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SOME PROPERTIES OF THE JOINT NUMERICAL RANGE
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Abstract: The study of the Aluthge transform T̃ was introduced and studied by Aluthge

in his study of p-hyponormal operators in 1990. Several researchers have since studied var-

ious properties of the transform for a single operator T . For instance, quite a lot has been

researched on the numerical range of T̃ of an operator T. In contrast to this, nothing is

known about the joint numerical range of Aluthge transform T̃ of an m−tuple operator

T = (T1, ..., Tm). The main reason for this limitation is that the notion of Aluthge trans-

form is still a new area of study. The focus of this paper is on the study of the properties

of the joint numerical range of Aluthge transform for an m−tuple operator T = (T1, ..., Tm).

Among other results, we show that the joint approximate point spectrum of T̃ is contained

in the closure of the joint numerical range of of T̃ . This study is therefore helpful in the

development of the research on numerical ranges and Aluthge transform.
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1. Introduction

In this paper, B(X) shall denote the algebra of all bounded linear operators
acting on a complex Hilbert space X. The Aluthge transform T̃ of T was first
defined by Aluthge [1] in 1990 as the operator T = |T |

1

2U |T |
1

2 . Note here
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that T = U |T | is any polar decomposition of T with U a partial isometry

and |T | = (T ∗T )
1

2 . Here, a linear operator T ∗ ∈ B(X) defined by the relation
〈Tx, y〉 = 〈x, T ∗y〉 ∀ y, x ∈ X will denote the adjoint of an operator T ∈
B(X). Note that the adjoint of the operator T ∗ ∈ B(X) is not the same as the
adjoint of matrix A denoted by Adj(A) which is obtained as the transpose of the
cofactor matrix and is used in the determination of the inverse of the matrix.
This paper studies the joint numerical range of T̃ of an m−tuple operator
T = (T1, ..., Tm) ∈ B(X) and establishes some of its properties.

The following section is brief survey of the theory of the joint numerical
range and a related topic of joint numerical radius of an m−tuple operator
T = (T1, ..., Tm) ∈ B(X).

2. Joint Numerical Range

The concept of numerical rangeW (T ), also known as the classical field of values
on a Hilbert space, was introduced in 1918 by Toeplitz [11] for matrices. Since
then, a vast amount of research has been pursued for this notion which has
resulted to many proofs of the convexity result and other properties of W (T ).
For instance, Gustafson and Rao [7] used the following theorem to show that
W (T ) is convex. It is known that a set S is convex if a line segment joining
any two points in S is contained in S.

Theorem 1. (Toeplitz-Hausdorff). The numerical range of an operator is
convex.

Gustafson and Rao [7] proved this by showing that the segment containing
any two points in W (T ) is contained in W (T ).

Dekker [6] extended the notion of numerical range to joint numerical range
in 1969. The joint numerical range has since been used by several researchers
as a tool to understand the joint behaviour of several operators. The joint
numerical range of T = (T1, ..., Tm) ∈ S(X)m is denoted and defined as,
Wm(T ) = {(〈 T1x, x〉, ..., 〈 Tmx, x〉) : x ∈ X, 〈x, x〉 = 1} . Here, S(X) is the set
of self adjoint operators in B(X).

The joint numerical range has also been studied by researchers such as
Dash [5] and Halmos [8] to establish its properties. It is worth noting that the
joint numerical range is generally not convex for m−tuple of operators (see [3])
though there are cases in which it is convex. Researchers studied the closure of
the joint numerical range, Wm(T ), and concluded that is usually non-convex.
See [2] and [4] for this and more.
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The following theorems were used to highlight cases where the joint numer-
ical range is convex.

Theorem 2. If T = (T1, ..., Tm) is an m−tuple of commuting normal
operators, then Wm(T ) is a convex subset of Cm.

See Dekker [6] for the proof.

Theorem 3. Let ϕ = (ϕ1, ..., ϕm) be an m−tuple of functions in L∞.

