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SOME PROPERTIES OF THE SCHOUTEN TENSOR
AND APPLICATIONS TO CONFORMAL GEOMETRY

PENGFEI GUAN, JEFF VIACLOVSKY, AND GUOFANG WANG

Abstract. The Riemannian curvature tensor decomposes into a conformally
invariant part, the Weyl tensor, and a non-conformally invariant part, the
Schouten tensor. A study of the kth elementary symmetric function of the
eigenvalues of the Schouten tensor was initiated in an earlier paper by the
second author, and a natural condition to impose is that the eigenvalues of
the Schouten tensor are in a certain cone, Γ+

k . We prove that this eigenvalue
condition for k ≥ n/2 implies that the Ricci curvature is positive. We then
consider some applications to the locally conformally flat case, in particular, to
extremal metrics of σk-curvature functionals and conformal quermassintegral
inequalities, using the results of the first and third authors.

1. Introduction

Let (Mn, g) be an n-dimensional Riemannian manifold, n ≥ 3, and let the Ricci
tensor and scalar curvature be denoted by Ric and R, respectively. We define the
Schouten tensor

Ag =
1

n− 2

(
Ric− 1

2(n− 1)
Rg

)
.

There is a decomposition formula (see [1]):

(1) Riem = Ag � g +Wg,

whereWg is the Weyl tensor of g, and � denotes the Kulkarni-Nomizu product (see
[1]). Since the Weyl tensor is conformally invariant, to study the deformation of the
conformal metric, we only need to understand the Schouten tensor. A study of k-th
elementary symmetric functions of the Schouten tensor was initiated in [13], it was
reduced to certain fully nonlinear Yamabe type equations. In order to apply the
elliptic theory of fully nonlinear equations, one often restricts the Schouten tensor
to be in a certain cone Γ+

k , defined as follows (according to Gȧrding [5]).

Definition 1. Let (λ1, · · · , λn) ∈ Rn. Let σk denote the kth elementary symmetric
function

σk(λ1, · · · , λn) =
∑

i1<···<ik

λi1 · · ·λik ,
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and let
Γ+
k = component of {σk > 0} containing (1, · · · , 1).

Let Γ̄+
k denote the closure of Γ+

k . If (M, g) is a Riemannian manifold, and x ∈ M ,
we say g has positive (nonnegative, resp.) Γk-curvature at x if its Schouten tensor
Ag ∈ Γ+

k (Γ̄+
k , resp.) at x. In this case, we also say g ∈ Γ+

k (Γ̄+
k , resp.) at x.

We note that positive Γ1-curvature is equivalent to positive scalar curvature,
and the condition of positive Γk-curvature has some geometric and topological
consequences for the manifold M . For example, when (M, g) is locally conformally
flat with positive Γ1-curvature, then πi(M) = 0, ∀1 < i ≤ n

2 , by a result of Schoen
and Yau [11]. In this note, we will prove that positive Γk-curvature for any k ≥ n

2
implies positive Ricci curvature.

Theorem 1. Let (M, g) be a Riemannian manifold and x ∈ M . If g has positive
(nonnegative, resp.) Γk-curvature at x for some k ≥ n/2, then its Ricci curvature
is positive (nonnegative, resp.) at x. Moreover, if the Γk-curvature is nonnegative
for some k > 1, then

Ricg ≥
2k − n

2n(k − 1)
Rg · g.

In particular, if k ≥ n
2 , then

Ricg ≥
(2k − n)(n− 1)

(k − 1)

(
n

k

)− 1
k

σ
1
k

k (Ag) · g.

Remark. Theorem 1 is not true for k = 1. Namely, the condition of positive scalar
curvature gives no restriction on the lower bound of the Ricci curvature.

Corollary 1. Let (Mn, g) be a compact, locally conformally flat manifold with
nonnegative Γk-curvature everywhere for some k ≥ n/2. Then (M, g) is conformally
equivalent to either a space form or a finite quotient of a Riemannian Sn−1(c)×S1

for some constant c > 0 and k = n/2. In particular, if g ∈ Γ+
k , then (M, g) is

conformally equivalent to a spherical space form.

