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1. INTRODUCTION

Bardwell and Crow (1964) developed a class of discrete distributions, namely the hyper-
Poisson distribution (HPD), which has probability mass function (p.m.f.)

f (x) =
Γ (λ)
Γ (λ+ x)

θx

φ(1;λ;θ)
, (1)

for x = 0, 1, ... with λ > 0 and θ > 0 in which

φ(a; b ; z) = 1+
∞
∑

k=1

(a)k
(b )k

· zk

k!
(2)

is the confluent hypergeometric series (also called the Kummer’s series) and (a)k is the
ascending factorial:

(a)k = a(a+ 1)...(a+ k − 1) =
Γ (a+ k)
Γ (a)

, (3)

for k = 1,2, ... and (a)0 = 1. For further details on confluent hypergeometric series, refer
to Mathai and Haubold (2008) or Abramowitz and Stegun (1965). A distribution with
p.m.f. (1) hereafter is denoted as HPD(λ,θ). Clearly, when λ = 1, the HPD reduces
to the Poisson distribution and when λ is a positive integer, the distribution reduces to
the displaced Poisson distribution of Staff (1964). Moreover, when λ < 1, Bardwell and
Crow (1964) called the distribution as sub-Poisson and when λ > 1 as super-Poisson.
Note that the HPD belongs to the Kemp family of distributions studied by Kumar
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(2009). Several methods of estimation of the parameters for these distributions can be
found in Bardwell and Crow (1964) and Crow and Bardwell (1965). Nisida (1962) dis-
cussed some concepts of queuing theory associated with hyper-Poisson arrivals. In ad-
dition to this, the estimation of the parameters of the hyper-Poisson distribution using
the negative moments were suggested by Roohi and Ahmad (2003). Roohi and Ahmad
(2003) also obtained expressions for ascending factorial moments of the hyper-Poisson
distribution and formulated certain recurrence relations of its negative moments and
ascending factorial moments. Kemp (2002) studied a q-analogue of the distribution
and Ahmad (2007) proposed the Conway-Maxwell hyper-Poisson distribution. Further,
extended versions of the hyper-Poisson distribution were studied by Kumar and Nair
(2011), who discussed some of their applications.

In this paper, we develop a zero-truncated form of the hyper-Poisson distribution
which we call as “the positive hyper-Poisson (PHP) distribution" and investigate some
of its important properties. In Section 2 we give the definition of the PHP distribution
and derive its probability generating function (p.g.f.), cumulative distribution function,
expressions for factorial moments, raw moments, mean, variance, and recurrence rela-
tions for its probabilities, factorial moments, and raw moments. Also, the estimation
of the parameters of the PHP distribution by the method of mixed moments and the
method of maximum likelihood are discussed in Section 3 and illustrated with the help
of real life data sets.

We need the following simplifying notations for i = 0,1, ...

Hi =φ(1+ i ;λ+ i ;θ)− 1 (4)

and for k < a

a[k] = a · (a− 1) · ...(a− k + 1) =
Γ (a+ 1)
Γ (a− k + 1)

, (5)

where a[k] is the descending factorial. In addition to this, we need the following series
representation in the sequel

∞
∑

r=0

∞
∑

s=0

B(s , r ) =
∞
∑

r=0

r
∑

s=0

B(s , r − s), (6)

as well as

n r =
r
∑

m=0

S(r, m) n[m],

where S(r, m) are the Stirling numbers of the second kind and n[m] is the descending
factorial.

2. THE PHP DISTRIBUTION

In this section we present the definition of the PHP distribution and derive some of its
main statistical properties.
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DEFINITION 1. Let X follows a HPD(λ,θ) with p.m.f f (r ) as given in (1). Then a
discrete random variable Y is said to follow the positive hyper Poisson distribution (or in
short the PHP distribution) if its p.m.f Pr = P (Y = r ), for r = 1,2, ... is given by

Pr =
P [X = r ]
P [X > 0]

=H0
−1 Γ (λ)θ

r

Γ (λ+r)
. (7)

Clearly, when λ = 1, the p.m.f (7) reduces to the p.m.f of a zero truncated Poisson
distribution (also known in the literature as the positive Poisson distribution).
Now we have the following results.

