All the discussion in this paper are finished under the notions of matroid
theory, not lattice theory. Hence, we may assert that our consequences are different
from [5, 19].

2. Closure axioms

[18, 20, 21] demonstrate the importance of closure operators in finite matroids.
Here we examine more elementary ideas and axioms for pi-spaces with their closure
operators.

Let A,B⊆S and x, y∈S. Then there are the following Lemma 1 and Lemma 2.

Lemma 1. (1) ρ(A) ≤ ρ(B) if A ⊆ B ⊆ S.
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(2) When ρ(A) < ∞. There is IA ⊂⊂ A with IA ∈ I satisfying |IA| = ρ(A). In
addition, all maximal elements of A in I have the same values.

(3) When ρ(A) = ∞. It follows σ(A) = S.
(4) If A ⊆ S and x ∈ S, then ρ(A) = ρ(σ(A)) and ρ(A ∪ x) = ρ(σ(A) ∪ x).

Proof. (1) is straightforward from Definition 1.
(2) is testified by Definition 1 and (i2).
(3) is evident by Definition 2.
(4) will be proved as follows.
First, we prove ρ(A) = ρ(σ(A)).
By (1), it follows ρ(A) ≤ ρ(σ(A)). Suppose ρ(A) < ρ(σ(A)). Then A ⊂ σ(A) is

true. Divided two cases for discussion.
Case 1. ρ(σ(A)) < ∞.
According to (2), there is I ⊂⊂ σ(A) and I ∈ I satisfying ρ(σ(A)) = |I|. In

view of A ⊂ σ(A) and ρ(A) < ρ(σ(A)), it induces I ∩ {y ∈ S \ A : ρ(A ∪ y) =
ρ(A)} = IS\A ̸= ∅. However, since |IS\A| < ∞ is correct owing to |IS\A| ≤ |I| < ∞.
Additionally, ρ(A ∪ y) = ρ(A) holds for any y ∈ IS\A because of IS\A ⊆ I ⊆ σ(A).
These follow ρ(A ∪ IS\A) = ρ(A). Let IA = I ∩ A. ρ(A ∪ IA) = ρ(A) is evident in
virtue of IA ⊆ σ(A) and Definition 2.

Therefore, ρ(A ∪ I) = ρ(A ∪ IA ∪ IS\A) = ρ(A) is real. Further, |I| ≤ ρ(A ∪
I) = ρ(A) holds. So ρ(σ(A)) ≤ ρ(A) is born. This leads to a contradiction to
ρ(A) < ρ(σ(A)).

Case 2. ρ(σ(A)) = ∞.
In light of ρ(A) < ρ(σ(A)), it carries out ρ(A) < ∞. For any X ∈ {Y : Y ⊂⊂

σ(A), Y ∈ I}, analogous to the proof in Case 1, we obtain ρ(A∪X) = ρ(A), and so,
|X| ≤ ρ(A ∪X) = ρ(A) < ∞. Thus, it has ρ(σ(A)) = sup{|Y | : Y ⊂⊂ σ(A), Y ∈
I} ≤ ρ(A), a contradiction.

Summing up Case 1 and Case 2, it follows ρ(A) = ρ(σ(A)).
Second, let x ∈ S, we prove ρ(A ∪ x) = ρ(σ(A) ∪ x).
Owing to (1), it gets ρ(A) ≤ ρ(A ∪ x) ≤ ρ(σ(A) ∪ x).
Assume ρ(A) = ∞. Then it has ρ(A ∪ x) = ρ(σ(A) ∪ x)) = ∞.
Assume ρ(A) < ∞. According to (2), there is IA ∈ I and IA ⊆ A satisfying

