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Abstract. If each of k, m, and n is a positive integer, there is a smallest
positive integer r = rk(m, n) with the property that each graph G with at
least r vertices, and with maximum degree not exceeding k, has either a
complete subgraph with m vertices, or an independent subgraph with n
vertices. In this paper we determine r3(3, n) = r(n), for all n. As a corollary
we obtain the largest possible lower bound for the independence ratio of
graphs with maximum degree three containing no triangles.

From the work of Brooks [2] it follows that if G is a graph with maximum
degree k containing no complete graph on k + 1 vertices, then the indepen-
dence ratio of G is at least \/k. In case G has no complete graph on k
vertices, Albertson, Bollobas, and Tucker [1] proved this ratio is larger than
\/k, with only two exceptions. And they conjectured that for k = 3, with the
additional assumption of planarity, this ratio is bounded away from 1/3.
Fajtlowicz [3] verified their conjecture, even without assuming planarity,
showing that each cubic graph without triangles has independence ratio at
least 12/35. In addition, he displayed a graph in which the independence
ratio is exactly 5/14. It follows from our main theorem that 5/14 is a lower
bound for the independence ratio in the case k = 3, and in light of Fajtlo-
wicz' graph, 5/14 is the best possible lower bound.

In what follows, all graphs will be finite symmetric graphs with no loops
and no multiple edges. If G is a graph, then v(G) and e(G) will be the
numbers of vertices and edges of G. If M is a set of vertices of G, no two of
which are joined by an edge, then M is called independent. The number of
vertices in a largest independent vertex set in G will be denoted i(G). A cycle
with « vertices will be denoted C„.

Proposition I. If G is a graph in which each vertex has degree two or degree
three, and if v(G) is odd, then either there is a vertex of degree two both of
whose neighbors are of degree two, or else there is a vertex of degree two both of
whose neighbors are of degree three.
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Proof. The number of vertices of odd degree is even, so there is an odd
number of vertices of degree two. If each vertex of degree two had exactly
one neighbor of degree two, these would occur in pairs, which is not the case
since there is an odd number of them. So some vertex of degree two has either
two neighbors of degree two or no neighbors of degree two.

Until further notice, all graphs will be of maximum degree not exceeding
three and will contain no triangles. Several types of deletions of vertices and
edges from such graphs will be considered.

(a) If G has a vertex of degree two with two neighbors of degree three, then
a deletion of three vertices and six edges may be performed, lowering the
independence by at least one. That is, if vertices and edges as in Figure 1(a)
are deleted from G and if H is the remaining subgraph, then

v(H) = v(G)-3,   e(H) = e(G) -6,    i(H) < i(G) - I.

(ß) If G has a vertex of degree two with one neighbor of degree two and
one neighbor of degree three, then a deletion of vertices and edges as in
Figure 1(b) leaves a subgraph H with

v(H) = v(G) -3,    e(H) = e(G)-5,   i(H) < i(G) - 1.

a b

Figure 1

(y) If G has no vertices of degree less than two, and if there is a vertex of
degree two with both its neighbors of degree two, then a deletion may be
made which leaves a subgraph H with

v(H) = v(G)-5,   e(H) <e(G)-5,   i(H) < i(G) - 2.

In order to see that this is true, observe that there are several possibilities,
illustrated in Figure 2. In cases (a), (b), (c), (d), (e), and (f), deletion of the
indicated vertices and edges achieves the desired result. In cases (g) and (h),
the indicated vertices and edges must be deleted along with any other vertex.
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/  \ f~A

Figure 2

(A) If G has a vertex of degree less than two, and if G is not totally
disconnected, then a deletion can be made which leaves a graph H with

v(H) = v(G) -2,   e(H) < e(G) - 1,    i(H) <i(G)- I.
In case G has a vertex of degree one, deletion of that vertex and its

neighbor suffices. If G has an isolated vertex, deletion of that vertex and any
nonisolated vertex suffices.

Lemma 2. If G is a graph, v(G) = 5«, e(G) < 5«, and i(G) < 2« + 1, then
G is the disjoint union of « pentagons.

