SOME PROPERTIES OF THE JOINT NUMERICAL RANGE OF THE ALUTHGE TRANSFORM

O.S. Cyprian ${ }^{1}$ § S. Aywa ${ }^{2}$, L. Chikamai ${ }^{3}$
${ }^{1,2,3}$ Department of Mathematics
Kibabii University
P.O Box 1699-50200, Bungoma, KENYA

Abstract

The study of the Aluthge transform \widetilde{T} was introduced and studied by Aluthge in his study of p-hyponormal operators in 1990. Several researchers have since studied various properties of the transform for a single operator T. For instance, quite a lot has been researched on the numerical range of \widetilde{T} of an operator T. In contrast to this, nothing is known about the joint numerical range of Aluthge transform \widetilde{T} of an m-tuple operator $T=\left(T_{1}, \ldots, T_{m}\right)$. The main reason for this limitation is that the notion of Aluthge transform is still a new area of study. The focus of this paper is on the study of the properties of the joint numerical range of Aluthge transform for an m-tuple operator $T=\left(T_{1}, \ldots, T_{m}\right)$. Among other results, we show that the joint approximate point spectrum of \widetilde{T} is contained in the closure of the joint numerical range of of \widetilde{T}. This study is therefore helpful in the development of the research on numerical ranges and Aluthge transform.

AMS Subject Classification: 47LXX
Key Words: aluthge transform, Numerical range, Joint numerical range, Hilbert space

1. Introduction

In this paper, $B(X)$ shall denote the algebra of all bounded linear operators acting on a complex Hilbert space X. The Aluthge transform \widetilde{T} of T was first defined by Aluthge [1] in 1990 as the operator $T=|T|^{\frac{1}{2}} U|T|^{\frac{1}{2}}$. Note here

[^0]that $T=U|T|$ is any polar decomposition of T with U a partial isometry and $|T|=\left(T^{*} T\right)^{\frac{1}{2}}$. Here, a linear operator $T^{*} \in B(X)$ defined by the relation $\langle T x, y\rangle=\left\langle x, T^{*} y\right\rangle \forall y, x \in X$ will denote the adjoint of an operator $T \in$ $B(X)$. Note that the adjoint of the operator $T^{*} \in B(X)$ is not the same as the adjoint of matrix A denoted by $\operatorname{Adj}(A)$ which is obtained as the transpose of the cofactor matrix and is used in the determination of the inverse of the matrix. This paper studies the joint numerical range of \widetilde{T} of an m-tuple operator $T=\left(T_{1}, \ldots, T_{m}\right) \in B(X)$ and establishes some of its properties.

The following section is brief survey of the theory of the joint numerical range and a related topic of joint numerical radius of an m-tuple operator $T=\left(T_{1}, \ldots, T_{m}\right) \in B(X)$.

2. Joint Numerical Range

The concept of numerical range $W(T)$, also known as the classical field of values on a Hilbert space, was introduced in 1918 by Toeplitz [11] for matrices. Since then, a vast amount of research has been pursued for this notion which has resulted to many proofs of the convexity result and other properties of $W(T)$. For instance, Gustafson and Rao [7] used the following theorem to show that $W(T)$ is convex. It is known that a set S is convex if a line segment joining any two points in S is contained in S.

Theorem 1. (Toeplitz-Hausdorff). The numerical range of an operator is convex.

Gustafson and Rao [7] proved this by showing that the segment containing any two points in $W(T)$ is contained in $W(T)$.

Dekker [6] extended the notion of numerical range to joint numerical range in 1969. The joint numerical range has since been used by several researchers as a tool to understand the joint behaviour of several operators. The joint numerical range of $T=\left(T_{1}, \ldots, T_{m}\right) \in S(X)^{m}$ is denoted and defined as, $W_{m}(T)=\left\{\left(\left\langle T_{1} x, x\right\rangle, \ldots,\left\langle T_{m} x, x\right\rangle\right): x \in X,\langle x, x\rangle=1\right\}$. Here, $S(X)$ is the set of self adjoint operators in $B(X)$.

The joint numerical range has also been studied by researchers such as Dash [5] and Halmos [8] to establish its properties. It is worth noting that the joint numerical range is generally not convex for m-tuple of operators (see [3]) though there are cases in which it is convex. Researchers studied the closure of the joint numerical range, $\overline{W_{m}(T)}$, and concluded that is usually non-convex. See [2] and [4] for this and more.

