
TRANSACTIONS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 282, Number 2, April 1984 

SOME PROPERTIES OF VISCOSITY SOLUTIONS 
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BY 
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ABSTRACT. Recently M. G. Crandall and P. L. Lions introduced the notion of 

"viscosity solutions" of scalar nonlinear first order partial differential equations. 

Viscosity solutions need not be differentiable anywhere and thus are not sensitive to 

the classical problem of the crossing of characteristics. The value of this concept is 

established by the fact that very general existence, uniqueness and continuous 

dependence results hold for viscosity solutions of many problems arising in fields of 

application. The notion of a " viscosity solution" admits several equivalent formula- 

tions. Here we look more closely at two of these equivalent criteria and exhibit their 

virtues by both proving several new facts and reproving various known results in a 

simpler manner. Moreover, by forsaking technical generality we hereby provide a 

more congenial introduction to this subject than the original paper. 

Introduction. Recently two of the authors (see [2,3]) defined a class of generalized 

solutions of nonlinear scalar partial differential equations of the form 

(0.1) F(y, u(y), Du(y)) = 0 fory EE 6, 

where 6 is an open set in R", F: ' X R X R" -* R is continuous and Du 

(aU1aV1,...,au1v"/) denotes the gradient of u. These generalized solutions-called 

viscosity solutions in [2]-need not be differentiable anywhere, as the only regularity 

required in the definition is continuity. M. G. Crandall and P. L. Lions [2] utilized 

this new concept to establish uniqueness, stability, and certain existence theorems 

for a wide class of equations of the form (0.1). In addition, P. L. Lions in [8] has 

extended these techniques to obtain further and more general existence results. 

Our goal here is first to look more closely at two alternative definitions of 

solutions of (0.1), each of which was proved equivalent to the "viscosity" notion in 

[2], and second to present some new properties of these solutions. Although these 

alternative definitions were mentioned in [2], they were not used there. Here we 

emphasize that they are more appealing in some respects and more convenient for 

certain purposes than the one taken as basic in [2] (see, e.g., Evans [6], which 

stimulated the current work). In particular, choosing appropriately each time one of 
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488 M. G. CRANDALL, L. C. EVANS AND P. L. LIONS 

these equivalent notions, we can simplify the proofs of several results given in [2]. 

Furthermore, the concept of viscosity solutions is closely related to some previous 

work by L. C. Evans [5]. We should also point out that this paper is essentially 

self-contained and makes easier reading than [2], as we forsake generality here. 

Let us first formulate the definition of viscosity solutions in the form we think the 

most appealing (even if not always the most convenient to use). We begin by 

recalling that a function u from ( into R is said to be differentiable at y0 E (, and 

that Du(y0) P po Rm, if we have 

(0.2) u(y)zu(y0)+poy (y-Yo)+o(ly-Yo). 

Here a b is the Euclidean scalar product of a and b, and g(y) = o(ly - y0 1) means 

liml v.1) g(y) IY -Yo I` = 0. Obviously, (0.2) is the conjunction of the two relations 

(0.3) limsup(u(y)- u(y0)-Po (Y--p)) IY-Yo0F '0 

and 

(0.4) liminf(u(y) -u(y0) -pPo (y-Yo)) IY-Yo1-' ?0. 
Y 'Yo 

It is well known that if u is continuous, it may fail to be differentiable at every 

yo ( 9. Nevertheless, there are-as we will see below-many choices of (yo, po) E 6 

X WIl for which (0.3) or (0.4) holds. It will thus be convenient to give the following 

definition. 

DEFINITION. Let u be a function from ( into R and let yo E S. Then the 

superdifferential of u at yo is the set, denoted by D+ u(y0), of po E Rm such that (0.3) 

holds. Similarly, the subdifferential of u at yo is the set, denoted by D-u(yo), of 

P0 E RW' such that (0.4) holds. 

In general, D + u(y0) are closed and convex sets. There is an obvious relation 

between our "subdifferential" and the notion used in convex analysis. We have also 

learned that the subdifferentials used here were previously employed by E. 

DeGiorgi, A. Marino and M. Tosques in another context in [4]. We may now define 

the concept of viscosity solution of (0.1). 

DEFINITION 1. A viscosity solution of 

(0.1) F(y, u(y), Du(y)) = 0 in (9 

is a function u E C((9) satisfying 

(0.5) F(y, u(y), p) < 0 'Vy E (, Vp E D+ u(y), 

and 

(0.6) F(y, u(y), p) > 0 Vy E (, Vp E D-u(y). 

In a similar way, u E C(Q() is said to be a viscosity subsolution (resp. supersolution) 

of (0.1) if (0.5) (resp. (0.6)) holds. 

We will reprove in ?1 that this is equivalent to the following notion of solution of 

(0.1). 

DEFINITION 2. u E C(() is a viscosity solution of (0.1) provided for all P E C'(e), 

(0.7) if u - 4 attains a local maximum at yo E 6( then 

F(y0, u(y0), D4(y0)) *< 0 
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VISCOSITY SOLUTIONS 489 

and 

(0.8) if u - 0 attains a local minimum atyo E 0, then 

F(yo, u(yo), Lp(yo)) > 0. 

Moreover, each of these notions is equivalent to the one introduced in [2] (see ?1). 