Proof. If n = 1, then v(G) = 5. If G is a tree, the independence ratio of G
is at least 1/2, so i(G) > 3 = 2« + 1, so this is not the case. So G has a cycle.
Since G has no triangle (recall that "graphs", for the time being, have no
triangles), the shortest cycle is C4 or C5. If it is C5, we are finished, so suppose
Ç has a C4. Since G has no triangle, the C4 has no diagonal, and the vertex
which is not on the C4 is incident with at most two vertices of the Q, and
those two must be nonadjacent. Hence there is clearly an independent set of 3
vertices. This verifies the case « = 1.
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Now suppose that v(G) = 5k + 5, e(G) < 5k + 5, and i(G) < 2k + 3.
Then G is not totally disconnected, so, if G has a vertex of degree less than
two, a deletion of type X may be performed, leaving a subgraph H with
v(H) - 5k + 3, e(.ff) < 5/fc + 4, and z'(tf) < 2A: + 2. If H has a vertex of
degree less than two, another deletion of type X would yield a graph J with
v(J) = 5/fc + 1, e(J) < 5A: + 3, and i(J) < 2k + 1. From 7, the deletion of
any vertex of degree three would yield a subgraph M with v(M) = 5fc,
e(A/) < 5k, and /(M) < 2/c + 1. If the number of edges of J actually exceeds
the number of vertices of /, we are assured a vertex of degree three. If not,
deletion of any nonisolated vertex would accomplish the same thing. Now, by
induction, M is a disjoint union of k pentagons, and so it is easy to see that
before the last deletion, we had independence 2k + I, which is a contradic-
tion. Thus we may assume that H has no vertex of degree less than two. If H
is regular of degree two, it is a disjoint union of cycles, none of which is a
triangle. So i(H) > \(5k + 3) = 2k + 6/5, so i(H) > 2k + 2, which is not
the case. So H has a vertex of degree three, and we may make a deletion of
type a or type ß. This leaves a subgraph N with v(N) = 5k, e(N) < 5k — 1,
i(N) <2k + 1. This is impossible by induction, since such an N must be the
disjoint union of k pentagons and thus have 5A: edges. This rules out the
possibility that G has vertices of degree less than two. Since v(G) = e(G), G
is a disjoint union of cycles. Since the independence ratio of G is not more
than (2k + 2)/(5k + 5) = 2/5, this may happen only if G is a disjoint union
of pentagons.

Proposition 3. If G is a graph in which each vertex is of degree two or
degree three, then the number of vertices of degree three is 2[e(G) — v(G)]. In
any graph, e(G) < \ v(G) with equality only in case G is regular of degree three.

Lemma 4. If G is a graph with v(G) = 5« + 3, e(G) < 5« + 6, and i(G) <
2« + 2, then G contains a rectangle, C4.

Proof. In case « = 1, we have v(G) - 8, e(G) < 11, and i(G) < 4. If there
were a vertex of degree less than two, a deletion of type X would leave a
subgraph H with 6 vertices and independence 2. This is not possible because
each graph with 6 vertices has either a triangle or an independent set of 3
vertices. Thus, a deletion of type a or ß is possible, leaving a subgraph J with
v(J) — 5, e(J) < 6, and i(J) < 3. But the only such graph is a pentagon. So
there are two possibilities. Either e(G) =11 and a deletion of type o was
made, leaving a pentagon, or else e(G) = 10 and a deletion of type ß was
made leaving a pentagon. There are only three possibilities for G, indicated in
Figure 3. All three contain C4, which completes the proof for « = 1. Note
that we have also shown that if v(G) = 8 and i(G) < 4, then e(G) > 10.
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Figure 3
Now suppose the statement of the lemma holds for « = k and consider a

graph G with v(G) = 5/fc + 8, e(G) < 5k + 11 and i(G) < 2/fc + 4. If G has
a vertex of degree less than two, a deletion of type X leaves a graph H with
v(H) = 5k + 6, e(/f) < 5k + 10, and /(/f) < Ik + 3. If H has a vertex of
degree less than two, another deletion of type X would leave a graph J with
v(J) = 5/fc + 4, e(J) < 5A: + 9, and *'(/) < 2k + 2. The surplus of edges over
vertices insures that J has a vertex of degree three. Deletion of such a vertex
leaves a graph M with v(M) = 5A; + 3, e(M) < 5A: + 6 and i(M) < 2k + 2.
By induction M contains C4, so G does. This takes care of the case where H
has a vertex of degree less than two. If every vertex of H has degree two or
three, then there must be at least one vertex of degree two since there are not
enough edges for H to be cubic. Deletion of a vertex of degree two and its
two neighbors yields a graph Q with v(Q) — 5k + 3, e(Q) < 5k + 6, and
'((?) < 2k + 2. By induction, Q contains C4. So we have taken care of the
case where G has a vertex of degree less than 2. If each vertex of G has degree
two or three, then by Proposition 3, the number of vertices of degree three is
no more than 2(5k + 11 — 5k — 8) = 6. Since k is at least one, v(G) is at
least 13, so there are at least 7 vertices of degree two. Hence some two
vertices of degree two must have a common neighbor. If these two vertices
have two common neighbors, there is a C4 and we are through. If not, the
situation must be as in Figure 4. The vertices v and w have the common
neighbor x, which may be of degree two or three, as may a and b. By deleting
these five vertices, and the edges (at least five) incident with them, we are left
with a graph R with v(R) = 5k + 3, e(R) < 5k + 6 and i(R) < 2k + 2. By
induction, R must contain a C4, and so G does.