The following theorems were used to highlight cases where the joint numerical range is convex.

Theorem 2. If $T=\left(T_{1}, \ldots, T_{m}\right)$ is an m-tuple of commuting normal operators, then $W_{m}(T)$ is a convex subset of \mathbb{C}^{m}.

See Dekker [6] for the proof.
Theorem 3. Let $\varphi=\left(\varphi_{1}, \ldots, \varphi_{m}\right)$ be an m-tuple of functions in L^{∞}. Then $W_{m}(T)$ of commuting m-tuple $T=\left(T_{\varphi}, \ldots, T_{\varphi}\right)$ of Toeplitz operators on a classical Hardy space H^{2} is convex.

See Dash [5] for the proof.
Related to the study of the joint numerical range is the notion of the joint numerical radius of an operator $T=\left(T_{1}, \ldots, T_{m}\right) \in B(X)$. The joint numerical radius of T is defined as

$$
\begin{aligned}
& w_{m}(T)=\sup \left\{\left|\left\langle T_{m} x, x\right\rangle\right|: x \in X,\|x\|=1\right\}=\sup \left\{\left|\lambda_{k}\right|: \lambda_{k} \in W_{m}(T)\right\} \\
& 1 \leq k \leq m
\end{aligned}
$$

A lot has been done on the concept of joint numerical radius. For instance, it is known that the joint numerical radius of a self adjoint and normal operator $T=\left(T_{1}, \ldots, T_{m}\right) \in B(X)$ is the norm of the operator i.e $w_{m}(T)=\left\|T_{k}\right\|$.

Theorem 4. Suppose $T \in B(X)$. Then, $w_{m}(\mathcal{R} e(T)) \leq w_{m}(T)$ and $w_{m}(\operatorname{Im}(T)) \leq w_{m}(T)$. Here, $\mathcal{R} e$ stands for "real part of" and Im stands for "imaginary part of ".

Proof. Recall that $\mathcal{R} e(T)=\frac{1}{2}\left(T+T^{*}\right)$ and $\operatorname{Im}(T)=\frac{1}{2 i}\left(T-T^{*}\right)$. Now, from the definition,

$$
\begin{aligned}
w_{m}(\mathcal{R} e(T)) & =\sup \left\{\left|\left\langle\left(\frac{T_{k}+T_{k}^{*}}{2}\right) x, x\right\rangle\right|: x \in X,\|x\|=1\right\} \\
& \leq \sup \left\{\frac{1}{2}\left|\left\langle T_{k} x, x\right\rangle\right|+\frac{1}{2}\left|\left\langle x, T_{k} x\right\rangle\right|: x \in X,\|x\|=1\right\} \\
& =w_{m}(T)
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
w_{m}(\operatorname{Im}(T)) & =\sup \left\{\left|\left\langle\left(\frac{T_{k}-T_{k}^{*}}{2 i}\right) x, x\right\rangle\right|: x \in X,\|x\|=1\right\} \\
& \leq \sup \left\{\frac{1}{2 i}\left|\left\langle T_{k} x, x\right\rangle\right|-\frac{1}{2 i}\left|\left\langle x, T_{k} x\right\rangle\right|: x \in X,\|x\|=1\right\} \\
& =w_{m}(T)
\end{aligned}
$$

The following theorem demonstrates that the joint numerical radius is invariant under unitary equivalence.

Theorem 5. Suppose $T=\left(T_{1}, T_{2}, \ldots, T_{m}\right) \in B(X)$. Then, for every unitary operator $U \in B(X), w_{m}\left(U T U^{*}\right)=w_{m}(T)$.

Proof. Let U be a unitary operator. Recall that $x \in X$ is a unit vector of X if and only if $U^{*} x$ is a unit vector. Since $\left\langle U T U^{*} x, x\right\rangle=\left\langle T U^{*} x, U^{*} x\right\rangle=\langle T x, x\rangle$, the proof follows from the definition of joint numerical radius.

It is known that $w_{m}(T)$ is a norm equivalent to the operator norm $\left\|T_{k}\right\|$ which satisfies $\frac{1}{2}\left\|T_{k}\right\| \leq w_{m}(T) \leq\left\|T_{k}\right\|$.