|IA| = ρ(A). This also shows that IA is a maximal of A in I. Additionally, every
maximal of A in I is also a maximal of σ(A) in I because of ρ(A) = ρ(σ(A)),
A ⊆ σ(A) and Definition 2. Thus, considering with ρ(A) < ∞, Definition 1 and (2),
we obtain ρ(A∪x) ≤ ρ(A)+1 < ∞. If I∪x ∈ I with I∩{x} = ∅ and I ⊆ A satisfies
ρ(A ∪ x) = |I ∪ x| = |I|+ 1 = ρ(A) + 1, then we may see that I fits to ρ(A) = |I|.
Furthermore, I ∪x satisfies ρ(σ(A)∪x) = ρ(I ∪x) = |I ∪x| = |I|+1 = ρ(σ(A))+1.
Thus, ρ(A ∪ x) = ρ(σ(A) ∪ x) is gotten. 2

Lemma 2. σ satisfies (s1)-(s5).
(s1) A ⊆ σ(A).
(s2) A ⊆ B ⇒ σ(A) ⊆ σ(B).
(s3) σ(A) = σ(σ(A)).
(s4) y /∈ σ(A) and y ∈ σ(A ∪ x) ⇒ x ∈ σ(A ∪ y).
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(s5) If Y1 ⊂ Y2 ⊂ . . . ⊂ Yj ⊂ Yj+1 ⊂ . . . ⊂ X, |Yj | = j, Yj+1 \ Yj ̸= ∅, (j =
1, 2, . . .), σ(∅) ⊂ σ(Y1) ⊂ σ(Y2) ⊂ . . . ⊂ σ(Yj) ⊂ σ(Yj+1) ⊂ . . ., and there is no n
satisfying Yn+1 = Yn+2 = . . .. Then σ(X) = S.

Proof. Both (s1) and (s2) are satisfied by σ in view of Definition 2.
By Definition 2 and Lemma 1(4), we carry out σ(σ(A)) = {y : ρ(σ(A) ∪ y) =

ρ(σ(A))}, and ρ(A) = ρ(σ(A)) = ρ(σ(A) ∪ y) = ρ(A ∪ y) for y ∈ σ(σ(A)), and
hence, σ(A) = σ(σ(A)). Namely, (s3) is satisfied by σ.

Next to prove the satisfactory of (s4).
Because y /∈ σ(A), it means ρ(A∪ y) ̸= ρ(A). By Definition 1, Lemma 1(2) and

Lemma 1(3), it follows ρ(A) < ∞ and ρ(A ∪ y) < ∞, and so, ρ(A ∪ y) = ρ(A) + 1.
On the other hand, y ∈ σ(A∪x) implies ρ(A∪x∪y) = ρ(A∪x) ≤ ρ(A)+1. Hence,
in view of Lemma 1 and the above, it brings about ρ(A ∪ y) ≤ ρ(A ∪ x ∪ y) ≤
ρ(A)+1 = ρ(A∪y), and further, ρ(A∪x∪y) = ρ(A∪y). Thus, x ∈ σ(A∪y) holds.

Next, to prove (s5).
Assume Y1 /∈ I. This follows Y1 ⊆ σ(∅), a contradiction to σ(∅) ⊂ σ(Y1). Y2 /∈ I

and Y1 ⊂ Y2 carries out σ(Y2) = σ(Y1), a contradiction. By the induction, we get
Yj ∈ I for any j ∈ {1, 2, . . .}.

By the supposition for {Yj : j = 1, 2, . . .}, we know {|Yj | : j = 1, 2, . . .} = {j :
j = 1, 2, . . .} and Yj ∈ I, (j = 1, 2, . . .). So, it should have |X| = ∞.

If X ∈ I. Then ρ(X) = ∞ is true. Obviously, σ(X) = S holds.
If X /∈ I. Because ρ(X) = sup{|Y | : Y ⊂⊂ X,Y ∈ I} ⊇ sup{|Yj | : j =

1, 2, . . .} = ∞ yields out ρ(X) = ∞. Thus, we yield out σ(X) = {y : ρ(X ∪ y) =
ρ(X) = ∞} = S. 2

(s3) and Definition 2 together assure that σ(A) is closed for A ⊆ S.
We can now prove the closure axiom systems of a pi-space.