From the Ramsey Theorem it follows that if « is a positive integer, there is
a smallest positive integer r(n) such that any graph G (with maximum degree
three and without triangles!) with v(g) > r(n) has i(G) > «. If H is a graph
with v(H) = - 1 + r(n) and i(H) < n, then H will be called n-critical. A
graph G will be called separated if each component of G is either regular of
degree three or a pentagon, C5. We now proceed to find r(n) for small values
of «, and collect some facts about their «-critical graphs.
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Figure 4

(i) r(3) = 6 and if G is 3-critical, then G is a pentagon, so e(G) — 5. This is
the well-known first nontrivial Ramsey number, so it is true even without our
maximum degree condition.

(ii) r(4) = 9 and if G is 4-critical, then e(G) > 10. Again, this corresponds
to the classical Ramsey number. Some 4-critical graphs were displayed in
Figure 3 and it was shown that e(G) > 10 in the proof of Lemma 4.

(iii) r(5) = 12 and if G is 5-critical, then e(G) = 16. This is the first
deviation from the classical Ramsey numbers. To see that r(5) =12, suppose
v(G) = 12 and i(G) < 5. If G has a vertex of degree less than three, then a
deletion of type a, ß, or X would leave a subgraph H with v(H) > 9 and
i(H) < 4, which is not possible since r(4) = 9. Thus we may suppose G is
regular of degree three. Deletion from G of one vertex and its neighbors
would leave a graph J with v(J) — 8, e(J) = 9, and i(J) < 4. This is not
possible, since a 4-critical graph must have at least 10 edges. This shows that
r(5) < 12. In Figure 5 there is a 5-critical graph with 11 vertices, which forces
r(5) =12. Note that there are 16 edges, which is the case for any 5-critical
graph. For suppose G is 5-critical. Since e(G) < \v(G), it follows that G may
have no more than 16 edges. Suppose e(G) < 15. First note that G has no
vertex of degree less than two, since a deletion of type X would leave 9
vertices and independence less than four, which is impossible. By Proposition
I, a deletion of type a or y is possible. A deletion of type a would leave a
graph H with v(H) = 8, e(H) < 9 and i(H) < 4. This is impossible. A
deletion of type y would leave a graph / with v(J) = 6 and i(J) < 3, which is
impossible. This completes the proof that a 5-critical graph must have 16
edges. Furthermore, a 5-critical graph must contain a C4. For, by Proposition
3 there must be 2(16— 11)= 10 vertices of degree three and hence exactly
one vertex of degree 2. Thus an a deletion is possible, leaving a graph H with
v(H) = 8, e(H) = 10 and i(H) < 4. There is only one such graph, as seen in
the proof of Lemma 4, and it contains a C4.
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Figure 5

(iv) r(6) = 15 and if G is 6-critical, then e(G) = 21. To see that r(6) = 15,
suppose that v(G) = 15. Since v(G) is odd, G cannot be regular of degree
three, so there is a vertex of degree less than three. Deletion of that vertex and
its neighbors leaves a graph H with at least 12 vertices, and hence with
independent 5 vertices. Thus G has independent 6 vertices, so r(6) < 15.
Fajtlowicz [3] displayed a 6-critical graph, which we show in Figure 6. So
r(6) = 15.

Figure 6

To see that each 6-critical graph has 21 edges, note that §(14) = 21, so no
more than 21 edges are possible. And if G is 6-critical with e(G) < 20, then G
may have no vertex of degree less than two or else a X deletion would leave a
graph J with v(J) = 12 and /(/) < 5, which is not possible. So we may
assume G has only vertices of degree two and three. Thus, a deletion of type
a, ß, or y is possible. But y would leave a graph M with v(M) = 9 and
i(M) < 4 which is not possible since r(4) = 9, and a deletion of type a or ß
would leave a graph Q with v(Q) = 11, e(Q) < 15, and i(Q) < 5. This is not
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possible since each 5-critical graph must have 16 edges. So G must have 21
edges.