3. Joint Numerical Range of Aluthge Transform

While studying the properties of the Aluthge transform, many authors have investigated the relation between numerical range of T and \widetilde{T}. For instance, Jung, Ko and Pearcy in [9] showed that $W(\widetilde{T}) \subseteq W(T)$ for any T on a two-dimensional space. In [13], Yamazaki showed that $\overline{W(\widetilde{T})} \subseteq \overline{W(T)}$ for an operator T with $\operatorname{dim} \operatorname{ker} T \leq \operatorname{dim} \operatorname{ker} T^{*}$. Wu showed in [12] that the containment $\overline{W(\widetilde{T})} \subseteq \overline{W(T)}$ holds for any operator T on a Hilbert space X. In this section, we focus on the properties of the joint numerical range of \widetilde{T}.

Let $T=U|T|$ be a polar decomposition of $T=\left(T_{1}, \ldots, T_{m}\right) \in B(X)$ and let $r=\left(r_{1}, \ldots, r_{m}\right) \in \mathbb{C}^{m}$. The joint numerical range of Aluthge transform is denoted and defined by

$$
W_{m}(\widetilde{T})=\left\{r_{k} \in \mathbb{C}^{m}:\left(\left\langle\widetilde{T}_{1} x, x\right\rangle, \ldots,\left\langle\widetilde{T}_{m} x, x\right\rangle\right)=r_{k}\right.
$$

where $x \in X,\|x\|=1$ and $1 \leq k \leq m\}$ and its closure $\overline{W_{m}(\widetilde{T})}$ defined by

$$
\overline{W_{m}(\widetilde{T})}=\bigcap_{z_{k} \in \mathbb{C}^{m}}\left\{r_{k} \in \mathbb{C}^{m}:\left|r_{k}-z_{k}\right| \leq w_{m}\left(T_{k}-z_{k} I\right), 1 \leq k \leq m\right\}
$$

where $w_{m}\left(T_{k}\right)$ is the joint numerical radius of an m-tuple operator $T=$ $\left(T_{1}, \ldots, T_{m}\right) \in B(X)$. The joint numerical radius of T_{k} is defined as

$$
w_{m}\left(T_{k}\right)=\sup \left\{\left|r_{k}\right|: r_{k} \in W_{m}(T), 1 \leq k \leq m\right\}
$$

We define the joint approximate point spectrum $\sigma_{\pi}(\widetilde{T})$ of Aluthge transform of an operator $T=\left(T_{1}, \ldots, T_{m}\right)$ as a point $\lambda=\left(\lambda_{i}, \ldots, \lambda_{m}\right) \in \mathbb{C}^{m}$ such that for a sequence $\left\{x_{m}\right\}$ of unit vectors in X we have

$$
\left\|\left(\lambda_{i}-\widetilde{T}_{i}\right) x_{m}\right\| \longrightarrow 0 \quad(m \longrightarrow \infty), \quad i=1, \ldots, m
$$

Theorem 6. The joint approximate point spectrum $\sigma_{\pi}(\widetilde{T})$ is contained in $\overline{W_{m}(\widetilde{T})}$

Proof. Suppose $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right) \in \sigma_{\pi}(\widetilde{T})$. There is a sequence $x_{m} \in X$ such that $\left\|\left(\widetilde{T}_{i}-\lambda_{i}\right) x_{m}\right\| \longrightarrow 0 \quad(m \longrightarrow \infty), \quad i=1, \ldots, m$.

Then, by Schwarz inequality,

$$
\left|\left(\left\langle\widetilde{T}_{i} x_{m}, x_{m}\right\rangle\right)-\lambda_{i}\right|=\left|\left(\left\langle\left(\widetilde{T}_{i}-\lambda_{i}\right) x_{m}, x_{m}\right\rangle\right)\right| \leq\left\|\left(\widetilde{T}_{i}-\lambda_{i}\right) x_{m}\right\|
$$

Thus $\left(\left\langle\widetilde{T}_{i} x_{m}, x_{m}\right\rangle\right) \rightarrow \lambda$ as $m \rightarrow \infty$.
Therefore, $\lambda \in \overline{W_{m}(\widetilde{T})}$ and $\sigma_{\pi}(\widetilde{T}) \subset \overline{W_{m}(\widetilde{T})}$.
The immediate consequence of the above theorem is the next corollary which we state without proof.

