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Abstract. This paper presents a connection between the problem of drawing a graph 
with the minimum number of edge crossings, and the theory of arrangements of 
pseudolines, a topic well-studied by combinatorialists. In particular, we show that 
any given arrangement can be forced to occur in every minimum crossing drawing 
of an appropriate graph. Using some recent results of Goodman, Pollack, and 
Sturmfels, this yields that there exists no polynomial-time algorithm for producing 
a straight-line drawing of a graph, which achieves the minimum number of crossings 
from among all such drawings. While this result has no bearing on the P versus NP 
question, it is fairly negative with regard to applications. We also study the problem 
of drawing a graph with polygonal edges, to achieve the (unrestricted) minimum 
number of crossings. Here we obtain a tight bound on the smallest number 
of breakpoints which are required in the polygonal lines. 

I. Introduction 

A drawin9 of a simple graph G is a subset of  the plane ~2 where each vertex is 
represented by a different point, and each edge is represented by a homeomorph  
of the closed unit interval I1 with appropria te  ends. Further,  the drawings of any 
two edges meet at most  once, and if they do, then either the two edges are incident 
to a c o m m o n  vertex, where their drawings meet, or  the two drawings cross at 
their intersection point  (the term cross is assumed to be understood). The crossin 9 
number problem consists of producing a drawing of  G which achieves the least 
possible number  of crossings (this parameter  is called the crossin 9 number of G 
and is denoted by cr(G)). This problem is of interest in VLSI theory and in wiring 
layout problems (see [17]), and it has long been of interest in the graph theory 
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community (see [4], [22], and [23]). Computing the crossing number was shown 
to be NP-hard by Garey and Johnson [5] (the decision problem is in NP). 

In many of the applications, it is further desirable that the edges be drawn as 
straight-line segments, with no restriction to orientation. Such a drawing has 
classically been called rectilinear, and the minimum number of crossings in a 
rectilinear drawing is called the rectilinear crossing number, denoted crl(G). We 
remark that practically every paper on crossing numbers has in fact also dealt 
with rectilinear crossing numbers (the latter being used to study the former). Using 
the proof in [5], it can be shown that computing the rectilinear crossing number 
is NP-hard. While this problem is not yet known to be in NP, it is clear that the 
(cartesian) coordinates of the vertices in a drawing can be assumed to be rational 
and, thus, integral. A generalization of the rectilinear crossing number is the 
t-polygonal crossing number (where t _> 1 is an integer), denoted cry(G), which 
arises when every edge must be drawn as a t-polygonal line, i.e., a polygonal line 
with at most t segments. Thus t = 1 yields the rectilinear case. We see below the 
motivation for studying t-polygonal drawings of graphs with t > 1. 

In this paper we study the connection between crossing number problems and 
the theory of arrangements of pseudolines, an area of high interest in combinatorial 
geometry, which has most notably been studied by Griinbaum, Goodman, Pollack, 
and others (see [6]-[15]). For  the purposes of this paper, a pseudoline is a 
homeomorph in •2 of the closed unit interval 11. An arrangement A of pseudolines 
is a collection of pseudolines, every two meeting at exactly one interior point, 
where they cross, and such that the ends of each pseudoline are in the closure of 
the unbounded component of [~2\A (with the obvious abuse of notation here). 
Further, all arrangements considered here are simple, meaning that no three of 
the pseudolines meet at a common point. Following Griinbaum [15] we notice 
that an arrangement defines a two-dimensional cell complex (the unbounded face 
can be disregarded here). Two arrangements are said to be isomorphic if the labeled 
cell complexes they define are isomorphic (in which case we say one realizes the 
other, or is a realization of the other). A t-polygonal realization of an arrangement 
is one where each pseudoline is t-polygonal. Thus, a 1-polygonal realization is a 
straight-line realization. 

We denote the vertex set of a graph G by V(G), and its edge set by E(G). A 
plane graph is a planar graph, given in a particular embedding in the plane. 

Remark. The same planar graph can yield different plane graphs. 

