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Abstract

The concept of Zagreb eccentricity (E1 and E2) indices was introduced in the chemical
graph theory very recently [5, 12]. The first Zagreb eccentricity (E1) and the second Zagreb
eccentricity (E2) indices of a graph G are defined as

E1 = E1(G) =
∑

vi∈V (G)

e2i

and
E2 = E2(G) =

∑
vivj∈E(G)

ei · ej ,

where E(G) is the edge set and ei is the eccentricity of the vertex vi in G. In this paper we
give some lower and upper bounds on the first Zagreb eccentricity and the second Zagreb
eccentricity indices of trees and graphs, and also characterize the extremal graphs.
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1 Introduction
Mathematical chemistry is a branch of theoretical chemistry using mathematical methods
to discuss and predict molecular properties without necessarily referring to quantum me-
chanics [1, 8, 14]. Chemical graph theory is a branch of mathematical chemistry which
applies graph theory in mathematical modeling of chemical phenomena [6]. This theory
has an important effect on the development of the chemical sciences.

Topological indices are numbers associated with chemical structures derived from their
hydrogen-depleted graphs as a tool for compact and effective description of structural for-
mulas which are used to study and predict the structure-property correlations of organic
compounds. Molecular descriptors are playing significant role in chemistry, pharmacol-
ogy, etc. Among them, topological indices have a prominent place [13]. One of the best
known and widely used is the connectivity index, χ , introduced in 1975 by Milan Randić
[11]. The Randić index is one of the most famous molecular descriptors and the paper in
which it is defined is cited more than 1000 times. The first M1, and the second M2, Zagreb
indices (see [2],[3],[4],[7],[9] and the references therein) are defined as:

M1 = M1(G) =
∑

vi∈V (G)

d2i

and
M2 = M2(G) =

∑
vivj∈E(G)

di · dj .

where di is the degree of the vertex vi ∈ V (G) in G.

Let G = (V,E) be a connected simple graph with |V (G)| = n vertices and |E(G)| =
m edges. Also let di be the degree of the vertex vi, i = 1, 2, . . . , n. For vertices vi, vj ∈
V (G), the distance dG(vi, vj) is defined as the length of the shortest path between vi and
vj in G. The eccentricity of a vertex is the maximum distance from it to any other vertex,

ei = max
vj∈V (G)

dG(vi, vj) .

The maximum eccentricity over all vertices of G is called the diameter of G and denoted
by d.

The invariants based on vertex eccentricities attracted some attention in Chmistry. In an
analogy with the first and the second Zagreb indices, M. Ghorbani et al. and D. Vukičević
et al. define the first E1, and the second, E2, Zagreb eccentricity indices by [5, 12]

E1 = E1(G) =
∑

vi∈V (G)

e2i (1.1)

and
E2 = E2(G) =

∑
vivj∈E(G)

ei · ej . (1.2)

where E(G) is the edge set and ei is the eccentricity of the vertex vi in G.

LetG = (V (G), E(G)) . If V (G) is the disjoint union of two nonempty sets V1(G) and
V2(G) such that every vertex in V1(G) has degree r and every vertex in V2(G) has degree
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s, then G is (r, s)-semiregular graph. When r = s , is called a regular graph. As usual,
Ka,b (a + b = n), Pn and K1,n−1 denote respectively the complete bipartite graph, the
path and the star on n vertices. A vertex of a graph is said to be pendent if its neighborhood
contains exactly one vertex. An edge of a graph is said to be pendent if one of its vertices
is a pendent vertex. Now we calculate

E1(Pn) =

{
1
12 (n− 1)(7n2 − 2n) if n is even
1
12 (n− 1)(7n2 − 2n− 3) if n is odd.

(1.3)

and

E2(Pn) =

{
1
12 n(7n2 − 21n+ 20) if n is even
1
12 (n− 1)(7n2 − 14n+ 3) if n is odd.

(1.4)

Also we have

E1(K1,n−1) = 4n− 3 and E2(K1,n−1) = 2n− 2.

Denote by T̃n, is a tree of order n with maximum degree n − 2. We have E1(T̃n) =
9n− 10, E2(T̃n) = 6n− 8.

In this paper we give some lower and upper bounds on the first Zagreb eccentricity
and the second Zagreb eccentricity indices of trees and graphs, and also characterize the
extremal graphs.

2 Lower and upper bounds on Zagreb eccentricity indices
We now give lower and upper bounds on the Zagreb eccentricity indices of trees.