RESULT 2. The p.g.f G(t ) of the PHP distribution is the following

G(t ) =H0
−1 [φ(1;λ;θt )− 1]. (8)

PROOF. By definition, the p.g.f of the PHP distribution with p.m.f (7) is given by

G(t ) =
∞
∑

r=1

Pr t r (9)

=
(1+H0)

H0

∞
∑

r=1

t r Γ (λ)
Γ (λ+ r )

θr

(1+H0)

=
(1+H0)

H0

� ∞
∑

r=0

t r Γ (λ)
Γ (λ+ r )

θr

(1+H0)

�

− 1
H0

,

which on simplification gives (8). 2

RESULT 3. The cumulative distribution function (c.d.f) of the PHP distribution is the
following, for any r ∈ℜ= (−∞,∞)

P (X ≤ r ) = 1−H0
−1 θr+1 Γ (λ)

∞
∑

k=0

θk

Γ (k +λ+ r + 1)
. (10)

PROOF. By definition, the c.d.f of the PHP distribution with p.m.f (7) is
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P (X ≤ r ) =
r
∑

k=1

Γ (λ)
Γ (λ+ k)

θk

H0

=
1

H0

�

r
∑

k=0

Γ (λ) θk

Γ (λ+ k)
− 1

�

=
(1+H0)

H0

�

r
∑

k=0

Γ (λ)
Γ (λ+ k)

θk

(1+H0)
− 1
(1+H0)

�

=
(1+H0)

H0

�

1−
∞
∑

k=r+1

Γ (λ)
Γ (λ+ k)

θk

(1+H0)
− 1
(1+H0)

�

=
(1+H0)

H0

�

1−
∞
∑

k=r+1

Γ (λ)
Γ (λ+ k)

θk

(1+H0)
− 1
(1+H0)

�

=
(1+H0)

H0

�

1−
Γ (λ) θr+1

(1+H0)

∞
∑

k=0

θk

Γ (λ+ k + r + 1)
− 1
(1+H0)

�

,

which on simplification yields to (10). 2

RESULT 4. The survival function S(r ) and the hazard function h(r ) of the PHP distri-
bution are the following, for any r ∈ℜ

S (r ) =H−1
0 θr+1 Γ (λ)

∞
∑

k=0

θk

Γ (k +λ+ r + 1)

and

h (r ) =
1

θ Γ (λ+ r )

� ∞
∑

k=0

θk

(k +λ+ r + 1)

�−1

.

PROOF. The proof is straightforward from (7) and (10), since

S(r ) = P (X > r )

and

h(r ) =
Pr

S(r )
. 2

RESULT 5. Letµ[r ] (1;λ) denote the r-th factorial moment of the PHP distribution with
p.g.f (8). Then, an expression forµ[r ] (1;λ) of the PHP distribution is the following, for r ≥ 1

µ[r ] (1;λ) =
r ! θr

(λ)r
φ(1+ r ;λ+ r ;θ). (11)
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PROOF. The factorial moment generating function F (t ) of the PHP distribution
with p.g.f (8) is

F (t ) = G(1+ t )
= H−1

0 [φ (1;λ;θ (1+ t ))− 1] . (12)

On differentiating (12) r times with respect to t and putting t = 1, we get (11). 2

RESULT 6. Mean and variance of the PHP distribution are

Mean=
θ

λ
H0
−1 (1+H1)

and

Variance=
θ

λ
H0
−1 [

2(1+H2)
(1+λ)

−H1(1+H1)].

RESULT 7. Letµr (1;λ) denote the r-th raw moment of the PHP distribution with p.g.f
(8).Then an expression for µr (1;λ) of the PHP distribution is the following, for r ≥ 0

µr (1;λ) =H0

r
∑

m=0

S(r, m)θm (1)m
(λ)m

(1+Hm), (13)

where S(r, m) are the Stirling numbers of the second kind and n[m] is the descending facto-
rial. For details see (Riordan, 1968).

PROOF. The characteristic function Ψ(t ) of the PHP distribution with p.g.f (8) is
the following, for any t ∈ℜ and i =

p
−1

Ψ(t ) =G
�

e i t �=H−1
0

�

φ
�

1;λ;θe i t �− 1
�

(14)

=
∞
∑

r=1

µr (1;λ)
(i t )r

r !
. (15)

On expanding the confluent hypergeometric series φ(.) and the exponential function
e i t in (14) we obtain

Ψ(t ) =H−1
0

� ∞
∑

n=1

(1)n
(λ)n

θn

n!