Our first result is as follows (stated in abridged form here): 

Theorem 1. Let A be an arrangement of n pseudolines. There is a 9raph G A, s o  that: 

(i) Every drawing of G A with cr(Ga) crossings contains a realization of A. Further, 
cr(Ga) = 5n(n -- 1) and IE(GA) [ = O(n3). 

(ii) Let t >_ 1. IrA has a t-polygonal realization, then every t-polygonal drawin9 
of G A with crt(G a) crossings contains a t-polygonal realization of A. Further, 
crt(Ga) = 5n(n - l) and [E(GA) [ = O(tn 4) (O(na)for t = 1). 
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Thus if we can construct arrangements all of whose realizations are "bad"  in 
some technical sense, we will also have graphs, all of whose minimum-crossing 
drawings are also "bad"  in the same sense. In particular, recent work of Goodman,  
Pollack, and Sturmfels implies the following remarkable result (via dualization to 
straight-line arrangements): 

Theorem [14]. For any n > 1 there exists an arrangement E" of straight-line 
segments, such that in every straight-line realization o[ E" the coordinates of the ends 
require exponentially many bits. 

Together with Theorem l(ii) (with t = 1), this yields: 

Theorem 2. There exists an infinite family of graphs {G"} such that, in every 
rectilinear drawing of G" with crl(G") crossings, the coordinates of the vertices require 
more than polynomially many bits. 

As a result, there does not exist a polynomial-time algorithm for producing a 
rectilinear drawing of a graph which achieves the rectilinear crossing number. Here 
we are assuming a model where either 

(a) the coordinates of the vertices must be written down, or 
(b) a physical drawing of the graph must be produced, 

and drawing a graph consumes resources (such as time or space) proportional to 
the size of the drawing (e.g., if the graph is to be drawn on a computer screen). 
In a different model of graph drawing our result might not have any impact at 
all. We remark that the results of the paper, together with the work of Mn~v [18], 
imply that the problem of computing the rectilinear crossing number of a graph 
is as hard as solving a system of real polynomial inequalities. Furthermore, using 
the recent result of Shor [21], that the problem of testing whether a given 
arrangement of pseudolines is stretchable is NP-hard,  Theorem 1-yields that testing 
whether for a given graph the rectilinear crossing number equals the crossing 
number, is also NP-hard.  

Let t _> 1. As shown in [1] using t = 2 instead of t  = 1 can dramatically decrease 
the number of crossings (the improvement in fact cannot be bounded as a function 
of the size of the graph). However, for any fixed t there is a result similar to 
Theorem 2 (given in Theorem 3). On the other hand, for any graph G, we can 
construct a 2-polygonal drawing with at most 2(cr(G)) z crossings, in polynomial 
space (logarithmically many bits per vertex). 

How complicated can a minimum-crossing drawing of a graph be? In other 
words, is there a fixed number t, so that for all graphs G, the crossing number of 
G can be achieved with a t-polygonal drawing? We show that the answer is no, 
and thus, for graphs of crossing number k or less, the minimum possible such t 
depends on k; let us call it t(k). We prove: 

Theorem 4. There exist constants cl and c 2, so that, for every k >_ 1, 

Cl kl/2 G t(k) <_ C2 kl/2. 
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To obtain the lower bound,  we apply  a recent result of Kratochvi l  and 
Matousek  [ 16], and our  construct ion in Theorem 1. The p roof  of  the upper  bound 
relies on a direct construction.  

2. Forcing Arrangements in Drawings of Graphs 

In this section we prove  Theorem I. For  the proof  we need a definition. Let G be 
a plane graph and let k > 1 be an integer. The k-thickening G' of G is the plane 
graph obta ined by replacing each edge e -- {u, v} of G by a set b(e) ofk  edge-disjoint 
paths of length two, with ends u and v, each h o m e o m o r p h i c  to e. If e r e' it is 
assumed that  the set of internal vertices of the paths in b(e) is disjoint from the 
similar set in b(e'). 

Theorem 1. Let A be an arrangement of n pseudolines. There exists a graph G A 
with cr(GA) = 5n(n -- l) and I E(GA) [ = O(n3), with a distinguished subset S a of  edges, 
such that: 

(i) In every drawing of  GA with cr(GA) crossings, the drawing of S A contains a 
realization of  A. Further, cr(Ga) = 5n(n -- 1) and IE(G A)I = O(n3). 