Theorem 2.1. Let T be a tree with n vertices. Then

(i) E1(K1,n−1) ≤ E1(T ) ≤ E1(Pn) (2.1)
and (ii) E2(K1,n−1) ≤ E2(T ) ≤ E2(Pn). (2.2)

Moreover, the left hand side (right hand side, respectively) equality holds in (2.1) and (2.2)
if and only if G ∼= K1,n−1 (G ∼= Pn, respectively).

Proof. Upper bound: If T is isomorphic to path Pn, then the right hand side equality holds
in (2.1) and (2.2). Otherwise, T � Pn. Let d be the diameter of tree T . Then there exists a
path Pd+1 : v1v2 . . . vd+1 of length d in T . Thus we have the eccentricity of a vertex vi in
tree T ,

ei = max{dG(vi, v1), dG(vi, vd+1)} .

Since T is a tree, both vertices v1 and vd+1 are pendent vertices. Thus we have ei ≤ d for
each vi ∈ V (G). Since T � Pn, let vk (k 6= 1, d+ 1) be a vertex of degree one, adjacent
to vertex vj in T . We transform T into another tree T ∗ by deleting the edge vk vj and
join the vertices vd+1 and vk by an edge. Then the longest path Pd+2 : v1v2 . . . vd+1vk
of length d + 1 in T ∗. Let the vertex eccentricities be e∗1, e

∗
2, . . . , e

∗
n in T ∗. Therefore

we have e∗t = max{d∗G(vt, v1), d∗G(vt, vk)} = max{dG(vt, v1), dG(vt, vd+1) + 1} ≥
max{dG(vt, v1), dG(vt, vd+1)} = et (as d∗G(vt, vk) = dG(vt, vd+1) + 1) for t 6= k
whereas e∗k = d+1 > d ≥ ek (d∗G(vi, vj) is the length of the shortest path between vertices
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vi and vj in T ∗). So we have e∗r e
∗
s ≥ er es for vrvs 6= vkvj , vkvd+1 and e∗k e

∗
d+1 =

d(d+ 1) > d2 ≥ ek ej . Using above result we get

E1(T ∗)− E1(T ) =
∑

vi∈V (T∗)

e∗2i −
∑

vi∈V (T )

e2i ≥ e∗2k − e2k > 0

and

E2(T ∗)− E2(T ) =
∑

vr vs∈E(T∗)

e∗r e
∗
s −

∑
vr vs∈E(T )

er es ≥ e∗k e∗d+1 − ek ej > 0.

Therefore we have
Ei(T

∗) > Ei(T ), i = 1, 2.

By the above described construction we have increased the value of Ei(T ), i = 1, 2. If
T ∗ is the path, we are done. If not, then we continue the construction as follows. Next we
choose one pendent vertex (6= v1, vk) from T ∗, etc. Repeating the procedure sufficient
number of times, we arrive at a tree in which the maximum degree 2, that is, we arrive at
path Pn.

Lower bound: If T is isomorphic to star K1,n−1, then the left hand side equality holds
in (2.1) and (2.2). If T is isomorphic to T̃n, then the left hand side inequality is strict in
(2.1) and (2.2). Otherwise, T � K1,n−1 , T̃n . Suppose that a path Pd+1 : v1v2 . . . vd+1

of length d in T , where d is the diameter of T . Without loss of generality, we can assume
that d2 ≥ dd (the degree of vertex v2 is greater than or equal to the degree of vertex vd).
Now choose vi to be an arbitrary maximum degree vertex, unless vd has maximum degree,
in which case vi is chosen to be v2. We transform T into another tree T̂ by deleting the
edge vd vd+1 and join the vertices vi and vd+1 by an edge. Let the vertex eccentricities be
ê1, ê2, . . . , ên in tree T̂ . Similarly, as before we obtain êt ≤ et for all t = 1, 2, . . . , n.
Using above we get

E1(T̂ )− E1(T ) =
∑

vi∈V (T̂ )

ê2i −
∑

vi∈V (T )

e2i ≤ 0

and

E2(T̂ )− E2(T ) =
∑

vr vs∈E(T̂ )

êr ês −
∑

vr vs∈E(T )

er es ≤ 0.

Therefore we have
Ei(T̂ ) ≤ Ei(T ), i = 1, 2.

By the above described construction we have non-increased the value of Ei(T ), i =
1, 2. If T̂ is to the tree T̃n , we are done. If not, then we continue the construction as follows.
Next we choose one pendent vertex from longest path in T̂ such that its adjacent vertex is
not maximum degree vertex. Now we delete that pendent edge and join the pendent vertex
to the maximum degree vertex, etc. Repeating the procedure sufficient number of times,
we arrive at a tree in which the maximum degree n − 2, that is, we arrive at tree T̃n. This
completes the proof.