Now we are ready to state our main theorem.

Theorem 5. For each positive integer n, the following statements are true:
(1) For 0 < k < «, // v(G) = 5« + 3k and i(G) < 2« + k + 1, then e(G)

> 5« + 5k.
(2) ForO < k < 2«, ifv(G) = 8« + 3k and i(G) < 3« + k + 1, then

(a) ifkis even, e(G) > 10« + HA;/2,
Ço) ifk is odd, e(G) > 10« + (11A: + l)/2.

(3) For 1 < k < «, ifv(G) = 5« + 3k, i(G) < 2« + k + 1, and e(G) < 5«
+ 5k + 1, iAe« G contains a C4 or w separated. And if e(G) = 5« + 5&, i«e«
G contains a C4.

(4) For 0 < A: < 2«, í/ü(G) = 8« + 3fc, /(G) < 3« + k + 1 and
\\ke(G ) < 10« + -r- + 1 (A: «*>«) or

e(G) < 10« + n*2+ l + l(kodd)

then G contains a C4 or is separated. In addition, if k is even, k j=- 2« and e(G)
is exactly 10« + \\k/2, then G contains a C4.

(5)(a)r(5«- 3) = 14« - 11.
Co) If Gis 5« - 3-critical, then e(G) > 21« - 22.

(6) (a) r(5« - 2) = 14« - 8.
Ço) If Gis 5« - 2-critical, then e(G) > 21« - 16.

(7) (a) r(5« - 1) = 14« - 5.
(b) If Gis 5« - l-critical, then e(G) > 21« - 11.

(8) (a) r(5«) = 14« - 2.
Ço) If Gis 5n-critical, then e(G) = 21« - 5.

(9) (a) r(5« + 1) = 14« + 1.
Ço) If G is 5n + l-critical, then e(G) = 21«.

Proof of theorem. For « = 1, the statements have already been verified,
in Lemma 2, Lemma 4, and by our determination of small values of r(n). We
assume the truth of all nine statements for n, and proceed to state and prove
them one at a time for « + 1.

(1) For 0 < k < « + 1, if v(G) = 5« + 3k + 5 and i(G) < 2« + k + 3,
then e(G) > 5n + 5k + 5.

Proof. If k = 0, this is true by Lemma 2. So we may induct on k. Suppose
I < k < n + I, and suppose e(G) < 5n + 5k + 4. If G has a vertex of
degree less than two, then a deletion of type X would leave a graph H with
v(H) = 5« + 3(k + 1), e(H) < 5« + 5(k + 1) - 2, and i(H) < 2« + (k +
1) + 1. For k + 1 < «, that is for k < « - 1, this is not possible by part (1) of
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the induction hypothesis on «. If k = n, the situation is that v(H) = 8« + 3,
e(H) < 10« + 3, and i(H) < 3« + 2. This is not possible by part (2) of the
induction on «. And if k «■ » + 1, the situation is that v(H) = 8« + 6,
e(H) < 10« + 8, and i(H) < 3« + 3, which is also impossible by part (2) of
the induction on n. This rules out the possibility that G has a vertex of degree
less than two. A simple computation using Proposition 3 shows that G is not
regular of degree three. So G has vertices of degree two, and so a deletion of
type a, ß, or y may be made. A deletion of type a or ß from G would leave a
graph J with v(J) = 5(« + 1) + 3(k - 1), e(J) < 5(n + 1) + 5(/fc - 1) - 1
and i(J) < 2(« + 1) + (k — 1) + 1. This is impossible by induction on k,
since k > I. A deletion of type y from G would leave a graph M with
v(M) = 5« + 3k, i(M) < 2« + k + 1, and e(M) < 5« + 5/fc - 1. If k < «,
this is impossible by part (1) of the induction on «. If k = « + 1, the situation
is that «(M) = 8« + 3, e(M) < 10« + 4, and /(AT) < 3« + 2, which is im-
possible by part (2) of the induction on «. So the assumption e(G) < 5« + 5k
+ 4 leads to contradictions in every direction. This concludes the derivation
of part (1) for« + 1.