Then Wm(T ) of commuting m−tuple T = (Tϕ, ..., Tϕ) of Toeplitz operators on
a classical Hardy space H2 is convex.

See Dash [5] for the proof.
Related to the study of the joint numerical range is the notion of the joint

numerical radius of an operator T = (T1, ..., Tm) ∈ B(X). The joint numerical
radius of T is defined as

wm(T ) = sup{|〈Tmx, x〉| : x ∈ X, ‖x‖ = 1} = sup{|λk| : λk ∈ Wm(T )},

1 ≤ k ≤ m.

A lot has been done on the concept of joint numerical radius. For instance,
it is known that the joint numerical radius of a self adjoint and normal operator
T = (T1, ..., Tm) ∈ B(X) is the norm of the operator i.e wm(T ) = ‖Tk‖.

Theorem 4. Suppose T ∈ B(X). Then, wm(Re(T )) ≤ wm(T ) and
wm(Im(T )) ≤ wm(T ). Here, Re stands for “real part of ” and Im stands
for “imaginary part of ”.

Proof. Recall that Re(T ) = 1
2(T +T ∗) and Im(T ) = 1

2i(T −T ∗). Now, from
the definition,

wm(Re(T )) = sup

{∣∣∣∣
〈(

Tk + T ∗
k

2

)
x, x

〉∣∣∣∣ : x ∈ X, ‖x‖ = 1

}

≤ sup

{
1

2
|〈Tkx, x〉|+

1

2
|〈x, Tkx〉| : x ∈ X, ‖x‖ = 1

}

=wm(T ).

Similarly,

wm(Im(T )) = sup

{∣∣∣∣
〈(

Tk − T ∗
k

2i

)
x, x

〉∣∣∣∣ : x ∈ X, ‖x‖ = 1

}

≤ sup

{
1

2i
|〈Tkx, x〉| −

1

2i
|〈x, Tkx〉| : x ∈ X, ‖x‖ = 1

}

=wm(T ).
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The following theorem demonstrates that the joint numerical radius is in-
variant under unitary equivalence.

Theorem 5. Suppose T = (T1, T2, ..., Tm) ∈ B(X). Then, for every uni-
tary operator U ∈ B(X), wm(UTU∗) = wm(T ).

Proof. Let U be a unitary operator. Recall that x ∈ X is a unit vector of X
if and only if U∗x is a unit vector. Since 〈UTU∗x, x〉 = 〈TU∗x,U∗x〉 = 〈Tx, x〉,
the proof follows from the definition of joint numerical radius.

It is known that wm(T ) is a norm equivalent to the operator norm ‖Tk‖
which satisfies 1

2‖Tk‖ ≤ wm(T ) ≤ ‖Tk‖.

3. Joint Numerical Range of Aluthge Transform

While studying the properties of the Aluthge transform, many authors have in-
vestigated the relation between numerical range of T and T̃ . For instance, Jung,
Ko and Pearcy in [9] showed thatW (T̃ ) ⊆ W (T ) for any T on a two-dimensional

space. In [13], Yamazaki showed that W (T̃ ) ⊆ W (T ) for an operator T with

dimkerT ≤ dimker T ∗. Wu showed in [12] that the containment W (T̃ ) ⊆ W (T )
holds for any operator T on a Hilbert space X. In this section, we focus on the
properties of the joint numerical range of T̃ .

Let T = U |T | be a polar decomposition of T = (T1, ..., Tm) ∈ B(X) and
let r = (r1, ..., rm) ∈ C

m. The joint numerical range of Aluthge transform is
denoted and defined by

Wm(T̃ ) = {rk ∈ C
m : (〈T̃1x, x〉, ..., 〈T̃mx, x〉) = rk,

where x ∈ X, ‖x‖ = 1 and 1 ≤ k ≤ m} and its closure Wm(T̃ ) defined by

Wm(T̃ ) =
⋂

zk∈Cm

{rk ∈ C
m : |rk − zk| ≤ wm(Tk − zkI), 1 ≤ k ≤ m},

where wm(Tk) is the joint numerical radius of an m−tuple operator T =
(T1, ..., Tm) ∈ B(X). The joint numerical radius of Tk is defined as

wm(Tk) = sup{|rk| : rk ∈ Wm(T ), 1 ≤ k ≤ m}.