Theorem 1(Closure axioms). A function σ : 2S → 2S is the closure operator of
a pi-space M on S if and only if it satisfies (s1)-(s5).

Proof. Let σ be the closure operator of M . Lemma 2 has shown that σ satisfies
(s1)-(s5).

Conversely, let σ satisfy (s1)-(s5).
Define the collection I(σ) of subsets of S by, for A ⊆ S

when |A| < ∞. A ∈ I(σ) ⇐⇒ x ∈ A ⇒ x /∈ σ(A \ x).
when |A| = ∞. A ∈ I(σ) ⇐⇒

∀B ⊂ A: if |B| < ∞, it follows x ∈ B ⇒ x /∈ σ(B \ x);
if |B| = ∞, it follows B ∈ I(σ) and σ(B) = σ(A) = S.

We show that I(σ) is the collection of independent subsets of a pi-space.
The null set belongs to I(σ) evidently. That is, (i1) is true.
If A ∈ I(σ). Suppose B ⊆ A but B /∈ I(σ).
Assume |A| < ∞. It causes that there is x ∈ B satisfying x ∈ σ(B \ x). Hence,

by (s2), x ∈ σ(A \ x) holds, and so, A /∈ I(σ), a contradiction.
Assume |A| = ∞. It easily brings about the hold of (i2) by the above proof and

the definition of I(σ).
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Next we prove the hold of (i3). We will fulfill this proof by two steps .
Let A,B ⊂⊂ S. If A,B ∈ I(σ), |A| = |B|+1, and in addition, for any x ∈ A\B,

it has B ∪ x /∈ I(σ). Then, we call (A,B) a pair of contrary.
Step 1. To prove that if I ∈ I(σ) but I ∪ x /∈ I(σ), then x ∈ σ(I).
If |I| = ∞. Then by the definition of I(σ), it leads to σ(I) = S, and further,

for I ∪ x /∈ I(σ), it assures to I ∪ x ⊆ S, and so, x ∈ σ(I).
If |I| < ∞. By the definition of I(σ), I ∪ x /∈ I(σ) must cause that there is

y ∈ I ∪ x satisfying y ∈ σ(I ∪ x \ y).
Suppose y = x. The need result is evidently true.
Suppose y ̸= x. This makes y ∈ I. According to I ∈ I(σ), it shows y /∈ σ(I \ y).

Recalling y ∈ σ(I ∪x \ y) = σ((I \ y)∪x) and (s4), we will earn x ∈ σ((I \ y)∪ y) =
σ(I).

Step 2. To testify that I(σ) satisfies (i3).
Perhaps, for A ⊆ S, there are many C ∈ I(σ) such that (A,C) is a pair of

contrary. We notice |A| < ∞ is fixed. Hence, for A and a pair of (A,C) of contrary,
|A ∩ C| < |A| is fixed. Thus, we can choose a pair of contrary (A,B) such that
|A ∩B| is maximal.

Let y ∈ A \ B. In light of A ∈ I(σ) and the definition of I(σ), we obtain
y /∈ σ(A \ y).

If B ⊆ σ(A\y). Then, by (s2) and (s3), it causes σ(B) ⊆ σ(σ(A\y)) = σ(A\y).
Thus, y /∈ σ(B) is true according to y /∈ σ(A \ y). Furthermore, by Step 1, B ∪ y ∈
I(σ) holds. This follows a contradiction to (A,B) as a pair of contrary. In other
words, B * σ(A \ y).