∞
∑

r=0

n r (i t )r

r !

�

. (16)

Equating the coefficients of (r !)−1 (i t )r on right hand side expressions of (15) and (16)
we get the following

µr (1;λ) =H−1
0

∞
∑

n=1

(1)n θ
n

(λ)n n!
n r
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=H−1
0

∞
∑

n=1

(1)n θ
n

(λ)n n!

r
∑

m=0

S(r, m)n[m],

where S(r, m) are the Stirling numbers of the second kind and n[m] is the descending
factorial. Writing n!= n[m](n−m)! and rearranging the terms we get

µr (1;λ) =H−1
0

r
∑

m=0

S(r, m)θm
∞
∑

n=1

(1)n
(λ)n

θn−m

(n−m)!

=H−1
0

r
∑

m=0

S(r, m)θm
∞
∑

n=1

(1)n+m

(λ)n+m

θn

n!
.

Using (a)n+m = (a)m (a+m)n in the above expression, we obtain (13). 2

RESULT 8. For n ≥ 0, let Pn (1;λ) = Pn . Now, a simple recurrence relation for proba-
bilities of the PHP distribution with p.g.f. (8)

Pn+1 (1;λ) =
θH1

λ(n+ 1)H0
Pn (2;λ+ 1) . (17)

PROOF. On differentiating (8) and (9) with respect to t , we have

∂ G (t )
∂ t

=
∞
∑

r=0

(r + 1)Pr+1 (1;λ) t r

=
H−1

0 θ

λ
φ (2;λ+ 1;θt ) . (18)

On replacing 1, λ by 2, λ+1 in (8) and (9) we get

H−1
1 [φ (2;λ+ 1;θt )− 1] =

∞
∑

r=1

Pr (2;λ+ 1) t r . (19)

By using (19) in (18) we get

∞
∑

r=0

(r + 1)Pr+1 (1;λ) t r =
θ

λH0

�

1+H1

∞
∑

r=1

Pr (2;λ+ 1) t r

�

.

Equating the coefficients of t n on both sides we get (17). 2

RESULT 9. The following is a simple recurrence relation for raw moments of the PHP
distribution, for n ≥ 0 in which µ0 (1;λ) = 1

µn+1 (1;λ) =
θ

λH0

�

1+H1

¨

n
∑

s=0

n!
s ! (n− s)!

µn−s (2;λ+ 1)− 1

«�

. (20)
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PROOF. Consider the following identity obtainable from (14) and (15) on differen-
tiation with respect to t

∂ Ψ (t )
∂ t

=
i e i tθ

λH0
φ
�

2;λ+ 1;θe i t �

=
∞
∑

r=1

iµr (1;λ)
(i t )r−1

(r − 1)!
.

Using (14) and (15) with 1, λ replaced by 2, λ+1, we have

∞
∑

r=0
µr+1 (1;λ) (i t )r

r ! =
θ e i t

λH0

�

1+ H1

∞
∑

r=1
µr (2;λ+ 1) (i t )r

r !

�

= θ
λH0

�

e i t +H1 e i t
§ ∞
∑

r=0
µr (2;λ+ 1) (i t )r

r ! − 1
ª�

= θ
λH0

�∞
∑

s=0

(i t )s

s ! +H1

§ ∞
∑

r=0

∞
∑

s=0
µr (2;λ+ 1) (i t )r+s

r ! s ! −
∞
∑

s=0

(i t )s

s !

ª�

= θ
λH0

�∞
∑

s=0

(i t )s

s ! +H1

§ ∞
∑

r=0

r
∑

s=0

r !
(r−s)! s !µr−s (2;λ+ 1) (i t )r

r ! −
∞
∑

s=0

(i t )s

s !