In ?1 we also establish various properties of viscosity solutions, such as, for 

example, the consistency with classical solution. ?2 is devoted to a uniqueness result 

concerning equations of the type 

(0.9) u + H(Du) f, x E R 

while in ?4 we give a general uniqueness result for the initial value problem 

(0.1I0) {ut +H(Du) =0, x EER', t >0, 

(G. 10) { ~u(x,O 0- uo(x ), x fE W. 

Here Du denotes the gradient with respect to x( = RW). Of course (0.10) is a special 

case of (0.1) with ? - R X (0, +o), y = (x, t), m = n + 1. 

In ?3 we show that the well-known vanishing viscosity method yields viscosity 

solutions; and finally in ?5 we consider the relations between viscosity solutions of 

(0.10) and nonlinear semigroup theory. 

Let us recall that many of the results presented here have been already proved in 

[21, but the proofs herein seems to be simpler (essentially due to our freedom in 

choosing among the equivalent definitions of viscosity solution). Since the main 

point here is simplicity, we will not consider more general Hamiltonians H than in 

(0.9) or (0.10). Technical generality (e.g., H(x, t, u, Du) in (0.10)) is available in [2]. 

1. Main properties of viscosity solutions. 

1.1. Equivalent definitions. 

THEOREM 1. 1. Let u E C( 0). Then the following are equivalent: 

(i) u satisfies (0.5) and (0.6), 

(ii) u satisfies (0.7) and (0.8) for all E C (0), 
(iii) u satisfies, for all 4 E CI(?),3 - 2 0 and k E R, 

if maxo(u -k) > 0, then for some pointyo at which o(u u-k) 

attains its maximum, we have F yo, u(yo), - 

D(4(y0) 

(u(yo)-k) < O attains 44Yo) kYoi 
I)yo 

and 

if min (u u- k) < 0, then for some point yo at which (u u-k ) 

(1.2) 
attains its minimum, we have F( yo, u(yo), -A(y?) (u(yo)-k)) 2 0. 

3C,!(6)- f(p E C1(O), the support of p is a compact subset of C}. 
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490 M. G. CRANDALL, L. C. EVANS AND P. L. LIONS 

REMARK 1.1. It is easy to prove that in (ii) or (iii) we may replace 4 E C'(e) by 

E CQ?(6). (See the proof of Theorem 3.1.) 

REMARK 1.2. Property (iii) is the original definition of viscosity solutions given in 

[2] (where the equivalence of (i), (ii) and (iii) is also proved). 

REMARK 1.3. A more precise statement than Theorem 1.1 asserts the equivalence 

of: (i) u satisfies (0.5), (ii) u satisfies (0.7) and (iii) u satisfies (1.1). When u satisfies 

one of these equivalent conditions, it is called a viscosity subsolution of (0, 1). An 

analogous statement holds for supersolutions. 

REMARK 1.4. Let us finally mention that we could define the notion of viscosity 

subsolutions for upper semicontinuous functions and most of the results of [2] would 

still remain valid. 

We will prove (i) t (ii). For the equivalence with (iii), see [2]. That (i) # (ii) is an 

immediate consequence of the following 

PROPOSITION 1. 1. Let u E C(QC), yo E '9, p E Rm: Then the following are equivalent: 

(i)p ED+u(yo)(resp.p ED-u(yo)) and 

(ii) there exists 4 fE C'(O) such that u - 4 has a local maximum (resp. minimum) at 

yo and D:(yO) = p. 

PROOF. The key fact is the following form [2, Lemma 1.4] of a result of [5]: 

LEMMA 1.1. Let E = C(') be differentiable atyO E( 6. Then there exists '' E Cl(e) 
such that Dt+(yo) = D'(yo) = Dq(yo) and q - '+ ('q - 'K) has a strict local 

maximum (resp. minimum) value of zero at yo. 

Accepting this lemma, we prove Proposition 1.1. Assume p E D+ u(yo). Set 

q(y) ={u(y) - u(yo) -p (y -yo)}+, where r+ denotes max(r,0). By assump- 
tion, 1 is differentiable at yo and D7q(yo) = 0. Let I+ E C'(e) be as in Lemma 1.1. 

Then near yo, 

{ u(y) - [u(yo) + p * (y -y) } - + (y) < o; 

so if +p(y) = u(yo) + p (y - yo) + 'I+ (y), u - 4 has a local maximum at yo and 

Do(yo) = p. Thus (i) implies (ii). It is clear that (ii) implies (i), since if u - 4 has a 

maximum at yo, then near yo we have 

u(y) < u(yo) - k(yo) + ?(y) < u(yo) + D4(yo) - (y - Yo) + o(ly - Yo I) 

This implies D4(yo) E D+ u(yo). (We have dealt with D+ and local maxima; the 

situation for D- and local minima is entirely the same.) LI 

1.2. Elementary properties of viscosity solutions. We begin with a simple result 

which establishes the consistency of the notions of viscosity and classical solutions. 

THEOREM 1.2. (i) Let u E Cl'(6) be a classical solution of (0.1), that is 

F(y, u(y), Du(y)) = 0 in (9, u E Cl(6). 

Then u is a viscosity solution. 

(ii) Let u be a viscosity solution of (0.1) which is differentiable at some yo Ez 9. Then 

F(yo, u(yo), Du(yo)) = 0. 
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VISCOSITY SOLUTIONS 491 

REMARK 1.5. This result is proved in [2, Corollary 1.6]. (See also [5, pp. 237-238].) 

