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The instability of nucleic acid bases, responsible for
hereditary information storage is amazing. Is there a sys-
tem in this madness? All the nitrogen bases may undergo
different kinds of rapid, spontaneous, or induced modifica-
tion. They may form adducts and photoproducts, may be
deaminated, methylated, and oxidized, or may be lost spon-
taneously or in the course of enzymatic processes. The list of
potentially mutagenic lesions in DNA is long (some of them
are given in parentheses) and includes products of deami-
nations (hypoxanthine, uracil, 5-methyluracil (thymine)); of
methylation (3-methyladenine, O-6-methylguanine); of ox-
idation (8-oxoguanine, thymine glycol, 5-hydroxycytosine,
5-hydroxyuracil, 5-formyluracil), and apurinic/apyrimidinic
(AP) sites. The frequency of base oxidation much outweighs
the remaining modifications. The most susceptible base to
oxidation damage (and to depurination), both in nucleotide
pools as well as in DNA, is guanine, with formation of the
highly mutagenic base, 8-oxoguanine. It has been calculated
that in a single cell per day as much as ∼ 100 000 modifica-
tion events occur [1, 2]. Modified bases may be restored by
(1) direct reversal of themodifying reaction (e.g., by action of
photolyases that reverse pyrimidine dimers and 6-4 pyrimi-
dine photoproducts to native pyrimidines [3–5] or by action
of O-6-methylguanine DNA methyltransferase, a suicide en-
zyme that removes methyl (or alkyl) from O-6-alkylguanine
residues in DNA and accepts it on its own Cys321 residue
[6] and (2) by processes of base excision- or nucleotide
excision-repair (BER or NER) [7–10]. About six distinct
DNA-glycosylases, at least, are found in bacteria and their
homologues have been detected in mammalian cells. There
is a common mechanism for BER which includes: (i) attach-
ment of the enzyme to the damaged site, (ii) flipping out a
modified base (or AP-sites) of the double-stranded structure,
excising a base, (iii) interruption of the phosphodeoxyribose
chain to form a 3′OH end, (iv) filling the gap with match-
ing nucleotides, and (v) sealing to restore the continuity of
the DNA. BER begins with removal of a modified base, and
then 1 to 10 nucleotides are undergoing exchange. In NER,
a fragment of 12–13 nucleotides or 24–32 nucleotides is ex-
cised in bacteria and mammalian cells, respectively [11]. The
NER system excises a broad spectrum of structurally unre-
lated DNA lesions, pyrimidine dimers, and 6-4 photoprod-

ucts, but also excises 8-oxoguanine, and thymine glycols from
DNA [9]. Yet another, mismatch repair system, acts on na-
tive (or modified) mismatched bases shortly after replication,
when distinction between the new synthesized and the old
strand of DNA is possible [12, 13]. In the course of the repair
of a single mismatch by mismatch repair system as many as
1000–2000 nucleotides may be excised [14]. When all kinds
of modifications and repair are considered, it can be calcu-
lated that in a single cell, in the course of DNA repair per
day as many as 2 × 106 base pairs are exchanged (∼ 106

arise frombasemodification, and 106 frommismatch repair).
This covers a large fraction of genomic DNA. Therefore, the
question may be posed of whether the huge number of en-
zymes for DNA repair, arose in a long process of evolution
as a defense system against different modifications, or if they
are part of normal DNA metabolism to keep molecules in a
continuous dynamic state? Apparently, nature prefers mod-
ification and repair to firm stability. Therefore, is modifica-
tion of the bases a method for quick response to situations
in the environment and thus a source of evolution? A nat-
ural bases in DNA are necessary before it is replicated, the
cell cycle apparatus and checkpoint proteins control DNA
damage and halt cell division until repair of DNA is com-
plete.
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