(ii) Let t >_ 1. I f  A has a t-polygonal realization, then, in every t-polygonal drawing 
of GA with crl(Ga) crossings, the drawing of  Sa contains a t-polygonal 
realization of  A. Here cr,(Ga) = 5n(n - 1) and ]E(GA)  ] = O(tn*) (O(n 3) for 
t =  1). 

Proof. (i) The  graph  G A is obta ined in several steps. See Fig. 1 for an example.  
1. We begin by replacing each x ~ A with two copies, x I and x2, drawn very 

close to each other. Next,  we obta in  a plane graph L by placing a vertex at each 
crossing and at each end of very pseudoline. Thus,  for each x r A, L contains two 
edge disjoint paths pt(x) and pz(X), where pi(x) has ends (degree one vertices) uil(x), 
ui2(x). We assume that  the labeling has been done so that, as we traverse the outer  
facial bounda ry  of L counterclockwise,  Uzz(X) immediately  follows ul l (x  ), uz3(x) 
appears  after U22(X), and u 12(x) immediate ly  follows u23(x), see Fig. l(b)). Next,  we 
add to L a cycle C, joining all the vertices Uik(X) in the cyclic order, so as to form 
with L a plane graph. Further ,  C contains  a vertex vt(x ) between every two vertices 
ui l(x), u22(x), and a vertex v2(x) between every two vertices u23(x), Ulz(X ), x r A. 

2. For  each x r A, we add an edge e(x) with endpoints  Va(X ) and v2(x ), and so 
that  e(x) is d rawn inside C and "be tween"  p~(x) and pz(x). Let S be the set of all 
edges e(x), x ~ A, and H = L w C w S. See Fig. l(c). 

3. Take  a copy H '  = C' w L' w S' of H, drawn outside H (and with the obvious  
notation),  and  a match ing  M joining the vertices of C to those in C', so that  
L w C w L' w C' w M is plane. We replace C u C' w M, by its m-thickening W 
(where m = 5n(n - 1) + 1) so tha t  the edges of W have no crossings at all. The 
resulting graph  is G a, and we set SA = S w S'. See Fig. l(d). 

Let  D A be the drawing we have just  constructed,  which has 5n(n - 1) crossings. 
Suppose  now that  D* is a drawing of GA with cr(GA)_< 5 n ( n -  1) crossings. 
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Fig. i. (a) Doubling the arrangement. (b) Graph L. (c) C w L w S. (d) Graph  GA. Thickened edges 
shown as heavy lines. 
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Consider an edge t of C w C' u M. Since m > cr(GA), it follows that at least one 
of the paths in b(t) has no crossings in D*. Thus we obtain a plane drawing of 
C w C' w M in the obvious way. Since C u C' u M is 3-connected, it has a unique 
embedding, and its drawings in D* and D A are homeomorphic in the sphere. So 
in D* both C and C' bound faces of C w C' w M ,  which must contain the drawings 
of C w L and C' w L' (respectively). Next, let x, y e A. Then, by construction, the 
endpoints of e(x) and e(y) alternate along C. In fact, the endpoints of e(x) and the 
ends of each path Pi(Y), i --- 1, 2, alternate along C (and similarly, the endpoints 
of e(y) and the ends of each path p~(x), i = 1, 2, alternate along C). Since, for any 
z E A,  pl(z)  and pz(z) are edge-disjoint, we count five crossings in D* corresponding 
to the pair x, y (the Jordan curve theorem). In this way we count 5 n ( n -  1)/2 
crossings in the region bounded C. Similarly with C'. Thus 5n(n - 1) = cr(GA), and 
the 5n(n - 1)/2 crossings we have just counted are all the crossings in the region 
bounded by C (resp. C'). Either C or C' bound an inner face of C w C' w M in 
D*, say C does. Consequently, in D* 

(i) the drawing of C w L is plane, and 
(ii) for each x ~ A,  e(x) does not cross any edge in pi(x), i = 1, 2. 

Then (ii) implies that, for each x ~ A,  e(x) is drawn "between" pl(X) and p2(x). We 
conclude that the drawing of S realizes A, as desired. This concludes the proof of (i). 