(2) For 0 < k < 2« + 2, if v(G) = 8« + 3k + 8 and i(G) < 3« + k + 4,
then

<KG)H
10« +

10« +

11A:+ 102
11/fc + 1 10

if A: is even,

if k is odd.

Proof for 0 < k < 2« — 2. For A: = 0, this is a restatement of part (1),
proven above, with k = « + 1. So, we may induct on k. So suppose that

11A:
2

11A:+ 1e(G)<
10«

10«

+ 9

+ 9

if A: is even,

if A: is odd.

If G has a vertex of degree less than two, a deletion of type y from G would
leave a graph # with v(H) = 8« + 3(A: + 2), i(H) < 3« + (A: + 2) + 1 and

e(//)<
10« +

10« +

U(k + 2)
2

ll(fc + 2)+ 1

if A: is even,

3    if A: is odd.

Since we are for the moment considering only the case k < 2« — 2, we have
k + 2 < 2«, and so the situation described is impossible by part (2) of the
induction on n. This rules out vertices of degree less than two. By Proposition
3, G is not regular of degree three, so there are vertices of degree two, and a
deletion of type a, ß, or y is possible. A deletion of type y would leave a
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graph J with v(J) = 8« + 3(A: + 1), i(J) < 3n + (k + 1) + I, and

10« + 11(* + X) - 1 if k is odd,
e(J ) < \y   '     1 ,A        ll(Ar+ 1)+ 1      -10« + —*-=-*-2    if A: is even.

This is not possible, by part (2) of the induction on n. Since no deletion of
type y is possible, a deletion of type a or ß is possible, and if A: is odd, v(G) is
odd, and by Proposition 1, a deletion of type a is possible. If k is odd, a
deletion of type a would leave a graph M with v(M) = 8(« + 1) + 3(A: — 1),
i(M) < 3(« + 1) + (k - 1) + 1, and e(M) < 10(« + 1) + l\(k - l)/2 - 1.
This is not possible by induction on k, since A: — 1 is even. If k is even, a
deletion of type a or ß would leave a graph Q with v(Q) = 8(« + 1) + 3(A; —
1). KQ) < 3(« + I) + (k - I) + I, and e(Q) < 10(« + 1) + (11(A: - 1) +
l)/2 — 1. This is impossible by induction on k, since k — 1 is odd. This
concludes the proof of (2) for 0 < k < 2« — 2.

(3) For 1 < A: < « + 1, if v(G) = 5« + 3A: + 5, e(G) < 5« + 5A: + 6, and
i(G) < 2/1 + k + 3, then G contains a C4 or is separated. And if e(G) = 5«
+ 5A; + 5, then G contains a C4.

Proof. If A: = 1, the statement is true by Lemma 4, so we may induct on k.
If G has a vertex of degree less than two, then a deletion of type X would
leave a graph H with v(H) = 5« + 3(A: + 1), e(H) < 5« + 5(A: + 1), and
i(H) < 2« + (k + 1) + 1. If k < « - 1, this implies that H contains a C4 by
the induction on «, part (3). If A: = n, the situation is that v(H) = 8« + 3,
e(H) < 10« + 5, and i(H) < 3« + 2. But this is not possible by part (2) of
the induction on «. If k = « + 1, the situation is that v(H) = 8« + 6,
e(H) < 10« + 10, and i(H) < 3« + 3, which is also impossible by part (2) of
the induction on «. Thus, in case G has a vertex of degree less than two, we
have shown that G contains a C4. Now suppose G has only vertices of degree
two and degree three. By Proposition 3, G is not regular of degree three, so a
deletion of type a, ß, or y is possible. A deletion of type a or ß would leave a
graph J with v(J) = 5(« + 1) + 3(A: - 1), e(J) < 5(« + 1) + 5(A: - 1) + 1
and /'(/) < 2(« + I) + (k — 1) + 1. This implies, by the induction on k, that
J is separated or contains a C4. If J contains a C4, then G does. If J is
separated, then J = R \j S where R is regular of degree three and S is a
disjoint union of pentagons. The deleted edges do not go into R, since
vertices in R already have degree three. Thus, Lemma 4 applied to G — R
assures us that G — R contains a C4. Thus, G contains a C4.