Let z ∈ B \ σ(A \ y). In light of (s1) and z ̸= y, it gets z ∈ B \ A. Combining
z /∈ σ(A \ y), A \ y ⊆ A and (i2) with Step 1, it yields out (A \ y) ∪ z ∈ I(σ). Set
D = (A\y)∪z. We may easily obtain |D| = |A| > |B| and D∩B = (A∩B)∪z. So
|D∩B| > |A∩B| holds. But the maximality of |A∩B| compels (D,B) not to be a
pair of contrary. We may state that there is some e ∈ D \B such that B ∪ e ∈ I(σ).
We notice that e ∈ D \B = ((A \ y)∪ z) \B = (A \ y) \B ⊆ A \B and B ∪ e ∈ I(σ)
together produces a contradiction to (A,B) as a pair of contrary.

Therefore, I(σ) satisfies (i3).
Summing up, by Definition 1, there is a pi-space M on S with I(σ) as its

collection I of independent sets.
Finally, we testify that σ and the closure operator σM of M coincide. We will

finish our proof by (ST1)—(ST5).
(ST1) To prove: for anyA ∈ I and |A| < ∞, it has σ(A) = {y : ρ(A∪y) = ρ(A)}.
Suppose not. Because (s1) implies A ⊆ σ(A), it exists x ∈ σ(A) \ A satisfying

ρ(A ∪ x) ̸= ρ(A). In virtue of Lemma 1(2), ρ(A) = |A| < ∞ and ρ(A ∪ x) ̸= ρ(A),
it obtains ρ(A∪ x) = ρ(A) + 1 = |A|+1, i.e. A∪ x ∈ I = I(σ). By the definition of
I(σ), x /∈ σ((A ∪ x) \ x) = σ(A) is true, a contradiction.

(ST2) To prove: for any A ∈ I(σ) and |A| = ∞, it has σ(A) = {y : ρ(A ∪ y) =
ρ(A)} = S.

Because A ∈ I(σ) and |A| = ∞, by the definition of I(σ), it causes σ(A) = S,
and by Definition 1, it obtains ρ(A) = ∞. So, for any y ∈ S, in virtue of Lemma 1,
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ρ(A∪y) ≥ ρ(A) is correct, and hence, ρ(A∪y) = ∞. Namely, ρ(A∪y) = ρ(A) = ∞
and σM (A) = S. Moreover, σ(A) = σM (A) = S.

(ST3) Let X ⊆ S. To prove: if there is IX ⊆ X, IX ∈ I(σ) and |IX | = ∞, then
σ(X) = {y : ρ(X ∪ y) = ρ(X)} = S.

According to Definition 1, ρ(IX) = ρ(X) = ∞ holds. In view of (ST2), it brings
about σ(X) = σ(IX) = {y : ρ(X ∪ y) = ρ(X)} = S.

(ST4) Let X ⊆ S and X /∈ I(σ). To prove: if there is a positive integer m such
that for all I ⊆ X and I ∈ I(σ), |I| ≤ m is true, then σ(X) = {y : ρ(X∪y) = ρ(X)}

Actually, we may equivalently suppose that there is IX ⊆ X and IX ∈ I(σ)
satisfying |IX | = m, and besides, for any I ⊆ X and I ∈ I(σ), it always gets
|I| ≤ |IX |.

Under this event, it is not difficult to see ρ(X) = m.
For any y ∈ X \ IX , by the selection of IX , it gets IX ∪ y /∈ I(σ). In light of

Step 1, we carry out y ∈ σ(IX). So X = IX ∪ (X \ IX) ⊆ σ(IX) is true according to
(s1). Further, by (s2) and (s3), it follows σ(X) ⊆ σ(σ(IX)) = σ(IX) ⊆ σ(X), and
hence, σ(X) = σ(IX).

By (ST1), it shows σ(IX) = {y : ρ(IX ∪ y) = ρ(IX)}. Besides, IX ∪ y /∈ I(σ)
for y ∈ X \ IX also tells us ρ(X ∪ y) = ρ(IX ∪ y) = ρ(IX). Thus,
σ(IX) = {y : ρ(IX ∪ y) = ρ(IX) = ρ(X)} = {y : ρ(X ∪ y) = ρ(X)} = σ(X).