(ii) Assume that the pseudolines in A are t-polygonal. The proof of (ii) proceeds 
exactly as that of (i), with the exception that the initial drawing D a must now, in 
addition, be t-polygonal, so that we can argue that crt(GA) < 5n(n -- 1). It is clear 
that the edges of L and S can be assumed to be t-polygonal. The same holds for 
the edges of C by drawing them "following" the outer facial cycle of L. Further, 
the edges of the matching M can be drawn as O(tn) -polygonal  lines. So let us 
replace each edge of M by a path of length O(tn), obtaining a graph N. The plane 
graph C w L u C' u L' u N ,  although not 3-connected, still has a unique embed- 
ding on the sphere (the only exception to 3-connectedness are the degree-2 vertices 
in N). From now on we can proceed with the m-thickening of C u C' u N, and 
the rest of the proof is as above. Notice that IE(GA)I = O ( n m ) O ( t n ) =  O(tn4). To 
obtain the reduction to O(n 3) for the case t = 1, notice that in this case the region 
enclosed by the cycle C can be assumed to be a rectangle. Thus in this case the 
edges of M need only be subdivided (at most) four times each, which yields the 
desired bound. This concludes the proof of (ii). []  

Comment. The graph G A has vertices of large degree, but the same result can be 
achieved with a graph of maximum degree 3, although the proof is somewhat 
longer. The construction relies on using a large section of a "wall," a special type 
of cubic graph. 

3. Graphs Which Require More Than PolynomiaUy Many Bits 

Let us apply Theorem l(ii), with t = 1, where for A we use one of the straight-line 
arrangements obtained from the results in 1-14]. We have: 
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Theorem 2. There exists an infinite family of graphs {G"} such that, in every 
rectilinear drawing of G" with crl(G" ) crossings, the coordinates of the vertices require 
more than exp(cl E(G")] a/a) many bits, where c is a fixed constant. 

Can the situation in Theorem 2 be avoided if we use t-polygonal drawings, 
where t > 1 is "small"? The answer is no, as shown in Theorem 3 below. The 
proof of this theorem makes use of a certain arrangement of nine pseudolines due 
to Ringel [19] which is described in [15] (also see [8]). This arrangement, which 
we denote by R9,  does not have a straight-line realization, but on the other hand 
it has 2-polygonal realizations in which only one pseudoline is not 1-polygonal 
(i.e., all the others are straight lines. The distinguished pseudoline can be arbitrarily 
chosen). 

Theorem 3. Let t > 1. There exists an infinite family of graphs {G "'t, n = 1, 2 . . . .  } 
such that every t-polygonal drawing of G"" with crt(G"" ) crossings requires more than 
polynomially many bits. 

Proof. The proof of this (perhaps not unexpected) theorem requires an inter- 
mediate construction. Let M denote an arbitrary arrangement of n straight lines. 
For t = 1, 2 . . . . .  we inductively define an arrangement A(t) of t-polygonal pseudo- 
lines as follows. First, let A(1) be a straight-line realization of M. Suppose now 
that t > 1. Replace each pseudoline x ~ A(t - 1) with a set S(x) of nine copies, 
drawn very close to one another, and so that the copies of each segment of x are 
parallel. The "spacing" between consecutive copies of x is determined below. 

We obtain a 2-polygonal realization of R 9 as  follows. First, choose an arbitrary 
y ~ S(x), and stretch it a small distance beyond the ends of the other members of 
S(x) (we still call the stretched pseudoline y for convenience). Next, attach to the 
end of each pseudoline z in S(x) an additional (small) straight-line segment e(z). 
Let r(y) be the 2-polygonal line formed by e(y) and the stretched portion of y. It 
is not hard to see that if 

(1) the spacing between copies of x, 
(2) the stretching of y, and 
(3) the choice of segments e(z) 

are properly carried out, then the arr~.ngement {e(z): z 4: y} • {r(y)} will be a 
2-polygonal realization of R 9. See Fig. 2. Here r(y) is the only pseudoline in this 
2-polygonal realization of R 9 which is not a straight line. Notice that for each 
pseudoline in S(x) we introduced at most one new breakpoint. Thus the pseudo- 
lines z w e(z) are all t-polygonal, since x is (t - 1)-polygonal. 