When n = 3, 4, the result in Theorem 1 was already observed in [9] and [2].
Theorem 1 and Corollary 1 will be proved in the next section.

We will also consider the equation

σk(Ag̃) = constant,(2)

for conformal metrics g̃ = e−2ug. This equation was studied in [13], where it was
shown that when k 6= n/2, (2) is the conformal Euler-Lagrange equation of the
functional

(3) Fk(g) = Vol(g)−
n−2k
n

∫
M

σk(g) dvol(g),

when k = 1, 2 or for k > 2 when M is locally conformally flat. We remark that in
the even-dimensional locally conformally flat case, Fn/2 is a conformal invariant.
Moreover, it is a multiple of the Euler characteristic, see [13].

This problem was further studied in [7], where the following conformal flow was
considered:

d

dt
g = −(log σk(g)− log rk(g)) · g,

g(0) = g0,
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where

log rk =
1

Vol(g)

∫
M

log σk(g)dvol(g).

Global existence with uniform C1,1 a priori bounds of the flow was proved in [7].
It was also proved that for k 6= n/2 the flow is sequentially convergent in C1,α to
a C∞ solution of σk = constant. Also, if k < n/2, then Fk is decreasing along
the flow, and if k > n/2, then Fk is increasing along the flow. We remark that
the existence result for equation (2) has been obtained independently in [10] in the
locally conformally flat case for all k.

In Section 3, we will consider global properties of the functional Fk, and give con-
ditions for the existence of a global extremizer. We will also derive some conformal
quermassintegral inequalities, which are analogous to the classical quermassintegral
inequalities in convex geometry.

2. Curvature restriction

We first state a proposition which describes some important properties of the
sets Γ+

k .

Proposition 1. (i) Each set Γ+
k is an open convex cone with vertex at the origin,

and we have the following sequence of inclusions:

Γ+
n ⊂ Γ+

n−1 ⊂ · · · ⊂ Γ+
1 .

(ii) For any Λ = (λ1, · · · , λn) ∈ Γ+
k (Γ̄+

k , resp.), ∀1 ≤ i ≤ n, let

(Λ|i) = (λ1, · · · , λi−1, λi+1, · · · , λn).

Then (Λ|i) ∈ Γ+
k−1 (Γ̄+

k−1, resp.). In particular,

Γ+
n−1 ⊂ V +

n−1 = {(λ1, · · · , λn) ∈ Rn : λi + λj > 0, i 6= j}.

The proof of this proposition is standard, following from [5].
Our main results are consequences of the following two lemmas. In this note, we

assume that k > 1.

Lemma 1. Let Λ = (λ1, λ2, · · · , λn−1, λn) ∈ Rn, and define

AΛ = Λ−
∑n
i=1 λi

2(n− 1)
(1, 1, · · · , 1).

If AΛ ∈ Γ̄+
k , then

(4) min
i=1,··· ,n

λi ≥
(2k − n)
2n(k − 1)

n∑
i=1

λi.

In particular, if k ≥ n
2 , then

min
i=1,··· ,n

λi ≥
(2k − n)(n− 1)
(n− 2)(k − 1)

(
n

k

)− 1
k

σ
1
k

k (AΛ).

Proof. We first note that, for any nonzero vector A = (a1, · · · , an) ∈ Γ̄+
2 we have

σ1(A) > 0. This can be proved as follows. Since A ∈ Γ̄+
2 , σ1(A) ≥ 0. If σ1(A) = 0,

there must be an ai > 0 for some i, since A is a nonzero vector. We may assume
an > 0. Let (A|n) = (a1, · · · , an−1); we have σ1(A|n) ≥ 0 by Proposition 1. This
would give σ1(A) = σ1(A|n) + an > 0, a contradiction.
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Now without loss of generality, we may assume that Λ is not a zero vector. By
the assumption AΛ ∈ Γ̄+

k for k ≥ 2, so we have
∑n

i=1 λi > 0.
Define

Λ0 = (1, 1, · · · , 1, δk) ∈ Rn−1 × R;
then we have AΛ0 = (a, · · · , a, b), where

δk =
(2k − n)(n− 1)
2nk − 2k − n ,

a = 1− n− 1 + δk
2(n− 1)

, b = δk −
n− 1 + δk
2(n− 1)

,

so that

(5) σk(AΛ0) = 0 and σj(AΛ0 ) > 0 for j ≤ k − 1.