(ST5) Let X ⊆ S and X /∈ I(σ). To prove: if |IX | < ∞ is true for any IX ⊆ X
and IX ∈ I(σ), and in addition, there is no positive integer m satisfying |IX | ≤ m
for all IX ⊆ X and IX ∈ I(σ), then σ(X) = {y : ρ(X ∪ y) = ρ(X)}.

Under this supposition and considering with (i2), we may indicate that for any
positive integer n, it can always find out Y ∈ I(σ) and Y ⊂ X satisfying |Y | = n.
Additionally, for any I ∈ I(σ) and I ⊂ X, it always has |I| < ∞.

By Definition 1, this means ρ(X) = ∞. So, for any y ∈ S, ρ(X∪y) ≥ ρ(X) = ∞
holds by Lemma 1(1), and further, ρ(X ∪ y) = ∞ = ρ(X). That is, {y : ρ(X ∪ y) =
ρ(X)} = S.

On the other hand, for |I1| = 1 and X ⊇ I1 ∈ I(σ), by the given supposition
and (i3), we will find out a series of Yj ∈ I(σ) such that Y1 = I1, Y1 ⊂ Y2 ⊂
Y3 ⊂ . . . ⊂ Yj ⊂ Yj+1 ⊂ . . . ⊂ X, |Yj | = j, (j = 1, 2, . . .), and there is no positive
integer n compelling to all of Yj satisfying |Yj | ≤ n, (j = 1, 2, . . .). Additionally,
by the definition of I(σ), we also obtain σ(∅) ⊂ σ(Y1) ⊂ σ(Y2) ⊂ . . . ⊂ σ(Yj) ⊂
σ(Yj+1) ⊂ . . .. In virtue of the supposition, it does not have any n satisfying
Yn+1 = Yn+2 = . . .. Hence, by (s5), it has σ(X) = S.

Therefore, σ(X) = {y : ρ(X ∪ y) = ρ(X)} is carried out. 2

Some descriptions in the proof of Theorem 1 are a little similar to that for finite
matroids (cf. [18]). Considered the discussion for the closure axioms of a finite
matroid in [18, pp. 28-30&20, p.19], we find out that it uses the idea of bases of a
finite matroid to fulfil their proofs. But, in this article, we do not use the idea of
bases of a pi-space, because by [17, 20], we know that a pi-space needs not to have
bases at all. Thus, our proof of closure axioms for a pi-space is quite different from
that of finite matroids.
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Now we look at the collection of closed sets of a pi-space. Since the closure
operator σ of a pi-space satisfies (s1)-(s5), we have the following basic theorem of
lattice theory.

Theorem 2. The closed sets of a pi-space form a complete semi-modular lattice
under set inclusion, and each of its elements is join of atoms.

Proof. Routine verification. 2

[20, 21] point out the notable position of geometric lattices in finite matroid
theory. How about the position of geometric lattice in pi-space theory?

The definition of geometric lattice in [2, p.80] is a little different from [3, p.234,
Definition 1]. The reason is that [3, p.234, Definition 1] does not ask a geometric
lattice to be a finite length but [2, p.80] does. We will give an instance to show
that this brings some different result for pi-spaces. The instance is given as: Let
S = {1, 2, . . .} and I(S) = {X : there is x ∈ S satisfying X ⊆ S \ x}. Obviously,
(S, I(S)) is a pi-space with σS as its closure operator. In addition, for any X ⊂⊂ S,
it gets σS(X) = X and σS(Y ) = S for any Y ⊆ S and |Y | = ∞. Hence, the
length of σS(Y ) is sup{|X| : X ⊂⊂ Y } = ∞. The definition of [2, p.80] relative
to geometric lattice will not allow L(S), the lattice of all closed sets of (S, I(S))
under set inclusion, to be geometric because it has not finite length. But [3, p.234,
Definition 1] allows it to be geometric.