The arrangement which results from carrying out this operation, for every x, 
is A(t), which is t-polygonal, as desired. The following claim is clear and we include 
the proof  for completeness. 

Claim. Every t-polygonal realization of A(t) includes, as a subdrawing, a straight- 
line realization of M. 
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Proof  o f  the Claim. The claim is clear for t = 1. Next, assume that t > 1 and 
consider any t-polygonal realization L of A(t). Denote by R9(x ) the portion of the 
pseudolines in S(x) which realize R 9. Clearly, for every x ~ A ( t -  1), there is a 
pseudoline z ( x ) e S ( x )  which has in L at least one breakpoint in the portion 
contained in R9(x ) (otherwise R9(x ) would have a straight-line realization). Thus 
the arrangement {z(x.): x ~ A(t - 1)} includes in L a (t - 1)-polygonal realization 
of A(t - 1), and the claim follows by induction. This completes the proof of the 
claim. []  

We note now that I A(t)l = 9% To conclude the proof of Theorem 3, let us use 
for M the "bad"  arrangement which can be constructed using the methods of [14] 
(i.e., an arrangement each of whose straight-line realizations requires exponentially 
many bits). Then we have that in every t-polygonal realization of A(t) the 
coordinates of the ends and breakpoints require more than polynomially many 
bits. Hence, we apply the construction in Theorem l(ii) to A(t), and define 
G " " =  GA(t). [] 

The following question arises as a result of Theorems 2 and 3" what can be 
achieved in polynomial space? In other words, given a graph G and fixed t, can 
we always provide a t-polygonal drawing of G, in polynomial space, with a number 
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of crossings bounded as a function of crt(G)? For t = 2, the answer is yes, in a 
strong sense, as follows. In [11, the authors showed: 

Theorem [11. For every graph G, cr2(G ) < 2(cr(G)) 2. 

In fact, if G has n vertices, the construction in [11 yields a 2-polygonal drawing 
of G, in a grid of size O(n(cr(G))t/2), with at most 2(cr(G)) 2 crossings (we stress that 
this construction carries out something more difficult than what we asked for: it 
approximates cr(G) rather than cr2(G)). This result is based on the theorem of 
deFraysseix et al. [31, that any plane graph has a straight-line drawing of linear 
size (see also [201). Essentially, the desired 2-polygonal drawing of G is obtained 
from a plane drawing of a graph with O(n) vertices. We refer the reader to [1] for 
details. Thus, for the case t = 2, the above question has a positive answer, in a 
strong sense. Nevertheless, it is an open question whether the quadratic bound is 
best possible for t = 2, and whether it can be improved for larger t. Moreover, 
the case t = 1, perhaps the most interesting, is completely open. We remark that 
for general graphs the rectilinear crossing number is not bounded by any function 
of the crossing number [11, but on the other hand if we consider the class of 
graphs with some fixed upper bound on maximum degree, the rectilinear crossing 
number is at most quadratic in the crossing number [2]. 

As one last application of Theorem 1, we point out that the method used in 
the proof  of Theorem 3 easily yields, for every t > 1, a graph H with cr(H) = 
crt(H) < cr t_ I(H). By taking disjoint copies of such graphs, we obtain: 

Corollary. For every t > 1 there exists a graph G, with cr(G) = cr,(G), and such 
that, for every t >_ i > 1, cri(G) < cri_ I(G ). 

4. Achieving the Crossing Number with t-Polygonal Drawings 

In this section we study the following question: given a graph G, how large must 
t be so that crt(G ) = cr(G)? Suppose first that we are only concerned with graphs 
G with bounded crossing number, say, at most r. Then, from a drawing of G with 
cr(G) crossings, we obtain a drawing of a plane graph by placing a vertex at each 
crossing. Passing to a straight-line plane drawing of this graph, and removing the 
added vertices, we obtain an r-polygonal drawing of G which attains the crossing 
number. But what if cr(G) is no longer bounded? Then, as is shown below, the 
smallest value t so that crt(G ) = cr(G) will in general depend on cr(G). More 
formally, let 

z(k) = {a: cr(G) < k}, 

and 

t(k) = min{t: cr,(G) = cr(G) for all G e z(k)}. 
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Then we have: 

Theorem 4. There exist constants c~ and c 2 so that, for  every k >_ 1, 

clk  1/2 ~ t(k) <_ c2k 1/2. 