K. Ch. Das, D.-W. Lee and A. Graovac: Some properties of the Zagreb eccentricity indices 121

We now give lower and upper bounds on the Zagreb eccentricity indices of bipartite
graph.

Theorem 2.2. Let G be a connected bipartite graph of order n with bipartition V (G) =
U ∪W , U ∩W = ∅, |U | = p and |W | = q. Then

(i) E1(Kp,q) ≤ E1(G) ≤ E1(Pn) (2.3)
and (ii) E2(Kp,q) ≤ E2(G) ≤ E2(Pn). (2.4)

Moreover, the left hand side (right hand side, respectively) equality holds in (2.3) and (2.4)
if and only if G ∼= Kp,q (G ∼= Pn, respectively).

Proof. If G is isomorphic to a complete bipartite graph Kp,q , then the left hand side
equality holds in (2.3) and (2.4). Otherwise, G � Kp,q . If we add an edge in G,
then each vertex eccentricity will non-increase. Thus we have ei(G + e) ≤ ei(G). Us-
ing this property, one can see easily that E1(G) ≥ E1(Kp,q\{e}) > E1(Kp,q) and
E2(G) ≥ E2(Kp,q\{e}) > E2(Kp,q) , where e is any edge in Kp,q .

Let T be a spanning tree of connected bipartite graph G. Then by the above property,
E1(G) ≤ E1(T ) and E2(G) ≤ E2(T ). Using this result with Theorem 2.1, we get the
right hand side inequality in (2.3) and (2.4). Moreover, the right hand side equality holds
in (2.3) and (2.4) if and only if G ∼= Pn. This completes the proof.

In [10], Hua et al. proved the following result in Theorem 3.1.

Lemma 2.3. Let G be a connected graph with ei = n − di for any vertex vi ∈ V (G). If
G � P4, then ei ≤ 2 for any vertex vi ∈ V (G).

We now give some relation between first Zagreb index and the first Zagreb eccentricity
index of graphs.

Theorem 2.4. Let G be a connected graph of order n with m edges. Then

E1(G) ≤M1(G)− 4mn+ n3, (2.5)

where M1(G) is the first Zagreb index in G. Moreover, the equality holds in (2.5) if and
only if G ∼= P4 or G ∼= Kn or G is isomorphic to a (n− 1, n− 2)-semiregular graph.

Proof. If G ∼= P4, then the equality holds in (2.5). Otherwise, G � P4. Now,

E1(G) =
∑

vi∈V (G)

e2i ≤
∑

vi∈V (G)

(n− di)2 as ei ≤ n− di

= M1(G)− 4mn+ n3 as M1(G) =
∑

vi∈V (G)

d2i ,
∑

vi∈V (G)

di = 2m.

First part of the proof is over.

Now suppose that equality holds in (2.5). Then ei = n − di for all vi ∈ V (G). By
Lemma 2.3, we conclude that ei ≤ 2 for any vertex vi ∈ V (G) as G � P4. Since
ei = n − di for any vertex vi ∈ V (G), we must have di = n − 1 or n − 2 for any vertex
vi ∈ V (G), that is, G ∼= Kn or G is isomorphic to a (n− 1, n− 2)-semiregular graph.

Conversely, one can see easily that (2.5) holds for P4 orKn or (n−1, n−2)-semiregular
graph.
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Remark 2.5. (n−1, n−2)-semiregular graph is obtained by deleting i independent edges
from Kn, 1 ≤ i ≤ bn2 c.

We now give some relation between first Zagreb index, second Zagreb index and the
second Zagreb eccentricity index of graphs.

Theorem 2.6. Let G be a connected graph of order n with m edges. Then

E2(G) ≤M2(G)− nM1(G) +mn2, (2.6)

whereM1(G) is the first Zagreb index,M2(G) is the second Zagreb index inG. Moreover,
the equality holds in (2.6) if and only if G ∼= P4 or G ∼= Kn or G is isomorphic to a
(n− 1, n− 2)-semiregular graph.

Proof. Now,

E2(G) =
∑

vivj∈E(G)

ei · ej

≤
∑

vivj∈E(G)

(n− di)(n− dj) as ei ≤ n− di and ej ≤ n− dj

=
∑

vivj∈E(G)

(
n2 + didj − (di + dj)n

)
= M2(G)− nM1(G) +mn2.

First part of the proof is over. Moreover, one can see easily that the equality holds in (2.6)
if and only ifG ∼= P4 orG ∼= Kn orG is isomorphic to a (n−1, n−2)-semiregular graph,
by the proof of Theorem 2.4.