Now, if a deletion of type y is made from G, the result is a graph M with
v(M) = 5« + 3A:, e(M) < 5« + 5A; + 1, and i(M) < 2« + k + 1. If k < n,
part (3) of the induction on « implies that M contains a C4 or is separated. If
M contains C4, then G does. If M is separated, we must look back at the
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several different types of y deletions. Types (g) and (h) actually contain a C4,
so they need not be considered. Types (a), Co), (c), (d) and (e) result in the
deletion of at least 6 edges, so in these cases we would have the slightly
stronger edge inequality e(M) < 5« + 5A:. By induction on n, part (3), it
would follow that M contains C4. Finally, if a deletion of type (f) occurs, and
if M is separated, then G is separated, since the components of G would be
those of M along with the deleted pentagon. But so far we have considered
only k < n. If k = « + 1, the y deletion leaves a graph Q with v(Q) = 8« +
3, e(Q) < 10« + 6, and i(Q) < 3« + 2. By part (4) of the induction on «,
this implies that Q contains C4 or is separated. If Q contains C4, then G does.
If Q is separated, an exact repetition of the argument above involving the
various types of y deletions shows that the deletion is a pentagon and so G
is separated.

To conclude the derivation of (3), we must show that if e(G) = 5« + 5A: +
5, then G contains a C4. To do this, we need only show that G is not
separated. Suppose G is separated. By Proposition 3, the number of vertices
of degree three in G is

2[e(G) - v(G)] = 2[5« + 5A; + 5 - (5« + 3A: + 5)] = 4k.
Hence there are 5« — k + 5 vertices of degree two. The vertices of degree
two make up pentagons, and so they contribute exactly |(5« — k + 5) to
i(G). The 4A: vertices of degree 3 contribute at least ^(4A;) to i(G), by parts
(5)-(9) of the induction on «. Hence i(G) > 2« - § k + 2 + ™k = 2« + 2
+ If A: > 2« + k + 2. So i(G) > 2n + k + 3, which is contrary to assump-
tion. Hence G is not separated, so G contains a C4, and the derivation of (3)
for « + 1 is complete.

(4) For 0 < k < 2« + 2, if v(G) = 8« + 3A: + 8, i(G) < 3« + k + 4, and

e(G)<
10« + —-—1-11 if A: is even,

10« +---+11    if A: is odd,

then G contains a C4 or is separated. In addition, if A: is even, k =£ 2« + 2,
and e(G) = 10« + 11 A:/2 + 10, then G contains a C4.

Proof for 0 < k < 2« - 2. For k = 0, this is a restatement of part (3)
with k = « + 1, just proven above. So again we may induct on k. If G has a
vertex of degree less than two, a deletion of type X would leave a graph H
with v(H) = 8« + 3(A: + 2), i(H) < 3« + (A: + 2) + 1, and

e(H)<

ll(A:-r-2)      ,10« + —^—-- - 1, k even,

10« + —*-r-^-Ik odd.
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Since A:<2« — 2, A: + 2< 2«, and so this situation is impossible by part (2)
of the induction on n. So G has only vertices of degree two and three.
Proposition 3 insures that G is not regular of degree three, so we may make a
deletion of type a, ß, or y, and by Proposition 1, if A: is odd we may make a
deletion of type a or y. If k is even and a deletion of type a or ß is made from
G, the result is a graph J with v(J) = 8(« + 1) + 3(A: - 1), i(J) < 3(« + 1)
+ (k - 1) + 1 and e(J) < 10(« + 1) + (11(A: - 1) + l)/2 + 1. By induction
on k, this implies that J contains a C4 or is separated. If / contains a C4, then
G does. If J is separated, then J is the union of a regular graph R of degree
three and some pentagons. Lemma 4 applied to G — R guarantees that
G — R contains a C4. Thus G contains a C4. If k is odd and a deletion of type
a is made, the result is a graph M with u(M) = 8(« + 1) + 3(A; — 1), i(M) <
3(« + 1) + (k - 1) + 1, and e(M) < 10(n + 1) + 11(A: - l)/2 + 1. An
argument identical to the one just presented for k even shows that G must
contain a C4.

Now, if a deletion of type y is made from G, we are left with a graph Q
with t>(g) = 8« + 3(A: + 1) and /(g) < 3« + (A: + 1) + 1. We consider the
several types of deletions of type y. Since the object is to find a C4, types (g)
and (h) need not be considered. Types (b), (c), and (d) would lower the
number of edges by at least seven, leaving

e(Q)<
10« + 11(A: + 1) + 1 -2,   k even,

ll(/fc + 1)      ,10« + —^-L - 1, k odd.