The rest of this paper is devoted to the proof of Theorem 4. 

4.1. The Lower Bound 

In order to obtain the lower bound, we use the following theorem, recently proved 
by Kratochvil and Matousek. 

Theorem [16]. For each n, there exists an arrangement Z(n) o f  n pseudolines which 
cannot be realized with t-polygonal pseudolines unless t > cn, where c is a constant. 

Remark. In 1-16] arrangements are allowed to have pairs of pseudolines that do 
not meet, but this detail is easily dealt with to obtain the above theorem. 

Now, given n, consider the graph Gzt,~ produced by Theorem 1. Write 
H = Gzt,). We have that cr(H) = 0 ( n 2 ) .  On the other hand, unless t > cn, we also 
have crt(H) > cr(H) by definition of Z(n). Thus the lower bound in Theorem 4 is 
proved. 

4.2. The Upper Bound 

In this section we prove the upper bound in Theorem 4, t(k) < 0(k1/2). Let D be 
a drawing of G with cr(G) = k crossings. We partition the edges of G into (at most) 
two classes, H and L, where 

and 

H = the set of edges with more than 2k 1/2 crossings in D 

L = the set of edges with at most 2k ~/2 crossings in D. 

(For convenience, we also use H and L to refer to the corresponding subgraphs 
of G.) Now if H is empty, then we are essentially done: we obtain, from D, a plane 
graph by placing a new vertex at each crossing point, in addition to the vertices 
of G. Since any plane graph has a straight-line drawing (see 1-22] for a short proof), 
we obtain a (2kl/Z)-polygonal drawing of G with cr(G) crossings, as desired. In 
general, H is of course nonempty, but still this basic construct is the appropriate 
idea to use. 

Our procedure is first to draw H and then L, always obtaining drawings 
homeomorphic to those in D. The key fact here is that IH[ < k 1/2. So if we draw 
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H, ignoring L, and use the plane graph construction as in the previous paragraph, 
the members of H will be (k ~/2 + 1)-polygonal lines (we stress that the crossings 
of edges in H with edges in L are ignored here). Similarly, if we draw L, even 
taking into account the crossings with edges in H, and again use the plane graph 
method, the edges will be O(kl/2)-polygonal lines (by definition of L). As shown 
below, by building more structure especially into the drawing of H, we are able 
to piece together the two drawings as desired. 

Step 1." Drawing H. Consider the drawing of H provided by D. In general, this 
drawing has several arc-connected components, which we call pieces. Each piece 
consists of possibly more than one graph-theoretic componet of H, and each edge 
in H appears in one piece. Each edge is partitioned into sections, where a section 
is the portion of the edge between consecutive crossings (with other edges of H) 
or a portion between a vertex and the crossing closest to it. We draw each piece 
separately, with some added structure. 

Thus, let Z be a piece. Then the complement in ~2 of Z consists of several 
connected regions or faces (so if Z is a plane these are faces in the standard sense). 
Each face is bounded by sections, although the boundary may not be simple: both 
sides of a section may be incident to the same face. One of the faces is unbounded, 
in the sense that it is homeomorphic to the complement of a closed disk. From 
Z, obtain a plane graph as follows. First, put one vertex at each crossing point 
(once more, these are crossings involving two edges in H), in addition to the 
original vertices. Thus each section becomes an edge. Next, subdivide each section 
s by introducing one new vertex v(s). Finally, for each face F, draw a vertex w(F) 
in F. Then we join w(F) to each vertex v(s) (where s is a bounding segment of F) with 
a length-two path. If the boundary of F is not simple, and if both sides of a segment 
s are incident to F, then we use two length-two paths from v(s) to w(F), drawn to 
each side of s (see Fig. 3). All of the length-two paths are edge-disjoint, and can 
be drawn without crossings. We obtain a plane graph Z'. 