Corollary 7. Conv $\sigma_{\pi}(\widetilde{T}) \subseteq \overline{W_{m}(\widetilde{T})}$.
Here Conv $\sigma_{\pi}(\widetilde{T})$ denotes the convex hull of the joint approximate point spectrum of the Aluthge transform \widetilde{T}.

Theorem 8. Let $T=V|T|$ and $T=U|T|$ be the polar decompositions of T, where U and V are partial isometries. Then $\widetilde{T}=|T|^{\frac{1}{2}} V|T|^{\frac{1}{2}}=|T|^{\frac{1}{2}} U|T|^{\frac{1}{2}}$.

See [9] for the proof.
It is clear that the joint numerical range of \widetilde{T} is invariant under the unitary equivalence of operators as shown by the following theorem.

Theorem 9. Let U be a unitary operator on X. Then $W_{m}(\widetilde{T})=W_{m}\left(U^{*} \widetilde{T} U\right)$.
Proof. If $W_{m}(\widetilde{T})=\emptyset$ and $W_{m}\left(U^{*} \widetilde{T} U\right)=\emptyset$ the result would follow automatically for $r=\left(r_{1}, \ldots, r_{m}\right) \in \mathbb{C}^{m}$.

Let $r=\left(r_{1}, \ldots, r_{m}\right) \in W_{m}(\widetilde{T}) \neq \emptyset$. Then there exists a unit vector $x \in X$ such that

$$
\left(\left\langle\widetilde{T}_{1} x, x\right\rangle, \ldots,\left\langle\widetilde{T}_{m} x, x\right\rangle\right) \rightarrow r_{k}
$$

where $x \in X,\|x\|=1$ and $1 \leq k \leq m$.
Note that U is a unitary operator and $x \in X$ is a unit vector if and only if $U^{*} x$ is a unit vector. Note also that

$$
\left\langle U \widetilde{T} U^{*} x, x\right\rangle=\left\langle\widetilde{T} U^{*} x, U^{*} x\right\rangle=\langle\widetilde{T} x, x\rangle
$$

Also, $\left\|U^{*} x\right\|=1$ if and only if $\|x\|=1$.
Then simple computation gives $r=\left(r_{1}, \ldots, r_{m}\right) \in W_{m}\left(U^{*} \widetilde{T} U\right)$. Thus

$$
W_{m}(\widetilde{T}) \subseteq W_{m}\left(U^{*} \widetilde{T} U\right)
$$

Conversely, let $r=\left(r_{1}, \ldots, r_{m}\right) \in W_{m}\left(U^{*} \widetilde{T} U\right) \neq \emptyset$. The prove runs through as above to give $r=\left(r_{1}, \ldots, r_{m}\right) \in W_{m}(\widetilde{T})$.

This implies that $W_{m}\left(U^{*} \widetilde{T} U\right) \subseteq W_{m}(\widetilde{T})$ which completes the proof.
We use the following theorem to show that $W_{m}(\widetilde{T})$ behaves nicely under the operation of taking the adjoint of an operator.

Theorem 10. $W_{m}\left(\widetilde{T}^{*}\right)=\left(W_{m}(\widetilde{T})\right)^{*}=\left\{\bar{r}: r=\left(r_{1}, \ldots, r_{m}\right) \in W_{m}(\widetilde{T})\right\}$
Proof. Let $r=\left(r_{1}, \ldots, r_{m}\right) \in W_{m}(\widetilde{T})$. Then, there is a unit vector $x \in X$ such that $\left(\left\langle\widetilde{T}_{1} x, x\right\rangle, \ldots,\left\langle\widetilde{T}_{m} x, x\right\rangle\right)=r_{k}$ where $x \in X,\|x\|=1$ and $1 \leq k \leq m$. Then

$$
\left|\langle x, x\rangle-\left\langle\widetilde{T}_{k} x, \widetilde{T}_{k} x\right\rangle\right|=\left|\left\langle\left(1-\widetilde{T}_{k}^{*} \widetilde{T}_{k}\right) x, x\right\rangle\right|=0
$$