[7] presents a way for a matroid of arbitrary cardinality to have its closed sets
corresponding to a finite length geometric lattice. According to the results in [7] and
the relation between pi-spaces and matroids of arbitrary cardinality, we conclude
that there is not a geometric lattice corresponding to the poset which is the set of
all of the closed sets of a pi-space by set inclusion (Here the definition of geometric
is come from [2, p. 80]).

[20, p.388] informs us that in general, we no longer have a geometric lattice
for an independence space since for infinite cases, a geometric lattice is defined to
have only finite dimension (i.e. finite height). Thus, generally, we no longer have a
geometric lattice for a pi-space (The geometric definition here is adopted with [2,
3]).

[20, p. 388] presents the closure axioms of an independence spaces. Considered
Theorem 1 with [20, p.388], we may easily indicate that if σ is the closure operator
of an independence space M , then it is the closure operator of the pi-space M . This
also states that an independence space is a pi-space. This statement is the same to
the result yielded out of the definitions of independence space and pi-space provided
in [20].

The following two sections will apply Theorem 1 to discuss some properties of
pi-spaces.

3. Dual

We know that the orthogonality of a finite matroid Mf is its dual of Mf , and
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vice versa. In the following, we will provide an example to demonstrate that there is
no dual function on the collection of pi-spaces on an infinite set S. In other words,
there is no dual operation among the set of pi-spaces defined on the same infinite
background.

Let M = (S, I) be a pi-space with σ as its closure operator. Similarly to [18,
20, 21], we earn the “dual” of σ is defined as σ∗(X) = X ∪{x : x /∈ σ(S \ (X ∪x))}.

Example. Let S = {1, 2, 3, . . .} and k = 4. If Ik = {X ⊆ S : |X| ≤ k}. Then Ik
is obviously the set of independent sets of a pi-space M on S. Let σ be its closure
operator. By the definition of the closure operator, we obtain σ(X) = X when
X ⊆ S and |X| < k; σ(X) = S when X ⊆ S and |X| ≥ k.

According to the definition of the above σ∗, we earn σ∗(Y ) = S when |S\Y | ≤ k;
σ∗(Y ) = Y when |S \ Y | ≥ k + 1.

Let f = σ∗. Then f∗(X) = X ∪ {x : x /∈ f(S \ (X ∪ x))} = X ∪ {x : x /∈
σ∗(S \ (X ∪ x))}.

Set X0 = {1, 2}. Then σ∗(S \ (X0 ∪ x)) = S \ (X0 ∪ x) is true for any x /∈ X0,
and so, x /∈ σ∗(S \ (X0 ∪ x)) is led to. That is to say, (σ∗)∗(X0) = f∗(X0) =
X0 ∪ (S \ X0) = S. But, at the same time, we obtains σ(X0) = {1, 2}. Namely,
σ ̸= (σ∗)∗.

[18, 20, 21] represent that there is the dual function on the collection of finite
matroids on a finite set E. Additionally, [18, 20, 21] and Definition 1 show us that
every finite matroid on E is a pi-space on E. But the above Example states that
there is no dual for some pi-space. Combining the beyond, we produce the following
result.

Theorem 3. There is no dual function on the collection of pi-spaces on an infinite
set S.

4. Automorphism group

Welsh in [20] shows us that one of important parts in finite matroid theory is
the automorphism groups of finite matroids. It is also a relationship between group
theory and finite matroids. Using this relationship, group theory is applied in the
research of finite matroid theory, and also vice versa. Even though, up till now, it
still exists some open problems in this field (cf. [20, p. 331]).

We close this paper with an account of the work on the group of automorphism
of a pi-space. As finite matroids, we define the automorphism of a pi-space as fol-
lows.

Definition 3. Let M be a pi-space on S. A bijection π : S → S is an automorphism
of M if πX is independent in M if and only if X is independent in M .