ª�

,

in the light of (6). On equating the coefficients of (i t )n

n! , we get (20). 2

RESULT 10. The following is a simple recurrence relation for factorial moments of the
PHP distribution, for r ≥ 1, in which µ[0](1,λ) = 1

µ[n+1] (1;λ) =
θ H1

λH0
µ[n] (2;λ+ 1) . (21)

PROOF. The factorial moment generating function F (t ) of the PHP distribution
with p.g.f given in (8) has the following series representation

F (t ) = G(1+ t ) =H−1
0 [φ (1;λ;θ (1+ t ))− 1]

=
∞
∑

r=1

µ[r ] (1;λ)
t r

r !
. (22)

The relation (21) follows on differentiating the above equation with respect to t and
equating coefficients of (n!)−1 t n on both sides, in the light of arguments similar to those
in the proof of Result 7. 2

3. MAXIMUM LIKELIHOOD ESTIMATION

Here we consider the estimation of the parameters λ and θ of the PHP distribution by
the method of maximum likelihood.
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Let a(y) be the observed frequency of y events for any y = 1,2, ... and let z be the
highest value of y observed. Then the likelihood function of the sample is

L(Θ; y) =
z
∏

y=1

[ f (y)]a(y),

in which f (y) is the p.m.f of the PHP distribution as given in (1).
Then the log-likelihood function can be written as

l = ln L (Θ, y) =
z
∑

y=1

a (y) [lnΓ (λ)+ y lnθ− lnΓ (λ+ y)− ln H0]. (23)

Suppose that λ̂ and θ̂ are the maximum likelihood estimators of the parameters λ
and θ of the PHP distribution. On differentiating the log-likelihood function (23) with
respect to the parameters λ and θ and equating to zero, we obtain the following likeli-
hood equations.

∂ l
∂ λ
= 0

implies

z
∑

y=1

a (y)
�

1
H0

� ∞
∑

k=0

k! (λ− 1)!
(λ+ k − 1)!

ψ (λ+ k)
θk

k!
− ψ (λ)

�

− ψ (λ+ y)
�

= 0 (24)

and
∂ l
∂ θ
= 0

implies
z
∑

y=1

a (y)
�

y
θ
−
Φ (2;λ+ 1;θ)

λH0

�

= 0, (25)

in which ψ(λ) = ∂
∂ λ lnΓ (λ).

On solving the likelihood Equations (24) and (25) with the help of some mathemati-
cal softwares such as MATHEMATICA or MATHCAD one can obtain the maximum likelihood
estimators of the parameters of the distribution.

4. TESTING

In order to test the significance of the parameter λ of the PHP distribution, we adopt the
following generalized likelihood ratio test (GLRT) procedure. Here the null hypothesis
is H0 : λ= 0 vs. the alternative H1 : λ 6= 0.
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In case of the generalized likelihood ratio test, the test statistic is

−2 lnλ∗ = 2 (l1− l2) , (26)

where l1 = ln L(Θ̂; y), in which Θ̂ is the maximum likelihood estimator of Θ = (λ,θ)
with no restrictions, and ln L(Θ̂∗; x), in which Θ̂∗ is the maximum likelihood estimator
ofΘ under H0. The test statistic given in (26) is asymptotically distributed as a chi-square
with one degree of freedom.

5. DATA ILLUSTRATION

In this section we illustrate all the procedures discussed in Sections 3 and 4 with the
help of some real life data sets. The first data set is on the distribution of family of
epidemics of common cold taken from Heasman and Reid (1961). The second data set
is on the distribution of number of households having at least one migrant according to
the number of migrants, reported by Singh and Yadava (1981) from Neyman (1939). The
third data set is on the distribution of number of European red mites on apple leaves,
reported by Garman (1923).

TABLE 1
Distribution of family of epidemics of common cold obtained by Heasman and Reid (1961) and the

expected frequencies computed using the positive Poisson and the PHP distribution.

X Observed frequency PP distribution PHP distribution
1 156 145.99 154.13
2 55 68.47 58.10
3 19 21.41 20.32
4 10 5.02 6.63
5 12 0.94 2.03
Total 242 242 242
df 2 1
Estimates λ=1.23 λ=1.45

θ=1.02 θ=0.58
χ 2-value 9.77 1.57
p-value 0.01 0.21
AIC 490.42 474.00
BIC 493.91 480.97

We have fitted the PHP distribution to all these data sets and considered the fitting
of the positive Poisson distribution for comparison. For comparing the models we com-
puted the values of χ 2, AIC and BIC. All these numerical results are presented in Tables
1, 2 and 3. Based on the computed values of χ 2, AIC and BIC given Tables 1, 2 and 3 it
can be seen that the PHP distribution shows a better fit to all these models discussed in
the paper.
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TABLE 2
Distribution of number of households having at least one migrant according to the number of

migrants, reported by Singh and Yadava (1981) and the expected frequencies computed using the
positive Poisson and the PHP distribution.