It is clear that δk < 1, and so a > b. Since (4) is invariant under the transformation
from Λ to sΛ for s > 0, we may assume that

∑n
i=1 λi = tr(Λ0) = n − 1 + δk and

λn = mini=1,··· ,n λi. We write

AΛ = (a1, · · · , an).

We claim that

(6) λn ≥ δk.
This is equivalent to showing

(7) an ≥ b.
Assume for a contradiction that an < b. We consider Λt = tΛ0 + (1 − t)Λ and

At := AΛt = tAΛ0 + (1− t)AΛ

= ((1− t)a+ ta1, · · · , (1− t)a+ tan−1, (1 − t)b+ tan).

By the convexity of the cone Γ+
k (see Proposition 1), we know that

At ∈ Γ̄+
k , for any t ∈ (0, 1].

In particular, f(t) := σk(At) ≥ 0 for any t ∈ [0, 1]. By the definition of δk, f(0) = 0.
For any i and any vector V = (v1, · · · , vn), we denote by

(V |i) = (v1, · · · , vi−1, vi+1, · · · , vn)

the vector with the i-th component removed. Now we compute the derivative of f
at 0:

f ′(0) =
n−1∑
i=1

(ai − a)σk−1(A0|i) + (an − b)σk−1(A0|n).

Since (A0|i) = (A0|1) for i ≤ n− 1 and
∑n

i=1 ai = (n− 1)a+ b, we have

f ′(0) = (an − b)(σk−1(A0|n)− σk−1(A0|1)) < 0,

for σk−1(A0|n) − σk−1(A0|1) > 0. (Recall that b < a.) This is a contradiction;
hence λn ≥ δk. It follows that

min
i=1,··· ,n

λi ≥ δk =
2k − n

2n(k − 1)

n∑
i=1

λi.

Finally, the last inequality in the lemma follows from the Newton-MacLaurin in-
equality. �
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Remark. It is clear from the above proof that the constant in Lemma 1 is optimal.

We next consider the case AΛ ∈ Γ̄+
n
2

.

Lemma 2. Let k = n/2 and Λ = (λ1, · · · , λn) ∈ Rn with AΛ ∈ Γ̄+
k . Then either

λi > 0 for any i, or
Λ = (λ, λ, · · · , λ, 0)

up to a permutation. If the second case is true, then we must have σn
2

(AΛ) = 0.

Proof. By Lemma 1, to prove the Lemma we only need to check that for Λ =
(λ1, · · · , λn−1, 0) with AΛ ∈ Γ̄+

k ,

λi = λj , ∀i, j = 1, 2, · · · , 2k − 1.

We use the same idea as in the proof of the previous Lemma. Without loss of
generality, we may assume that Λ is not a zero vector. By the assumption AΛ ∈ Γ̄+

k

for k ≥ 2, we have
∑n−1
i=1 λi > 0. Hence we may assume that

∑n−1
i=1 λi = n − 1.

Define
Λ0 = (1, 1, · · · , 1, 0) ∈ Rn.

It is easy to check that

(8) AΛ0 ∈ Γ+
k−1 and σk(AΛ0) = 0.

That is, AΛ0 ∈ Γ̄+
k . If the λ’s are not all the same, we have

n−1∑
i=1

(λi − 1) = 0

and
n−1∑
i=1

(λi − 1)2 > 0.

Now consider Λt = tΛ0 + (1− t)Λ and

At := AΛt = tAΛ0 + (1 − t)AΛ = (
1
2

+ t(λ1 − 1), · · · , 1
2

+ t(λn−1 − 1),−1
2

).