Analogous statements hold for viscosity sub- and supersolutions. Obviously, we 

deduce from (ii) above that if u is a viscosity solution of (0.1) and if u E W11,P(6) for 

p > m, then 

F(y,u,Du) =0 a.e.in(D. 

The proof of Theorem 1.2 is trivial, since if u is C', then at every point y E C, the 

super- and the subdifferentials coincide and D+ u(y) = D -u(y) = (Du(y)} . In the 

same way, if u is a viscosity solution of (0.1) and is differentiable at y EE , then 

D+ u(yo) = D-u(yo) = {Du(yo)}. Fl 

We next reprove Theorem 1.10 of [2], which characterizes piecewise C' viscosity 

solutions of F= 0. Let e be divided in two open subsets 6+ and & by a C' surface 

F: ( = O9+ U ? U F. The unit normal to F at y0 E F is denoted by n(yo) and is taken 

to point into C+ . 

THEOREM 1.3. Letu E QC(?)and u = u+ in C+ UF, u = u inC UFwhereu+, u_ 

are of class C' in ? + U F, and e_ U F. Then u is a viscosity solution of (0.1) if and only 

if the following conditions hold: 

(a) u+ and u are classical solutions of F = 0 in C+ and & respectively, and 

(b) if yo E iF, Ty0 =({T E Rm: n(yO) 0T= O} is the tangent space to F at yo and PT 

is the orthogonalprojection of Rm onto Tyo, then 

i a = Du+ (yo) n(yo) < Du (yo) n(yo) = b, we have 

(F(yo, U(y0), PTDuy(yo) + (n(yo)) < 0 fora < < b 

and 

(14) l if a = Du+ (yo)- n(yo) > Du (yo) n(yo) = b, we have 

(F(yo, u(yO), PTDu-(yo) + (n(yo)) > 0 forb < t < a. 

PROOF. First note that the assumptions imply that PTDu+ (y0)= PTDu-(yo) for 

yo E F; hence PTDu (yo) is unambiguous. Now, by assumption, if y E (C+ U ?-, 

then D+ u(y) = D-u(y) = {Du(y)}; therefore (a) is equivalent to the satisfaction of 

(0.5) and (0.6) fory E (9\F. 

We are now going to prove that (b) is equivalent to (0.5) and (0.6) for y E F. In 

order to do so, we just need to compute D+ u(yo), D-u(yo) for y0 E F. By 

assumption we have 

(1.5) u(y) = u(y0) + PTDu+(y0) -(y -y0) +(n(y0) - Du+(y0)) 

*(n(yo) -(y 
- 

y0)) + o(ly-yo 1) if y E C+ U F; 

and 

(1.6) u(y) u(yO) + PTDu(y0) - (y -y0) + (n(y0) * Du-(y0)) 

* (n(yo) 
- 

(y 
- 

y0)) + o(ly- y0 1) if y E 6 U F. 
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492 M. G. CRANDALL, L. C. EVANS AND P. L. LIONS 

On the other hand, p E D+ u(y0) if and only if 

(1.7) 

U(Y) < U(Yo) + P (y-YO) + o(Iy-YO I) 

- U(YO) + PTP- (y -Yo) + (n(yO)-p)(n(yO)- (y -Yo)) + o(ly -yo1). 

Recalling that PTDu+ (Yo) = PTDu-(yo) and that F is of class C', one deduces 

immediately that p E D+ u(yo) :` and only if 

(1.8) PTP PTDu+(yo) and n(yo).Du+(yo) ? n(yo).p ?n(yo) Du-(y0). 

Thus 

(1.9) 

D u(yO) 'PTDu4(yo)+(n(yo): n(yo).Du+(yO) ?(<"n(yO)-Du-(yO)} 

(and if n(yo) Du+ (yo) > n(yo) * Du (yo), D+ u(yo) is empty). In the same way, we 

find 

(1.10) 

D-u(yo) ={PTDu, (yo) + (n(yo): n(yo)- Du_(yo) < ( s n(yo)- Du+ (yo)}. 

It is then straightforward to complete the proof of Theorem 1.3. O 

REFMARK 1.6. -It is worth noting that due to the use of Definition 1 of viscosity 

solutions, the above proof of Theorem 1.3 is more direct than in [2]. This phenome- 

non is further illustrated by two easy results (the first in Corollary 1.8 and the second 

in Theorem 1.2 of [2]). 

PROPOSITION 1.2. Let u be a viscosity solution of (0.1) and let 4'I E Cl(R) satisfy 

?'(t) > 0 in R, ?D(R) = R. Then ?D(u) is a viscosity solution of 

F(x, '(v), *'(v)Dv) - 0, 

where I denotes 01'. 

PROOF. This is immediate from the observations 

D+? (u)(yo) = D'(u(yo))D+ u(yo), D-A(u)(yo) 
- 'D'(u(y0))D-u(y0). LC] 

PROPOSITION 1.3. (a) Let u, v be viscosity subsolutions (resp. supersolutions) of (0.1). 

Then w = max(u, v) (resp. w = min(u, v)) is a viscosity subsolution (resp. supersolu- 

tion) of (0. 1). 