We define the joint approximate point spectrum σπ(T̃ ) of Aluthge transform
of an operator T = (T1, ..., Tm) as a point λ = (λi, ..., λm) ∈ C

m such that for a
sequence {xm} of unit vectors in X we have

‖ (λi − T̃i)xm ‖−→ 0 (m −→ ∞), i = 1, ...,m.
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Theorem 6. The joint approximate point spectrum σπ(T̃ ) is contained in

Wm(T̃ )

Proof. Suppose λ = (λ1, ..., λm) ∈ σπ(T̃ ). There is a sequence xm ∈ X such
that ‖(T̃i − λi)xm‖ −→ 0 (m −→ ∞), i = 1, ...,m.

Then, by Schwarz inequality,

|(〈 T̃ixm, xm 〉) − λi| = |(〈 (T̃i − λi)xm, xm〉)| ≤ ‖(T̃i − λi)xm‖

Thus (〈 T̃ixm, xm 〉) → λ as m → ∞.

Therefore, λ ∈ Wm(T̃ ) and σπ(T̃ ) ⊂ Wm(T̃ ).

The immediate consequence of the above theorem is the next corollary which
we state without proof.

Corollary 7. Conv σπ(T̃ ) ⊆ Wm(T̃ ).

Here Conv σπ(T̃ ) denotes the convex hull of the joint approximate point
spectrum of the Aluthge transform T̃ .

Theorem 8. Let T = V |T | and T = U |T | be the polar decompositions of

T, where U and V are partial isometries. Then T̃ = |T |
1

2V |T |
1

2 = |T |
1

2U |T |
1

2 .

See [9] for the proof.
It is clear that the joint numerical range of T̃ is invariant under the unitary

equivalence of operators as shown by the following theorem.

Theorem 9. Let U be a unitary operator onX. ThenWm(T̃ ) = Wm(U∗T̃U).

Proof. If Wm(T̃ ) = ∅ and Wm(U∗T̃U) = ∅ the result would follow auto-
matically for r = (r1, ..., rm) ∈ C

m.

Let r = (r1, ..., rm) ∈ Wm(T̃ ) 6= ∅. Then there exists a unit vector x ∈ X

such that
(〈T̃1x, x〉, ..., 〈T̃mx, x〉) → rk

where x ∈ X, ‖x‖ = 1 and 1 ≤ k ≤ m.

Note that U is a unitary operator and x ∈ X is a unit vector if and only if
U∗x is a unit vector. Note also that

〈UT̃U∗x, x〉 = 〈T̃U∗x,U∗x〉 = 〈T̃ x, x〉.

Also, ‖U∗x‖ = 1 if and only if ‖x‖ = 1.
Then simple computation gives r = (r1, ..., rm) ∈ Wm(U∗T̃U). Thus

Wm(T̃ ) ⊆ Wm(U∗T̃U).



170 O.S. Cyprian, S. Aywa, L. Chikamai

Conversely, let r = (r1, ..., rm) ∈ Wm(U∗T̃U) 6= ∅. The prove runs through
as above to give r = (r1, ..., rm) ∈ Wm(T̃ ).

This implies that Wm(U∗T̃U) ⊆ Wm(T̃ ) which completes the proof.

We use the following theorem to show that Wm(T̃ ) behaves nicely under
the operation of taking the adjoint of an operator.

Theorem 10. Wm(T̃ ∗) = (Wm(T̃ ))∗ = {r̄ : r = (r1, ..., rm) ∈ Wm(T̃ )}

Proof. Let r = (r1, ..., rm) ∈ Wm(T̃ ). Then, there is a unit vector x ∈ X

such that (〈T̃1x, x〉, ..., 〈T̃mx, x〉) = rk where x ∈ X, ‖x‖ = 1 and 1 ≤ k ≤ m.