We note that the outer face of Z' contains some vertex w(F). By adding edges 
if necessary, we may assume this outer face is a triangle. We produce a drawing 
of Z by taking a straight-line drawing R(Z) of Z'. it is clear that this drawing of 
z is O(kl/2)-polygonal. 

Step 2." Beginning the Drawing of  L. In order to draw L, let us return to the original 
drawing D of G. The complement of H is partitioned into several connected 
regions, which we call plots. Each plot is the intersection of several faces of different 
pieces, as discussed above. In general, each plot P will be incident to several pieces, 
all of whom, with at most one exception, it encloses (and the one exception encloses 
P). In other words, P is homeomorphic to an open disk (or to R 2) with several 
holes cut out (thus each boundary component of P corresponds to a different 
piece). We draw L by separately drawing the part of L contained in each plot. 
Below we see how to piece together all of these subdrawings and also the drawing 
of H produced above. 

Thus, let P be a plot and assume that P contains part of the drawing of L in 
D. Let us "expand" each boundary component slightly, to obtain a larger disk. 
Thus (for example) if Z is a piece enclosed by P and incident to it, then we obtain 
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A face F of a piece, 

vertices of G denoted by @ 

w(F) indicated by �9 

o t h e r  new vertices indicated by �9 

Fig. 3 

a disk that encloses Z "very closely" (see Fig. 4(a) and (b)). We note that this 
expansion "truncates" portions of edges of L that appear in P and intersect Z (we 
say such portions link Z and P). Let P' be the subset of P resulting from the 
removal of the expanded boundary components. We assume that the expansions 
are small enough, so that all vertices and crossing points contained in P are also 
contained in P'. 

Consider the subdrawing of L contained in P'. From this subdrawing obtain a 
plane graph by placing a vertex at each crossing point, in addition to any vertices 
of G. Further, if Z is a piece, the subset in P' of each portion that links Z and P, 
terminates at some point along the expanded boundary of Z. At each such termina- 
tion point, we place one new vertex, called a termination vertex (so, at this stage, 
each termination vertex has degree one). Finally, we add an additional vertex v(Z) 
and edges joining v(Z) to all termination vertices corresponding to Z (so now each 
termination vertex has degree two). As noted above, there is at most one piece Z 
which encloses P. If such is the case, the plane graph we have constructed so far 
has the vertex v(Z) in its outer face. We triangulate this face, making sure that v(Z) 
remains in the outer face. This concludes the construction of the plane graph 
corresponding to P (see Fig. 4(c)). Let S(P) denote a straight-line drawing of this 
plane graph (for convenience, we use S(P) to refer to the graph itself). 
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(a) 

455 

(b) 

- \  

J 

v 
(c) 

Fig. 4. (a) A plot that encloses two pieces and is enclosed by one. (b) After expanding the boundaries. 
(c) The resulting plane graph. ~1,, vertices of type v(z); i ,  other added vertices. 

We remark that, for every piece Z incident to P, the linking portions of Z and 
P intersect the boundary of Z with a certain clockwise ordering. This is isomorphic 
to the clockwise ordering of the corresponding edges incident to v(Z). 

Step 3." Putting L and H Together. The notion of enclosure can be used to define 
a partial order on the plots. (A > B if A encloses B. It is not difficult, but tedious, 
actually to prove this is a partial order.) We put together the various drawings 
S(P) and R(Z) by moving downward in the parital order. 

Thus, let P be a plot maximal in the partial order. Start with the graph S(P). 
Consider first a piece Z enclosed by P and incident to it. Let us draw a very small 
triangle around v(z) and remove its interior (so the edges incident to v(z) in S(P) 
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are truncated). Inside the resulting triangle we place a small copy of the drawing 
R(Z). We recall that R(Z) contains a certain vertex w(F), contained in the outer 
face of F, which is connected (via length-two paths) to the vertices v(s), for all 
boundary sections s of Z. Further, the outer face of R(Z) is a triangle. 

Next we draw the portions that link P and Z. Consider any given linking 
portion i that (say) terminates on some boundary segment s of Z. Now, correspond- 
ing to i, there is some edge ei incident to v(Z) which is truncated by the small 
triangle around v(Z). The idea is that we now extend the edge ei into the triangle, 
to a point arbitrarily close to w(F), and then along the appropriate length-two 
path in R(Z) to the section s (See Fig. 5(a)-(d)). 