(b) Let (un)n>. be viscosity subsolutions (resp. supersolutions) of (0.1). If w 

supn,l uIn (resp, infn-l uIn) EC((Q), then w is a viscosity subsolution (resp. supersolu- 

tion) of (0.1). 

PROOF. The proof of (a) is an immediate consequence of the remark 

D+ {max(u, v)}(y0) C D' u(y0) U D+ v(y0) 

(resp. D-{min(u, v)}(y0) C D-u(y0) U D-v(y0)). And (b) is a consequence of (a) 

and of the following stability result. Observe that Wm supmna un converges 

uniformly on compact sets of 0 to w, because of Dini's lemma. LI 

THEOREM 1.4. Let Fn(y, t, p) be a sequence of continuous functions such that 

Fn(y, t, p) converges uniformly on compact subsets of e X R X Rn to some function 
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VISCOSITY SOLUTIONS 493 

F(y, t, p). Let u,, be a viscosity solution of Fn(y, un, Dun) 0 in 0. We assume that 

u,1 converges uniformly on compact subsets of e to some u. Then u is a viscosity solution 

of F(y, u, Du) = 0. 

PROOF. By Theorem 1.1, we need only to consider points of local maximum of 

u - 4 for 4 E- C'(6). Letyo be such a point and let us prove that 

F(yo, u(yo), D4(y0)) < 0. 

Take t E C'(6) such that 0 < t < 1 if y =#yo and t(yo) = 1. It is clear that 

u - (-o -) attains a local strict maximum at yo and thus for n large enough, there 

will exist yn such that un - (- -T) attains a local maximum at yn, yn E (9, and 

y,, yo. By assumption, we have 

Fn(yn, un(yn), D(4yn) - Dt(yn)) < 0, 

and we conclude since un(yn) -- u(yo) and D4p(yn) - D'J(yn) -* D4(yo) - Dt(yo) 

=Do(yo). Fl 

REMARK 1.7. The proof above actually shows that if un u in C(6), then for all 

p E D~ +u(yO) (resp. D -u(yO)) there exist yn E (9, Pn Ez D uU(nYn) (resp Dun(Yn)) 
such that yn - YO Pn -* p. In other words, 

D+ u(yo) C limsupD+ Un(y). 
n-o 
Y -yo tY ~Yo 

2. Uniqueness for u + H(Du) = f in RW. We now consider the uniqueness of 

viscosity solutions of 

(2.1) u + H(Du) = f in R. 

Of course, (2.1) is a very special case of (0.1): take m = n, y = x, F(y, r, p) = r + 

H( p) - f(y). We will prove the following 

THEOREM 2.1. Let u, v, f, g, H E C(Rn). Assume that u, v are bounded and f, g are 

uniformly continuous on RW. Assume that u and v are viscosity solutions of, respectively, 

u + H(Du) = f, v + H(Dv) = g in R. Then we have 

(2.2) sup(u - v)+ < sup(f- g). 
R"' Rn 

REMARK 2.1. By symmetry, we also have supRRl(v - u) + < SUpR(g -f )+ and 

thus Ilu - vll < lf -gil, where llhll = supR nh(x)I is the norm on the space Cb(Rn) 
of bounded continuous functions on RW. 

PROOF OF THEOREM 2.1. We begin the proof by assuming the extra conditions 

(2.3) lim u(x) = lim v(x) = 0. 
IxI - IxI - x 

This will keep the ideas clearer; later the full result is established. 

We choose a function /3 E C?(RW) with the properties 

(2.4) ? < 'S < 1, ,8(0) = 1, ,8(x) = if I XI> 1. 

Let M = max(IIull, llvll), E > 0, and let I: Rn X RW R be given by 

(2.5) ?(x, y) = u(x) - v(y) + 3M/,3(x -y) 
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where 

(2.6) 13(z) = /(z/c) for z E W. 

By (2.3)-(2.6) and the choice of P, limsupx I+vI,, 1o(x, y) < 3M. (In fact, off the 

support of I3(x -y), D < 2 M, while if x I + y I -- on this support, then l x I and 

IY H oo.) We may assume that u(x-) > v(x-) for some x-, since (2.2) clearly holds if 

this is not the case. But then 

I(x-, x-) = u(x-) - v(x-) + 3Mf3,(0) > 3M. 

Therefore 1D assumes its maximum value at some point (xo, yo) E RW X RW; i.e. 

(2.7) D(xo, yo) u(xo) - v(yo) + 3M3?(x0 -Yo) 

> u(x) -v(y) + 3MI3,(x-y) for all (x, y) E R X RW. 

Moreover, I xo - Yo I< - since I3,(xo - yo) > 0 by the above. 

Now xo is a maximum point of x + u(x) - (v(yo) - 3M,Q(x - y)) and thus, by 

assumption, 

(2.8) u(xo) + H(-3M(DI3,)(x0 -yo)) < f(xo). 

Similarly, yo is a minimum point of y <- v(y) - (u(xo) + 3M#,Q(xo - y)) and so 

(2.9) v(yO) + H(-3M(DIl)j(x0 -Yo)) > g(yo). 

Together, (2.8) and (2.9) yield 

(2.10) u(xo) - v(yo) A(x0) - g(yo). 