Figure 1: Graphs G∗ and G∗∗.

Let K1
2,a−2 be a connected graph of order a obtained from the complete bipartite graph

K2,a−2 with the vertices of degree a− 2 are adjacent. Denote by G∗, is a connected graph
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of order n, obtained from K1
2,n−2q−2 by attaching two paths Pq+1 to two of its vertices of

degree n − 2q − 1. Let Γ1 be the class of graphs H1 = (V,E) such that H1 is connected
graph of diameter d (d = 2q + 1) with V (G∗) = V (H1) and E(G∗) ⊆ E(H1).

Let K2
3,a−2 be a connected graph of order a + 1 obtained from the complete bipartite

graph K2,a−2 with the vertices of degree a − 2 are adjacent to a new vertex. Denote by
G∗∗, is a connected graph of order n, obtained from K2

3,n−2q−1 by attaching two paths
Pq to two of its vertices of degree n − 2q. Let Γ2 be the class of graphs H2 = (V,E)
such that H2 is connected graph of diameter d (d = 2q + 2) with V (G∗) = V (H2) and
E(G∗) ⊆ E(H2).

We now give another lower bound on E1(G) in terms of n, d and also characterize the
extremal graphs.

Theorem 2.7. Let G be a connected graph of order n with diameter d. Then

E1(G) ≥

{
1
12 (3nd2 + 6nd+ 3n+ 4d3 + 3d2 − 4d− 3) if d+ 1 is even
d
12 (3nd+ 4d2 + 9d+ 2) if d+ 1 is odd

(2.7)

with equality holding if and only if G ∼= Pn or G ∈ Γ1 or G ∈ Γ2 .

Proof. Since G has diameter d, G contains a path Pd+1: v1 v2 . . . , vd+1. Moreover, n ≥
d+ 1 and ei ≥ dd2e, i = 1 , 2 , . . . , n. If n = d+ 1, then G ∼= Pn and the equality holds in
(2.7). Otherwise, n > d+ 1. By (1.3), we get

d+1∑
i=1

e2i =

{
d
12 (7d2 + 12d+ 5) if d+ 1 is even
d
12 (7d2 + 12d+ 2) if d+ 1 is odd.

(2.8)

Since ei ≥
⌈
d
2

⌉
, i = 1 , 2 , . . . , n, using above result, we get

E1(G) =

d+1∑
i=1

e2i +

n∑
i=d+2

e2i

≥

{
d
12 (7d2 + 12d+ 5) + (n− d− 1)dd2e

2 if d+ 1 is even
d
12 (7d2 + 12d+ 2) + 1

4 (n− d− 1)d2 if d+ 1 is odd,
(2.9)

from which we get the required result (2.7). First part of the proof is over.

Now suppose that equality holds in (2.7) with n > d + 1. From equality in (2.9), we
get

ei =
⌈d

2

⌉
for i = d+ 2 , d+ 3 , . . . , n.

Using above result we conclude that all the vertices vd+2 , vd+3 , . . . , vn−1 and vn are
adjacent to vertices vq and vq+2 (when d = 2q), or vq+1 and vq+2 (when d = 2q + 1).
Hence G ∈ Γ1 or G ∈ Γ2.

Conversely, one can see easily that (2.7) holds for path Pn or graph G, where G ∈ Γ1

or G ∈ Γ2.
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We now give another lower bound on E2(G) in terms of m, d and also characterize the
extremal graphs.

Theorem 2.8. Let G be a connected graph of order n with diameter d. Then

E2(G) ≥

{
1
12 (3md2 + 6md+ 4d3 − 6d2 − 4d+ 3m+ 6) if d+ 1 is even
d
12 (3md+ 4d2 − 4) if d+ 1 is odd

(2.10)

with equality holding if and only if G ∼= Pn or G ∈ Γ1 or G ∈ Γ2 .

Proof. By (1.3), we get

∑
vivj∈E(Pd+1)

ei ej =

{
d+1
12 (7d2 − 7d+ 6) if d+ 1 is even
d
12 (7d2 − 4) if d+ 1 is odd.

(2.11)

Since ei ≥
⌈
d
2

⌉
, i = 1 , 2 , . . . , n, we have

E2(G) =
∑

vivj∈E(Pd+1)

ei ej +
∑

vivj∈E(G\Pd+1)

ei ej

≥

{
d+1
12 (7d2 − 7d+ 6) + (m− d)dd2e

2 if d+ 1 is even
d
12 (7d2 − 4) + 1

4 (m− d)d2 if d+ 1 is odd,

from which we get the required result (2.10). Rest of the proof is similar as Theorem
2.7.
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