implies that $\left\|\sqrt{\left(1-\widetilde{T}_{k}^{*} \widetilde{T}_{k}\right)} x\right\|^{2}=0$. Thus $\left\|\left(1-\widetilde{T}_{k}^{*} \widetilde{T}_{k}\right) x\right\|=0$ and $\left\|\widetilde{T}_{k}^{*} \widetilde{T}_{k} x\right\|=1$. Hence $\left\|\widetilde{T}_{k} x\right\|=1$. Thus,

$$
\begin{aligned}
\left|\left\langle\widetilde{T}_{k}^{*} \widetilde{T}_{k} x, \widetilde{T}_{k} x\right\rangle-\left\langle x, \widetilde{T}_{k} x\right\rangle\right| & =\left|\left\langle\left(\widetilde{T}_{k}^{*} \widetilde{T}_{k}-1\right) x, \widetilde{T}_{k} x\right\rangle\right| \\
& \leq\left\|\left(\widetilde{T}_{k}^{*} \widetilde{T}_{k}-1\right) x\right\|\left\|\widetilde{T}_{k} x\right\| \\
& =0
\end{aligned}
$$

This implies $\left\langle\widetilde{T}_{k}^{*} \widetilde{T}_{k} x, \widetilde{T}_{k} x\right\rangle=\left\langle x, \widetilde{T}_{k} x\right\rangle=\bar{r}$. Puting $z=\frac{\widetilde{T}_{k} x}{\left\|\widetilde{T}_{k} x\right\|}$ where z is a unit vector we obtain $\left\|\widetilde{T}_{k}^{*} z\right\|=1$ and $\left\langle\widetilde{T}_{k}^{*} z, z\right\rangle=\bar{r}$. Thus $\bar{r} \in W_{m}\left(\widetilde{T}^{*}\right)$. Hence $\left(W_{m}(\widetilde{T})\right)^{*} \subseteq W_{m}\left(\widetilde{T}^{*}\right)$. By symmetry, we obtain $W_{m}\left(\widetilde{T}^{*}\right) \subseteq\left(W_{m}(\widetilde{T})\right)^{*}$ meaning $W_{m}\left(\widetilde{T}^{*}\right)=\left(W_{m}(\widetilde{T})\right)^{*}$

We now generalise the theorem by Wu in [12] on single operator case to come up with the following theorem which we state without proof.

Theorem 11. Let $T=\left(T_{1}, \ldots, T_{m}\right) \in B(X)$. Then $\overline{W_{m}(\widetilde{T})} \subseteq \overline{W_{m}(T)}$.
It is known (from [10]) that $\|\widetilde{T}\| \subseteq\|T\|$. This leaves us with very limited relationships between joint numerical range of T and \widetilde{T} as the following theorem demonstrates.

Theorem 12. Let $T=\left(T_{1, \ldots,}, T_{m}\right) \in B(X)$ and $|T|=\left(T^{*} T\right)^{\frac{1}{2}}$. Then $W_{m}(\widetilde{T}) \subseteq W_{m}(T)$.

Proof. There would be nothing to prove if $W_{m}(\widetilde{T})=\emptyset$. Therefore, we let $r=$ $\left(r_{1}, \ldots, r_{m}\right) \in W_{m}(\widetilde{T})$. Then, there is a unit vector $x \in X$ such that $\left\langle\widetilde{T}_{k} x, x\right\rangle=r_{k}$
where $x \in X,\|x\|=1$ and $1 \leq k \leq m$. It follows that, $\left\|\left|T_{k}\right|^{1 / 2} x\right\|=\left\|\left|T_{k}\right|^{1 / 2}\right\|=$ 1 and $\left\|\left(1-\left|T_{k}\right|\right) x\right\|=0,1 \leq k \leq m$. Also, $\left\|\left(1-\left|T_{k}\right|^{3}\right) x\right\|=0,1 \leq k \leq m$. Thus,

$$
\left.\left\|T_{k}\left|T_{k}\right|^{1 / 2} x\right\|=\left.\langle | T_{k}\right|^{3} x, x\right\rangle=1=\left\|T_{k}\right\|, \quad 1 \leq k \leq m
$$