For x E 11t, 

u(x) - v(x) + 3M = D(x, x) < D(xo, yo) < u(xo) - v(yo) + 3M; 

so, by (2.10), 

sup(u(x) - v(x)) < (u(x) - v(yO)) < (f(x0) - Oyo 
R" 

? sup (f - g) +I g(xo) - g(yo) I 
R" 

< sup (f- g) +&)g(8) 

R" 

where cog(-) is the modulus of continuity of g. Now (2.2) follows upon our letting 

The extra assumption (2.3) was used to guarantee that 'D had a global maximum 

point (xO, yo). To treat the general case, choose 8 > 0 and then (x,, y1) so that 

(2.11) D(xl, yl) > sup D(x, y) -8. 
R" X R" 

Now choose ' E C'(R X RW) such that 

(2.12) 0? < l, '(x1, y) = l, (x, y) = 0 if Ix - xI12 + Iy -yl12> 1, 

( IDdI?2 inR'X R. 

Finally, set 

(2.13) 

'I(x, y) = D(x, y) + 28&(x, y) = u(x) - v(y) + 3M#,Q(x -y) + 28&(x, y). 
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We claim that T has a global maximum point (xo, yo) E RW X Rn. Indeed, from 

(2.1 1) one deduces 

T(xl, yl) 
- 

ID(xl, yl) + 28 > sup b + 8, 

whereas lim sup,,,,_ . 'T(x, y) ? sup (. Moreover, with x-, (xo, yo) as above, 

u(xo) - v(yo) + 3M/,8(xo -y0) + 28'(xo, yo) 

U(X-)- v(X-) + 3M + 28(X- X), 

hence, 2M + 3M,3(xo - yo) + 28 > 3M. We conclude that 

(2.14) Ixo-yoIj< if M>28. 

Next, using the assumptions on u, v as above, one deduces 

u(xo) + H(-3MD/3(xo- Yo) - 28DJt(x0, yo)) < f(xo) 

and 

v(y0) + H(-3MDP,3(Xo - Yo) + 28DY4(xo, Yo)) > g(yo). 

These imply 

(2.15) u(xO) - v(yO) ?f(xo) - g(yo) + ?H,(88), 

where 0H,r denotes the modulus of continuity of H on { E Rn; I 1< r} and 

r = 3MIIDf3,jI + 88. Therefore, for x E RW, we deduce 

u(x) - v(x) + 3M < u(x) - v(x) + 3M + 28'(x, x) = I(x, x) 

s T(xo, yo) < u(xo) - v(yo) + 3M + 28 

< sup (f- g) 
+ 

Kog(8) + WH,r(88) + 28 + 3M. 
Rn 

We conclude upon sending 8 -O 0 and then 0 0. L 

REMARK 2.2. It is worth noting that the essential ingredients of the above proofs 

are, in fact, general results on the semidifferentials of u, v E Cb(RQ). Indeed, we 

actually proved the following in the course of the proof of Theorem 2.1. 

PROPOSITION 2.1. Let u, v E C(RQ). 
(a) If u, v satisfy (2.3) and supRn(u - v) > 0, then for each y > 0 there exist xo, 

yo E Rn satisfying 

(u(xo)-v(yo) 2 sup(u-v), Ixo-yoIj-y, and 

(2. 16) Rn 

D+ u(xo) n D-v(yo) is not empty. 

(b) Let u, v e Cb(R ) and sup(u - v) > 0. Let M = max(IIuII, IlvIi). Then there is a 

constant K > 0, independent of u and v, such that for 0 < y, X < 1 there are xo, 

Yo E RN satisfying 

[ (i) I xo yo I< Y and u(xo) - v(yo) > sup(u - v) - XM, 

(2.17) {(ii) thereexistp E D+ u(xo), q E D-v(yo) 

satisfying Ip I I q I < KM( 1/y + X) andp - q I < KXM. 
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Of course, if u, v E C'(RW) in case (a) and if x0 is a maximum point of h = u -v, 

then x0 = Yo solves (2.16) with y = 0. The C' version of (2.17) is that if h E C'(R) n 
Cb(R), then one can solve h(xo) , sup h -y, I Dh(xo) 1< y for each y > 0. The 

uniqueness result, Theorem 2.1, is an easy consequence of Proposition 2.1. For 

example, if u, v satisfy (2.3) and are viscosity solutions of u + H(Du) = f and 

v + H(Dv) = g respectively, we then deduce 

u(xo) + H(p) <f(xo), v(yo) + H(p) > g(yo) 

where x0, yo are as in (2.16) and p is the common element of D+ u(xo) and D-v(yo). 
Thus 

sup(u - v) f(xo) - g(y0) ? sup(f-g) + cg(y) 
R" R" 

and we conclude by letting y - 0. 

The point of these remarks is that proofs of facts about viscosity solutions can, in 

fact, be regarded as applications of general results concerning the generalized 

calculus of the semidifferentials D+, D - to problems at hand. 

3. Existence of viscosity solutions. To demonstrate the existence of viscosity 

solutions (and also explain the name of these solutions) we quickly reprove the 

following 

THEOREM 3.1. Let - > 0, and let F(y, t, p) be a family of continuous functions such 

that FE(y, t, p) converges uniformly on compact subsets of 0 X R X Rn to some 

function F(y, t, p), as E goes to 0. Finally, suppose ue E C2(() is a solution of 

-ESAuE + F (y, ue, Du') 0 in ?, 

and let us assume that the uE converge uniformly on compact subsets of 6 to some 

u E C(6). Then u is a viscosity solution of (0.1). 