Since we are considering k < 2n — 2, A: + 1 < 2«, and so the induction on «,
part (2) makes this situation impossible. Deletions of types (a) and (e) would
lower the number of edges by six, leaving

e(Q)<
10« +

10« +

ll(k+ 1) + 1
2

11(A:+ 1)

1,      k even,

A: odd.

If k is even, this is impossible by part (2) of the induction on n. If A: is odd,
part (4) of the induction on n shows that Q contains a C4, since k + 1 is even.
All that remains is to consider a deletion of type y (f), in which the deleted
vertices form a pentagon. This deletion yields

,n    ,   ll(k+ 1) + 1      .10« H-s-r-^->   k even,
e(Q) <

By part (4) of the induction on «, this implies that Q contains a C4 or is

11(A:+1)      ,      ,10« + ——- + 1,    k odd.
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separated. Hence G contains a C4 or is separated since it is the union of Q
and a pentagon.

All that remains is to show that if A: is even and e(G) = 10« + HA:/2 +
10, then G contains a C4. It suffices to show that G is not separated. So
suppose that G is separated. By Proposition 3, the number of vertices of
degree three is

ilOn + -^ + lo) - (8« + 3A: + 8)1 = 4« + 5A: + 4.

And so the number of vertices of degree two is 4« — 2k + 4. Since k < 2« —
2, it follows that 4« + 5A: + 4 < 14« - 6. By parts (5)-(9) of the induction
on «, there must be at least j¿(4n + 5A: + 4) independent vertices among the
vertices of degree three. And there are exactly |(4« — 2A: + 4) independent
vertices among the vertices of degree two. Hence i(G) is at least -^(4« + 5k
+ 4) + |(4« - 2A: + 4) = 3« + (f A: + ¿«) + 3¿ > 3« + A; + 3¿, since
k < 2« — 2 < 2«. Thus i(G) > 3n + k + 4, which is contrary to assump-
tion. So G is not separated, and must therefore contain a C4. The derivation
of (4) for « + 1 is concluded for 0 < k < 2« — 2.

(5) (a) r(5« + 2) = 14« + 3.
Ço) If G is 5« + 2-critical, then e(G) > 21« - 1.

Proof, (a) Suppose G is a graph with v(G) = 14« + 3 and i(G) < 5« + 2.
If G had a vertex of degree less than two, a X deletion would leave a graph H
with v(H) = 14« + 1 and i(H) < 5« + 1. This is not possible by part (9) of
the induction on «, since r(5n + 1) = 14« + 1. Thus, each vertex has degree
two or three, and since v(G) is odd, a deletion of type a or y is possible. A
deletion of type y would leave a graph J with v(J) = 14« — 2 and i(J) < 5«.
This is not possible since r(5«) = 14« — 2 by part (8) of the induction on «. A
deletion of type a would leave a graph M with v(M) = 14« and i(M) < 5«
+ 1, that is, a 5« + l-critical graph. But by part (9) of the induction on n
e(M) = 21«, so M is regular of degree three. So the three deleted vertices
form a separate component and must therefore contribute two to i(G). Hence
i(G) = 5« + 2. Thus r(5« + 2) < 14« + 3. To show r(5« + 2) = 14« + 3 we
must show a 5« + 2-critical graph with 14« + 2 vertices. Recall that we have
already displayed a 6-critical graph, a 5-critical graph, a 4-critical graph, and
a 3-critical graph, the pentagon. In addition we mention that a pair of vertices
joined by an edge is 2-critical. Now, a 5« + 2-critical graph may be formed
by taking the disjoint union of « copies of a 6-critical graph and one copy of
a 2-critical graph.

Co) To show that if G is 5« + 2 critical, e(G) > 21« — 1, we appeal to part
(2) of the theorem, proven above for « + 1, and we let k = 2« — 2. Then we
have that if G is a graph with v(G) = 8« + 3(2« - 2) + 8 and i(G) < 3« +
(2« - 2) + 4, it follows that e(G) > 10« + 11(2« - 2)/2 + 10. That is, if

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



366 WILLIAM STATON

v(G) = 14« + 2 and i(G) < 5« + 2, then e(G) > 21« - 1.
(6) (a) r(5« + 3) = 14« + 6.