From the assumption that A ∈ Γ̄+
k , (8), and the convexity of Γ̄+

k , we have

(9) At ∈ Γ̄+
k for t > 0.

For any i 6= j and any vector A, we denote by (A|ij) the vector with the i-th
and j-th components removed. Let Λ̃ = (1

2 , · · · ,
1
2 ,−

1
2 ) be an (n − 1)-vector, and

Λ∗ = (1
2 , · · · ,

1
2 ,−

1
2 ) an (n− 2)-vector. It is clear that ∀i 6= j, i, j ≤ n− 1,

σk−1(A0|i) = σk−1(Λ̃) > 0,

σk−2(A0|ij) = σk−2(Λ∗) > 0.
Now we expand f(t) = σk(At) at t = 0. By (8), f(0) = 0. We compute

f ′(0) =
n−1∑
i=1

(λi − 1)σk−1(A0|i)

= σk−1(Λ̃)
n−1∑
i=1

(λi − 1) = 0
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and
f ′′(0) =

∑
i6=j

(λi − 1)(λj − 1)σk−2(A0|ij)

= σk−2(Λ∗)
∑
i6=j

(λi − 1)(λj − 1)

= −σk−2(Λ∗)
n−1∑
i=1

(λi − 1)2 < 0,

for σk−2(A0|ij) = σk−2(Λ∗) > 0 for any i 6= j and
∑
i6=j(λj − 1) = (1− λi). Hence

f(t) < 0 for small t > 0, which contradicts (9). �

Remark. From the proof of Lemma 2, there is a constant C > 0, depending only

on n and
σ

2
n
n
2

(AΛ)

σ1(AΛ) , such that

min
i
λi ≥ Cσ

2
n
n
2

(AΛ).

Proof of Theorem 1. Theorem 1 follows directly from Lemmas 1 and 2. �

Corollary 2. Let (M, g) be an n-dimensional Riemannian manifold and k ≥ n/2,
and let N = M × S1 be the product manifold. Then N does not have positive Γk-
curvature. If N has nonnegative Γk-curvature, then (M, g) is an Einstein manifold,
and there are two cases: either k = n/2, or k > n/2 and (M, g) is a torus.

Proof. This follows from Lemmas 1 and 2. �

Proof of Corollary 1. From Theorem 1, we know that the Ricci curvature Ricg is
nonnegative. Now we deform it by the Yamabe flow considered by Hamilton, Ye [15]
and Chow [4] to obtain a conformal metric g̃ of constant scalar curvature. The Ricci
curvature Ricg̃ is nonnegative, for the Yamabe flow preserves the nonnegativity of
the Ricci curvature, see [4]. Now, by a classification result given in [12, 3], we know
that (M, g̃) is isometric to either a space form or a finite quotient of a Riemannian
Sn−1(c) × S1 for some constant c > 0. In the latter case, it is clear that k = n/2,
since otherwise it cannot have nonnegative Γk-curvature. �

Next, we will prove that if M is locally conformally flat with positive Γn−1-
curvature, then g has positive sectional curvature. If M is locally conformally flat,
then by (1) we may decompose the full curvature tensor as

Riem = Ag � g,

Proposition 2. Assume that n = 3, or that M is locally conformally flat. Then
the Schouten tensor Ag ∈ V +

n−1 if and only if g has positive sectional curvature.

Proof. Let π be any 2-plane in Tp(N), and let X ,Y be an orthonormal basis of π.
We have

K(σ) = Riem(X,Y,X, Y ) = Ag � g(X,Y,X, Y )

= Ag(X,X)g(Y, Y )−Ag(Y,X)g(X,Y )

+Ag(Y, Y )g(X,X)−Ag(X,Y )g(Y,X)

= Ag(X,X) +Ag(Y, Y ).
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From this it follows that
min
σ∈TpN

K(σ) = λ1 + λ2,

where λ1 and λ2 are the smallest eigenvalues of Ag at p. �
Corollary 3. If (M, g) is locally conformally flat with positive Γn−1-curvature,
then g has positive sectional curvature.