REMARK 3.1. This result is proved in [2, Proposition IV. 1]. (See also [5, pp. 

237-238].) 

PROOF OF THEOREM 3.1. Let us check (0.7) first for 4 E C2(6). Assuming that 

u - 4 has a local maximum at y0 E 0, choose D E C'(6) such that 0 ? D < 1 if 

y & y0o, '(yo) = 1. Obviously, u - ( -) has a strict local maximum at y0 E 6 and 

thus for - small enough, uE - (4-) has a local maximum at some yE E (9 and 

ye -> YO as E 0. But at the point y ye, we have 

Due(yE) = D(O - 
D)(yE), Aue(yE) < A -( 

- 

therefore 

E((yE, ue(y.), D(O - 
t)(ye)) 

< 
-)(ye) 

We may conclude since ue(y.) - u(y0), D(O - D)(ye) D(4 - ')(y0) = 
D(yo) 

,L-( - 
D)(ye) -? 0. Next, if 4 E Cl(6) and if (u - 4) has a local maximum at 

yo E 0, we again prove (0.7). Take on 
E 

C2(6) such that on - in C'(6) and, as 

before, choose D E C'(0) such that 0 ? D < 1 if y #&y0. y '(y0) = 1. For n large 

enough, u - 
(on 

- ') has a local maximum at some point yn E 0 and yn -> 
yo. By the 

argument made above, we know 

F(yn, u(yn), D4(yj) - D(y)) < 0. 
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We finish by notingDo(y) - D4'(yj) ->DO(y0) - D('(yo) = D40(yo). C] 

As an illustration of the above result, we prove 

COROLLARY 3.1. Assume H: R - R is continuous, X > 0. Then for each f E 

BUC(RQ ) = X4 there exists a unique viscosity solution of u E X of u + X H(Du) 

f(x) in RW. Let us denote this solution by u RA f. Then for all f, g E BUC(RQ), we 

have 

(3.1) JI(RX f- Rxg)+ 1 11(f g) + 

PROOF. The uniqueness and the estimate (3.1) are immediate consequences of 

Theorem 2.1. To prove the existence, we consider the approximate problem 

(3.2) u + XH(Du-) -Au = f in R 

where H., f EC C?(R) and He -* H in C(RQ ) as - 0, f E-o f in Cb(RN) as O0. 

Routine P.D.E. arguments imply the existence of a unique smooth solution uc E 

BUC(RQ) (see, for example, [7,3,8]). In addition if, vE E X solves vE + XH(DvE) - 

,AvE = gE in RW, the maximum principle yields 

(3.3) Hue - veil < li f E - gEgg 

If we take gE(X) = f E(x + y) for some fixed y E RW, we obtain 

sup I ue(X) - ue(x + y) I< 11 fE - 
gEll; 

RW 

that is, 

(3.4) WU-(- ) < XWE( 

Thus the set {u'} is bounded in Cb(RQ ) and equicontinuous, and there exists -j 0 

and u E X such that u e 
-j u locally uniformly. Now recall Theorem 3.1. D 

REMARK 3.1 For more general existence results, we refer to P. L. Lions [8]. 

As a final result in this section, we obtain an estimate on a bounded viscosity 

solution u of 

(3.5) u + H(Du) < f 

under the assumptions 

(3.6) I H(p) 1< L lIp I, p E Rn, 

and 

(3.7) l1(x) 1< ae-blx, x E 

where L, a, b are nonnegative constants. Set 

(3.8) v(x) = cedIxI, 

where c, d > 0. Clearly 

(3.9) D v (x) - cdedII/ li 0, 
empty if xO. 

4BUC(Rn) u {E Cb(Rn), u is uniformly continuous on Rn}. 

This content downloaded from 147.162.22.151 on Thu, 9 May 2013 12:18:00 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


498 M. G. CRANDALL, L. C. EVANS AND P. L. LIONS 

Thus v is a viscosity supersolution of v + H(Dv) = f provided that 

(3.10) ce dlxl +H(_cde -dlxx/I xI ) - f(x) for x #& 0. 

In view of (3.6) and (3.7), the estimate (3.10) is valid provided ce-dlx- Lcde -djxI 

ae-blxl or, equivalently c(l-Ld) > ae(d-b)lxl. If d - b and Ld < 1 we conclude that 

v = a/( - Ld)e-dlxl is a supersolution of v + H(Dv) f. The proof of (2.2) of 

Theorem 2.1 used only that u is a subsolution and v is a supersolution; so we 

conclude that (3.5), (3.6), (3.7) imply 

(3.11) u(x)?l Lde-dIxI ford<b,Ld<l. 

Compare this with the proof of [6, Lemma 2.2]. 

4. Uniqueness for ut + H(Du) = 0. This section and the next one concern the 

Hamilton-Jacobi equation 

(4.1) ut + H(Du) = 0 inRn X (0, oo), 

with the initial condition 

(4.2) u(x,0) = u0(X), x E R. 