X Observed frequency PP distribution PHP distribution
1 375 354.08 377.84
2 143 167.66 138.25
3 49 52.92 48.95
4 17 12.53 6.78
5 2 2.37 5.58
6 2 0.38 1.80
7 1 0.05 0.56
8 1 0.06 0.17
Total 590 590 590
df 2 2
Estimates λ=1.25 λ=0.63

θ=0.4 θ=0.27
χ 2-value 8.98 0.31
p-value 0.01 0.86
AIC 1205 1184
BIC 1210 1193

TABLE 3
Distribution of number of European red mites on apple leaves, used by Jani and Shah (1979) and the

expected frequencies computed using the positive Poisson and the PHP distribution.

X Observed frequency PP distribution PHP distribution
1 38 28.66 34.74
2 17 25.68 21.10
3 10 15.34 11.96
4 9 6.87 6.36
5 3 2.46 3.18
6 2 0.74 1.50
7 1 0.19 0.67
Total 80 80 80
df 2 2
Estimates λ=1.40 λ=0.30

θ=0.40 θ=0.26
χ 2-value 10.03 2.60
p-value 0.01 0.27
AIC 247.59 236.00
BIC 249.97 240.75
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We have computed the values of the test statistic given in (26) and included in Table
4. Since the critical value for the test at 5% level of significance and degree of freedom
one is 3.84, the null hypothesis is rejected in all the cases. Hence we conclude that the
parameter λ in the model is significant.

TABLE 4
Calculated value of the test statistic in case of generalized likelihood ratio test.

ln L(Θ̂∗; y) ln L(Θ̂; y) Test statistic
Data set 1 -244.212 -235 18.42
Data set 2 -601.645 -590 23.29
Data set 3 -122.795 -116 13.59

6. SIMULATION

It is quite difficult to compare the theoretical performances of estimators of different
parameters of the PHP obtained by the method of maximum likelihood. So, in this
section, we have attempted a brief simulation study for comparing the performances of
the estimators, and computed their absolute bias and standard errors.

TABLE 5
Absolute bias and standard errors (given in parenthesis) of each estimators of the PHP distribution

obtained by the method of maximum likelihood in case of parameter sets 1 and 2.

MLE
Parameter set Sample size θ̂ λ̂

(1)
n = 100 0.835 0.926

(1.195) (1.536)
n = 300 0.467 0.622

(0.73) (1.036)
n = 700 0.24 0.408

(0.079) (0.209)

(2)
n = 100 0.727 0.889

(1.105) (1.513)
n = 300 0.201 0.433

(0.065) (0.335)
n = 700 0.01 0.018

(0.001) (0.004)

The simulation results are summarized in Table 5 corresponding to the sample of
sizes 100, 300 and 700 for the following two sets of parameters:

1. λ= 3, θ= 5 (over-dispersion);
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2. λ= 9, θ= 4 (under-dispersion).

From Table 5, it can be observed that both the absolute bias and standard errors for
both the parameter sets are in decreasing order as the sample size increases.
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SUMMARY

In this paper we consider a zero-truncated form of the hyper-Poisson distribution and investigate
some of its crucial properties through deriving its probability generating function, cumulative
distribution function, expressions for factorial moments, mean, variance and recurrence relations
for probabilities, raw moments and factorial moments. Further, the estimation of the parameters
of the distribution is discussed. The distribution has been fitted to certain real life data sets to test
its goodness of fit. The likelihood ratio test procedure is adopted for checking the significance of
the parameters and a simulation study is performed for assessing the efficiency of the maximum
likelihood estimators.

Keywords: Confluent hypergeometric function; Mixed moment estimation; Maximum likeli-
hood estimation; Stirling numbers of the second kind; GLRT; Simulation.