Proof. This follows easily from Propositions 1 and 2. �

3. Extremal metrics of σk-curvature functionals

We next consider some properties of the functionals Fk associated to σk. These
functionals were introduced and discussed in [13], see also [7]. Further variational
properties in connection to 3-dimensional geometry were studied in [9].

We recall that Fk is defined by

Fk(g) = Vol(g)−
n−2k
n

∫
M

σk(g) dvol(g).

We denote Ck = {g ∈ [g0]|g ∈ Γ+
k }, where [g0] is the conformal class of g0.

We now apply our results to show that if g0 ∈ Γ+
n
2

, then there is an extremal
metric ge which minimizes Fm for m < n/2, and if m > n/2, there is an extremal
metric ge which maximizes Fm.

Proposition 3. Suppose (M, g0) is locally conformally flat and g0 ∈ Γ+
k for some

k ≥ n
2 . Then ∀m < n

2 , there is an extremal metric gme ∈ [g0] such that

(10) inf
g∈Cm

Fm(g) = Fm(gme ),

and ∀m > n
2 , there is extremal metric gme ∈ [g0] such that

(11) sup
g∈Cm

Fk(g) = Fk(gme ).

In fact, any solution to σm(g) = constant is an extremal metric.

Proof. First, by Corollary 1, (M, g0) is conformal to a spherical space form. For
any g ∈ Cm, from [7] we know there is a conformal metric g̃ in Cm such that σm(g̃)
is constant and

(a) if m > n/2, then Fm(g) ≤ Fm(g̃),
(b) if m < n/2, then Fm(g) ≥ Fm(g̃).

A classification result of [13] and [14], which is analogous to a result of Obata for
the scalar curvature, shows that g̃ has constant sectional curvature. Therefore g̃
is the unique critical metric unless M is conformally equivalent to Sn, in which
case any critical metric is the image of the standard metric under a conformal
diffeomorphism. This clearly implies the conclusion of the Proposition. �

Next we consider the case k < n/2. We have

Proposition 4. Suppose (M, g0) is locally conformally flat and g0 ∈ Γ+
k for some

k < n
2 . Suppose furthermore that for any fixed C > 0, the space of solutions to the

equation σk = C is compact, with a bound independent of the constant C. Then
there is an extremal metric gke ∈ [g0] such that

inf
g∈Ck
Fk(g) = Fk(gke ).
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Proof. From the compactness assumption, there exists a critical metric gke which
has least energy. If the functional assumed a value strictly lower than Fk(gke ), then
by [7], the flow would decrease to another solution of σk = constant, which is a
contradiction since gke has minimal energy. �

We conclude with conformal quermassintegral inequalities, which were conjec-
tured in [7], and verified there for some special cases when (M, g) is locally con-
formally flat and g ∈ Γ+

n
2−1 or g ∈ Γ+

n
2 +1 using the flow method. In the case of

k = 2, n = 4, the inequality was proved in [8] without the locally conformally flat
assumption.

Proposition 5. Suppose (M, g0) is locally conformally flat and g0 ∈ Γ+
k for some

k ≥ n
2 . Then for any 1 ≤ l < n

2 ≤ k ≤ n there is a constant C(k, l, n) > 0 such
that for any g ∈ [g0] and g ∈ Γ+

k ,

(12) (Fk(g))1/k ≤ C(k, l, n)(Fl(g))1/l,

with equality if and only if (M, g) is a spherical space form.

Proof. By Proposition 3, we have a conformal metric ge of constant sectional cur-
vature such that

inf
g∈Cl
Fl(g) = Fl(ge)

and
sup
g∈Ck
Fk(g) = Fk(ge).

Hence, for any g ∈ Γ+
k we have

(Fk(g))1/k

(Fl(g))1/l
≤ (Fk(ge))1/k

(Fl(ge))1/l

=
(l!(n− l)!)1/l

(k!(n− k)!)1/k
.

When the equality holds, g is an extremal of Fl, hence a metric of constant sectional
curvature by [13]. �
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