According to our definitions and to Theorem 1.1, u E C(RQ X (0, T)) is a viscosity 

solution of 

(4.3) ut +H(Du)=0 onR X(0,T) 

provided that, for every 4 E C'(RW X (0, T)), we have ot + H(D4) < 0 (resp. > 0) 

at local maxima (resp. minima) of u - 4. We will prove 

THEOREM 4.1. Let 0 < T < oo and let u, v E BUC(RW X [0, T]) be viscosity solu- 

tions of (4.3). Then 

sup (u - v) < sup(U(x,0) - v(x,0)) . 
R" X [0 T] R" 

REMARK 4.1. The method of ?3 is easily adapted to prove that if uo E BUC(RQ), 
then (4.1), (4.2) has a unique viscosity solution u such that u E BUC(RW X [0, TI) for 

every 0 < T < oc. This will also follow from ?5 and nonlinear semigroup theory. 

PROOF OF THEOREM 4.1. We will give the proof in the general case. However, let 

us first dispose of the following technicality. 

LEMMA 4.1. Let 0 < T < x and let u E C(RE X (0, T)) be a viscosity solution of 

(4.3). If 0 E C'(RW X (0, TI), then at each local maximum point (resp. minimum 

point) of u - 4 on Rn X (0, T], we have ot + H(D4) < 0 (resp. > 0). 

PROOF. The point is that assumptions on (0, T) imply conclusions on (0, T]; this 

is because of the special dependence of the equation on the time derivative. For 

example, we prove that if (xo, T) is a local maximum in RW X (0, T] of u - 4 with 

q E C'(RW X (0, T]), then p,(xo, T) + H(Do(xo, T)) < 0. As observed many times 

above, we may assume (xo, T) is a strict local maximum of u - 4 on RW X (0, T]. 

Then we choose ,u, r > 0, 0 < r < T, so that 

(4.4) u(x, t) -, (x, t) < u(xo, T) -, (xo, T) - ' 
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for 

(4.5) (x, t) E Kr = { (x t) : x -xo I= rand 

0 < T-t < rorlx - xo rand t = T- r}. 

If - > 0 is small, it is then obvious that 4'(x, t) = u(x, t) - O(x, t) - -(T -t)- has 

a local maximum point (xE, t) such that t. < T and (xE, t.) (x0, T) as E 0. By 

assumption we then have 

O(x EtE) ( + + H(D4p(xE , ti)) O 0. 
(T - tE )2 

This implies ot(xE, t.) + H(DO(x,, t,)) < 0 and the result follows upon letting 

> O. D- 

We may now begin the proof of Theorem 4.1, which involves the construction of a 

rather complicated " test function". Define a by 

(4.6) sup (u-v) = sup(uO(x) -vO(x)) + a, 
R X[0, T] Rn 

where here and below uo = u( , 0), vo = v( , 0). If a = 0, there is nothing to prove, 

and so we may assume a > 0. 

Choose / E C'(R X R) so that 

4.7) 
O < ,[ < 1, 3(0, 0) = 1 and 

#/(X, t) = O if IX 12 + t2 > 1. 

Set I,(x, t) = 3(x/l, t/l) and M = max(IIuII, IlvIi), where lIhlI denotes the norm of h 

in Cb(RQ X [0, T]) (note that since a > 0, M > 0). Next, let X > 0 be fixed and 

define 4D: RW X W X [0, T] X [0, T] -* R by 

(4.8) 

D(x, y, t, s) = u(x, t) - v(y, s) - X(t + s) + (SM + 2XT),3(x - y, t - s). 

If 'D attains its maximum on R2n X [0, T]2 at some point, the proof is easily 

completed, but this need not be so. Therefore we choose 8 > 0 and then 

(xo, yo, to, so) E R2n X [0, T]2 so that 

(4.9) D(xo, yo, to, so) > supD -S. 

The first claim is that if X, 8 and 8 are sufficiently small, then for some i > 0, 

(4.10) to so ~,> P, 

where i is independent of X, , S. To see this, first note 

(D(x, y, t, s) < 2M ifi Y12 + I 1t-s2 
_ 82 

(4.11) { 
sup 

I > sup D(x, x, T, T) > 3M. 

L R2 X[0, T]2 Rn 
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Hence, if 8 < M, then I xo- yo 12 + (to -So)2 < _2 Therefore for 8 < M, 

O(Xo, Yo' to, So) U(Xo to) - V(yo, so) 
- X(to + sO) 

+ (5M + 2XT)3(x0 - yo, to - SO) 

< u(xo, to) - v(xo, to) - X(to + so) + 5M + 2XT + coj(e) 

< u(xo, 0) - v(xo, 0) - X(to + so) + 5M + 2XT 

+-ou(to) + ov(to) + CO(). 

Since on the other hand we have, in view of (4.6), 

sup 4D(x, x, t, t) - sup(u(x, t) - v(x, t)) + 5M sup(uo - vo) + a + 5M, 

we finally obtain 

2XT + cou(to) + cov(to) + CoJ(e) a - 

Now if 8 < a/4, e is small enough to force coje) < a/4, 2XT < a/4, and i is chosen 

so that wu(() + coj(t) ? a/4 for 0 < t , we conclude to >- . Similarly we obtain 

so >- and (4.10) is proved. 

Next select D E C'(R2 X [0, T]2) satisfying 0 < < ? 1, '(xo, yo, to s) 1, D = 

0 if Ix - xo12 + I y-Yo2 + It - to2 + Is - S2 2/4 We set (x,y,t,s) 

4D(x, y, t, s) + 28D(x, y, t, s). Since T < ?D off the support of ' and since 

T(Xo, Yo' to, So) = D(xo, yo to, so) + 28 > sup D + 8, 

'I attains its maximum at some point (xl, Yl, tl, SI), which lies in the support of . 