. v ( Z )  

e ~  e3 

(b) (c) 

W(F) 

. 

The position of w(F) in R(Z) 

3 

1 2 B 4 

(a) 

2 / /  
/ 

V 
obtained from the edges olin S(P)  

(d) 

Fig. 5. (a) Original drawing of Z and P showing only the boundary sections of Z (heavy lines) and 
only the linking sections of Z and P (light lines). (b) Part of drawing S(P). (c) Part of drawing R(Z). 
(d) Integrating the drawings of Z and P. 
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Can we simultaneously carry this out for all linking sections i of P and Z 
without introducing new crossings? The answer is yes, and there are two facts 
that ensure this: 

(1) The clockwise ordering of the linking sections along the boundary of Z is 
isomorphic to the clockwise ordering of the edges incident to v(z), in S(P). 

(2) P' contains all crossing points of edges of L that were contained in P. 

Thus, in fact, the simultaneous drawing can be carried out, which yields a drawing 
of all the linking sections that are homeomorphic to that in D. 

It is clear that the drawings of the linking portions can be done with polygonal 
lines. But how many breakpoints are involved? First, to go from the boundary of 
the triangle enclosing v(Z) to the vicinity of w(F), we only need O(1) breakpoints 
(we wrap around the triangle until we get to a point that sees w(F), and then we 
extend from that point to w(F)). Further, we can go from w(F) to each boundary 
section s with at most O(1) additional breakpoints. Thus we overall need O(1) 
breakpoints per linking portion. Notice that each boundary section s will in general 
contain points of several linking portions, in some permutation. 

This concludes the description of how to put together the drawings R(Z) and 
S(P), in the case where P encloses Z. The reverse case is simpler and similar, and 
is left to the reader (here we would take a small copy of S(P) and place it "a t"  
the corresponding vertex w(F)). 

Having handled P, we then recursively handle the other plots, by moving down 
the partial order given by enclosure. The "freedom" mentioned at the end of the 
penultimate paragraph guarantees that the recursive process can indeed be carried 
out, yielding at the end a polygonal drawing of G with cr(G) crossings. 

Counting Breakpoints. We saw in Step 1 that every edge of H is drawn as an 
O(kl/a)-polygonal line. How about the edges of L? These edges have two types of 
breakpoints: 

(l) Those produced when drawing the graphs S(P). 
(2) Those produced when drawing the linking sections. 

Consider an edge e of L. Then the total number of type (1) breakpoints on this 
edge is at most of the order of the number of crossings on this edge (recall how 
S(P) was constructed), which is O(k ~/2) by definition of L. Each linking section 
contained in e also contributes O(1) breakpoints. But for each linking section we 
also count an additional crossing on e (or an endpoint of e). Thus again we count 
at most O(k 1/2) additional breakpoints. Hence every edge is drawn as an  O ( k l / 2 )  - 

polygonal line, as desired. 
This concludes the proof of the upper bound t(k) <_ 0(kl/2). 

5. Future Problems 

There are several open problems that are worth mentioning here. One has already 
been mentioned above; namely, the approximation of t-polygonal crossing num- 
bers in polynomial space, or the aproximation of the crossing number using 
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t-polygonal  drawings with t small and in polynomial  space. Another  intr iguing 
possibility is the use of systems of polynomials  (similar to those used in the lower 
bound  in Theorem 4) to drive polynomial- t ime heuristics for an approximat ion  
of the crossing numbers .  Such heuristics would relay on approximate  algorithms 
for solving systems of polynomial  inequalities; a problem that has itself been 
recognized as very difficult by various researchers. Yet another  possible tool to 
approximate  the crossing number  would be to use, instead of t -polygonal  lines, 
polynomial  lines (graphs of polynomials  in one variable) of small degree. See [1 l]  
for results on realizations of ar rangements  of pseudolines with polynomial  lines. 
F rom the point  of view of wiring applications,  a perhaps more useful approach 
would be to use spl ines  of polynomials.  
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