Also,

$$
\begin{aligned}
\left.\left|\left\langle\widetilde{T}_{k} x, x\right\rangle-\left\langle T_{k}\right| T_{k}\right|^{1 / 2} x,\left|T_{k}\right|^{1 / 2} x\right\rangle \mid & \left.\left.=\left|\langle U| T_{k}\right|^{1 / 2} x,\left|T_{k}\right|^{1 / 2} x\right\rangle-\left.\langle T| T_{k}\right|^{1 / 2} x,\left|T_{k}\right|^{1 / 2} x\right\rangle \mid \\
& \left.=\left|\left\langle\left(U\left|T_{k}\right|^{1 / 2}-U\left|T_{k}\right|\left|T_{k}\right|^{1 / 2}\right) x,\right| T_{k}\right|^{1 / 2} x\right\rangle \mid \\
& \left.=\left|\left\langle\left(U\left|T_{k}\right|^{1 / 2}\right)\left(1-\left|T_{k}\right|\right) x,\right| T_{k}\right|^{1 / 2} x\right\rangle \mid \\
& \leq\left\|U\left|T_{k}\right|^{1 / 2}\right\|\left\|\left(1-\left|T_{k}\right|\right) x\right\|\left\|\left|T_{k}\right|^{1 / 2} x\right\|=0,
\end{aligned}
$$

where $1 \leq k \leq m$.
If we let $z=\left(\left|T_{k}\right|^{1 / 2} x\right)\left(\left\|\left|T_{k}\right|^{1 / 2} x\right\|\right)^{-1}$ then $z \in X$ is a unit vector such that $\left\langle T_{k} z, z\right\rangle=r_{k}$ and $\|z\|=1,1 \leq k \leq m$. Thus $r=\left(r_{1}, \ldots, r_{m}\right) \in W_{m}(T)$. Hence $W_{m}(\widetilde{T}) \subseteq W_{m}(T)$.

Acknowledgments

The authors would like to thank friends, family members and colleagues for valuable comments and all support related to the material in this paper.

References

[1] A. Aluthge, On p-hyponormal operators for $0<p<1$, Integral Equations and Operator Theory, 13 (1990), 307-315.
[2] Y.H. Au-Yeung and N.K. Tsing, An extension of the Hausdorff-Toeplitz theorem on numerical range, Proc. Amer. Soc., 89 (1983), 215-218.
[3] F.F. Bonsall, J. Duncan, Numerical Ranges II, London Math. Soc. Lecture notes Series 10, Cambridge University Press, London-New York, 1973.
[4] M. Chō and M. Takagunchi, Boundary points of joint numerical ranges, Pacific J. Math., 95 (1881), 27-35.
[5] A.T. Dash, Joint numerical range, Glasnik Mat., 7 (1972), 75-81.
[6] N. Dekker, Joint Numerical Range and Joint Spectrum of Hilbert Space Operators, Ph.D. Thesis, University of Amsterdam.
[7] K.E. Gustafson and D.K.M Rao, Numerical Ranges: The Field of Values of Linear Operators and Matrices, Springer, New York, 1997.
[8] P.R. Halmos, A Hilbert Space Problem Book, Second Edition, Graduate Texts in Mathematics, 19, Encyclopedia of Mathematics and its Applications, Springer-Verlag, New York, 1982.
[9] I.B. Jung, E. Ko, and C. Pearcy, Aluthge transforms of operators, Integral Equations and Operator Theory, 37 (2000), 437-448.
[10] I.B. Jung, E. Ko, and C. Pearcy, Spectral pictures of Aluthge tranforms of operators, Integral Equations and Operator Theory, 40 (2001), 52-60.
[11] O. Toeplitz, Das algebraische Analogon zu einem Satze von Fejer, Math. Z., 2 (1918), 187-197.
[12] P.Y. Wu, Numerical range of Aluthge transform of operator, Linear Alg. Appl., 357 (2002), 295-298.
[13] T. Yamazaki, On numerical range of the Aluthge transformation, Linear Alg. Appl., 341 (2002), 111-117.

[^0]: Received: 2017-02-11
 Revised: 2018-03-05
 Published: March 6, 2018
 ${ }^{\S}$ Correspondence author
 © 2018 Academic Publications, Ltd. url: www.acadpubl.eu