Thus t1, sI 
- 

[/2. But (xl, tl) E RW X [0, T] is a maximum of (x, t) -> u(x, t) - 

v(yl, sl) - X(t + sl) + (5M + 2XT)f3(x -Yl, t - sl) + 28'(x, Yl, t, sI), so that 

Lemma 4.1 implies 

X - (5M + 2XT) a-- (xl -Yl, t1 - sl) - 28j(xj, Yl, tl, sl) 

+H(- (5M + 2XT)DxfIe(xI - Yl, t - sl) - 28DJ(x1, Yi, t1, sI)) < 0. 

Similarly, 

-x + (5M + 2XT) ge (xl - Yl, t1 - sl) + 28&jj(xy, Yi, t1, sl) 

+H(- (5M + 2XT)Dx fe(xI - Yl, t1 - sl) + 28D.y(xj, Yl, tl, sI)) > 0. 

Combining these two inequalities and letting 8 - 0, we derive X = 0, a contradic- 

tion. O 

REMARK 4.2. The assumption u, v C BUC(RQ X [0, T]) was used in the proof, but 

minor modifications allow one to weaken this to uo, vo E BUC(RQ), u(x, t) -uo(x), 

v(x, t) -> vo(x) uniformly on RW as t - 0. 

REMARK 4.3. Theorem 4.1 is a special case of [2, Theorem V.2]. The proof in [2] is, 

however, only indicated and involves a more cumbersome comparison. See [2, ? V.3] 

concerning domains of dependence. 

5. The semigroup approach. Let H E C(RQ), and X = BUC(RQ). We now realize 

the formal expression "H(Du)" as a nonlinear operator on X. 
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DEFINITION. We say that u E X belongs to D(A) (the domain of A) if u is a 

viscosity solution of H(Du) f in 11; for some f E X. We denote by Au the set of 

all suchf E X. 

Obviously, D(A) D { u E X, Du C X} (because of the consistency result Theorem 

1.2) and so D(A) = X. 

REMARK 5.1. Except in very special cases we do not know whether A is single 
valued. (See L. C. Evans [6] when H is uniformly continuous on RW; the case when 

H( p) oo as IP I-- oo is easily deduced from the results of M. G. Crandall and 

P. L. Lions [2].) For simplicity, we write as if A were single valued below. 

PROPOSITION 5.1. A is an m-accretive operator on X. 

REMARK 5.2. See Barbu [1] or L. C. Evans [5, Appendix 1] for definitions. 

PROOF OF PROPOSITION 5. 1. In view of Corollary 3.1 we have R(I + XA) = X (for 

X>O)andby(3.1),Ilu-vll<?lu-v-+[X(Au-Av)llifX>O,u,vCED(A). EOI 

Proposition 5.1 implies, by the Crandall-Liggett generation theorem (cf. [1]), that 

A generates a nonlinear semigroup of contractions (S(t))t,o on X and 

(5.1) S(t)uo = lim (I + XA nu0, uo C X= D(A), 
nl -~ o0 
nX-t 

uniformly for t in bounded subsets of (0, oo). Furthermore, the mapping t H> S(t)uo 
is continuous from [ 0, oo) into X. 

In general the semigroup generated by a (nonlinear) m-accretive operator A can be 

regarded as a " mild" solution of the evolution equation 

du 
dt+Au =O (t> O), u(O) = uo; dt 

see the forthcoming book of P. Benilan, M. G. Crandall and A. Pazy [1]. For the 
case at hand a stronger interpretation is possible. 

PROPOSITION 5.2. Assume uo E X. Then 

u(x, t) = (S(t)uo)(x), 0 < t ' T, x E R 

is the viscosity solution of (4.1), (4.2). 

PROOF. Assume p EC C'(RW X (0, T)) and u - 4 attains a local maximum at 

(x0, to) C RW X (0, T). We may as well assume (x0, to) is a strict local maximum of 
u - k in view of arguments used above. 

For each E > 0, consider the step function u-(t) solving 

(5.2) {i{uE(t + e)-u (t)} + Aue(t + e) = 0, t > 0, 

u EWt = u 0 i f < t <. 

We may assume to +/ ke for any integer k by appropriate choice of e. Since 

ue(t) S(t)uo uniformly on [0, T] in X as e - 0, uE(x, t + e) - +(x, t) has a local 
maximum at some point (xE, te), such that (xE, tE) C RW X (0, T), xE -- x0, te to 
as ? -* 0. Hence, 

(5.3) AuE(tE +e)-A 0 atxE, 
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according to the definition of A (note uE(dot + E) E D(A)). Also, if E is small 

enough, we have 

(UE(XE, tE + ?) - UE(X , tE)) a -(0(XE, t) - (xE, t e - ) 

Combining this inequality with (5.3) we deduce 

A4(xE, tE) = H(DO(xE, tE)) < -(0(X, t - - ?(xE, te)) 

If we let E 0, then, since (xE, te) - (xo, to), we finally obtain 

ot(xo, to) + H(DO(xo, to)) 
- 

0. 

The opposite inequality has an analogous proof should u -,4 attain a local mini- 

mumat(x1,t1). [1 

This result corresponds to [2, ?VI. 3]. 
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