The automorphism group of M is the collection of automorphisms of M with
the obvious operation of composition. It will be denoted by A(M).
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[16] discusses “closure axioms” for the automorphism group of a finite matroid
Mf = (E, If ). Here, the “closure axioms” means that if π is a permutation on E,
then π ∈ A(Mf ) if and only if “X ∈ Ff ⇔ πX ∈ Ff”, where Ff is the collection of
closed sets of Mf . Thus, for pi-spaces, we have the following properties.

Theorem 4. Let M = (S, I) be a pi-space with F, σ as its collection of closed sets
and its closure operator respectively. Then there are the following statements.

(1) Let π ∈ A(M) and X ⊆ S. It induces X ∈ F ⇔ πX ∈ F.

(2) Define π : S → S a bijection satisfying A ∈ F ⇔ πA ∈ F as the closed
automorphism of M . Then FA(M) the collection of closed automorphisms of M
with the obvious operation of composition is a group.

(3) A(M) ⊆ FA(M).

Proof. First of all, we prove that for any X ⊆ S, the equality ρ(X) = ρ(πX) is
right for any π ∈ A(M).

Because ρ(X) = sup{|Y | : Y ⊂⊂ X,Y ∈ I}, ρ(πX) = sup{|Z| : Z ⊂⊂ πX,Z ∈
I} and π is a bijection, it brings about that |πY | = |Y | holds for any Y ⊂⊂ X and
Y ∈ I. In addition, for any Z ⊂⊂ πX and Z ∈ I, there is YZ ⊂⊂ X and YZ ∈ I

satisfying Z = πYZ , and further, |Z| = |πYZ | = |YZ |. Thus, it follows ρ(πX) ≤
ρ(X). Similarly, owing to π−1 ∈ A(M), it also brings about ρ(π−1(πX)) ≤ ρ(πX),
i.e. ρ(X) ≤ ρ(πX). Therefore, we obtain ρ(πX) = ρ(X).

Secondly, we prove (1) as follows.

Let X ∈ F. Since X ∈ F ⇔ X = σ(X) ∈ F ⇔ X = {y : ρ(X ∪ y) = ρ(X)} ∈ F.
By π ∈ A(M), it yields out πX = πσ(X) = {πy : ρ(X ∪ y) = ρ(X)} = {πy :
ρ(π(X ∪ y)) = σ(πX)} = {πy : ρ(πX ∪ πy) = ρ(πX)} = {πy : ρ(πX ∪ πy) =
ρ(X)} = {πy : ρ(X ∪ y) = ρ(πX ∪ πy) = ρ(X)}, and in addition, σ(πX) = {t :
ρ(πX ∪ t) = ρ(πX)} = {πs = t : ρ(πX ∪ πs) = ρ(X)} = {πs : ρ(π(X ∪ s)) =
ρ(X)} = {πs : ρ(X ∪ s) = π(X)}. This follows πX = σ(πX). So πX ∈ F is found
out.

Since π ∈ A(M) ⇒ π−1 ∈ A(M). By the above, it is easy to obtain πX ∈ F ⇔
X ∈ F.

Thirdly, (2) is straightforward.

Fourthly, according to the definitions of A(M) and FA(M), and at the same
time, considering with (1), (3) is born. 2

We notice that Welsh provides a problem in [20, p. 331, Exercise 4]. Accord-
ing to the description in [20, p. 1, Line 8], [20, p. 331, Exercise 4] is a real open
problem. The problem is “Is it true that for any group H there is a matroid design
with automorphism group isomorphic to H?”. We know that for a finite matroid,
its automorphism group is finite. Hence
(I) When H is finite, this problem is solved by [20, p. 330, Theorem 2].
(II) When H is infinite, there will not have any finite matroid design with auto-
morphism group isomorphic to H. Since pi-spaces are the generalization of finite
matroids. So, in general, when H is infinite, we guess that there is a matroid design
a pi-space with automorphism group isomorphic to H. This guess will be checked
on some day.
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