Then

|〈x, x〉 − 〈T̃kx, T̃kx〉| = |〈(1 − T̃ ∗
k T̃k)x, x〉 |= 0,

implies that ‖
√

(1− T̃ ∗
k T̃k) x‖

2 = 0. Thus ‖(1−T̃ ∗
k T̃k) x‖ = 0 and ‖T̃ ∗

k T̃kx‖ = 1.

Hence ‖T̃kx‖ = 1. Thus,

|〈T̃ ∗
k T̃kx, T̃kx〉 − 〈x, T̃kx〉| =|〈(T̃ ∗

k T̃k − 1)x, T̃kx〉|

≤‖(T̃ ∗
k T̃k − 1)x‖‖T̃kx‖

=0.

This implies 〈T̃ ∗
k T̃kx, T̃kx〉 = 〈x, T̃kx〉 = r̄. Puting z = T̃kx

‖T̃kx‖
where z is a

unit vector we obtain ‖T̃ ∗
k z‖ = 1 and 〈T̃ ∗

k z, z〉 = r̄. Thus r̄ ∈ Wm(T̃ ∗). Hence

(Wm(T̃ ))∗ ⊆ Wm(T̃ ∗). By symmetry, we obtain Wm(T̃ ∗) ⊆ (Wm(T̃ ))∗ meaning
Wm(T̃ ∗) = (Wm(T̃ ))∗

We now generalise the theorem by Wu in [12] on single operator case to
come up with the following theorem which we state without proof.

Theorem 11. Let T = (T1, ..., Tm) ∈ B(X). Then Wm(T̃ ) ⊆ Wm(T ).

It is known (from [10]) that ‖T̃‖ ⊆ ‖T‖. This leaves us with very limited
relationships between joint numerical range of T and T̃ as the following theorem
demonstrates.

Theorem 12. Let T = (T1,...,Tm) ∈ B(X) and |T | = (T ∗T )
1

2 . Then

Wm(T̃ ) ⊆ Wm(T ).

Proof. There would be nothing to prove ifWm(T̃ ) = ∅. Therefore, we let r =
(r1, ..., rm) ∈ Wm(T̃ ). Then, there is a unit vector x ∈ X such that 〈T̃kx, x〉 = rk
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where x ∈ X, ‖x‖ = 1 and 1 ≤ k ≤ m. It follows that, ‖|Tk|
1/2x‖ = ‖|Tk|

1/2‖ =
1 and ‖(1− |Tk|)x‖ = 0, 1 ≤ k ≤ m. Also, ‖(1− |Tk|

3)x‖ = 0, 1 ≤ k ≤ m. Thus,

‖Tk|Tk|
1/2x‖ = 〈|Tk|

3x, x〉 = 1 = ‖Tk‖, 1 ≤ k ≤ m.

Also,

|〈T̃kx, x〉 − 〈Tk|Tk|
1/2x, |Tk|

1/2x〉| =|〈U |Tk|
1/2x, |Tk|

1/2x〉 − 〈T |Tk|
1/2x, |Tk|

1/2x〉|

=|〈(U |Tk|
1/2 − U |Tk||Tk|

1/2)x, |Tk|
1/2x〉|

=|〈(U |Tk|
1/2)(1− |Tk|)x, |Tk|

1/2x〉|

≤‖U |Tk|
1/2‖‖(1− |Tk|)x‖‖|Tk |

1/2x‖ = 0,

where 1 ≤ k ≤ m.

If we let z = (|Tk|
1/2x)(‖|Tk|

1/2x‖)−1 then z ∈ X is a unit vector such that
〈 Tkz, z〉 = rk and ‖z‖ = 1, 1 ≤ k ≤ m. Thus r = (r1, ..., rm) ∈ Wm(T ). Hence
Wm(T̃ ) ⊆ Wm(T ).
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