Ço) If G is 5« + 3-critical, then e(G) > 21« + 5.
Proof, (a) Suppose v(G) = 14« + 6 and i(G) < 5« + 3. If G had a vertex

of degree less than three, a deletion of that vertex and its neighbors would
leave a graph H with v(H) > 14« + 3 and i(H) < 5« + 2. This is impossible
since r(5« + 2) = 14« + 3. So G is regular of degree three, and e(G) = \v(G)
= 21« + 9. Deletion from G of any vertex and its neighbors leaves a graph J
with v(J) = 14« + 2, e(J) = 21«, and /'(/) < 5« + 2. But this is precisely the
situation described in part (4) of the theorem, for « + 1, with k = 2« — 2. So,
the conclusion is that J contains a C4 or is separated. But if J were separated,
the number of vertices of degree two would be a multiple of five, which is not
the case, since by Proposition 3 there are 2[21« — (14« + 2)] = 14« — 4
vertices of degree three, and hence exactly six vertices of degree two. Thus we
have established that /, and hence G, contains a Q. We may delete from G a
C4 along with the vertices adjacent to two nonadjacent vertices of the Q, as
in Figure 7. This leaves a graph M with v(M) = 14« and i(M) < 5« + 1.
Thus M is 5« + l-critical, so e(M) = 21«, which means that M is regular of
degree three. So no edges from the deletion go into M. So the independence
of G is the sum of the independence of M and the independence of the 6
deleted vertices. So i(G) > 5« + 3, and we have shown that r(5n + 3) < 14«
+ 6. The disjoint union of a pentagon and « copies of a 6-critical graph is
5« + 3-critical, so we have shown r(5« + 3) = 14« + 6.

Figure 7

Co) If G is 5« + 3-critical, then v(G) = 14« + 5 and i(G) < 5« + 3. Note
that G may have no vertex of degree less than two, for a deletion of type X
would leave a graph H with v(H) = 14« + 3 and i(H) < 5« + 2, which is
not possible since r(5« + 2) = 14« + 3. Suppose e(G) < 21« + 4. Since «(G)
is odd and G has only vertices of degree two and three, we can make a
deletion of type a or y. A deletion of type a would leave a graph J with
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ü(/) = 14« + 2, e(J) < 21« — 2 and i(J) < 5« + 2, which is impossible
since a 5« + 2-critical graph must have at least 21« — 1 edges. A deletion of
type y would leave a graph M with v(M) = 14«, i(M) < 5« + 1, and
e(M) < 21« — 1, which is impossible since a 5« + l-critical graph must have
21« edges. Thus e(G) > 21« + 5.

(7) (a) r(5« + 4) - 14« + 9.
(b) If G is 5« + 4-critical, then e(G) > 21« + 10.

Proof, (a) Suppose v(G) = 14« + 9. Since v(G) is odd, G is not regular of
degree three. Delete from G any vertex of degree less than three and its
neighbors, leaving a graph H with v(H) > 14« + 6. Since r(5« + 3) = 14«
+ 6, i(H) > 5« + 3, so i(G) > 5« + 4. Thus r(5n + 4) < 14« + 9. And the
union of a 4-critical graph with « copies of a 6-critical graph is 5« + 4-
critical. Thus r(5« + 4) = 14« + 9.

(b) If G is 5« + 4-critical, then v(G) = 14« + 8 and i(G) < 5« + 4. G
may not have a vertex of degree less than two, for a deletion of type X would
leave a graph H with v(H) = 14« + 6 and i(H) < 5« + 3. This is impossible
since r(5« + 3) = 14« + 6. Suppose that e(G) < 21« + 9. Then G is not
regular of degree three, so a deletion of type a, ß, or y is possible. A deletion
of type a or ß would leave a graph / with v(J) = 14« + 5, i(J) < 5« + 3
and e(J) < 21 « + 4. This is not possible since each 5« + 3-critical graph has
at least 21« + 5 edges. A deletion of type y would leave a graph M with
v(M) = 14« + 3 and i(M) < 5« + 2. This is impossible since r(5« + 2) =
14« + 3. Hence e(G) > 21« + 10.

(8) (a) r(5« + 5) = 14« + 12.
Co) If G is 5« + 5-critical, then e(G) = 21« + 16.

Proof, (a) Suppose v(G) = 14« + 12. If G is not regular of degree three,
deletion of any vertex of degree less than three, along with its neighbors,
leaves a graph H with v(H) > 14« + 9. Since r(5« + 4) = 14« + 9, this
would imply that i(H) > 5« 4- 4 and hence i'(G) > 5« + 5. Thus we may
assume that G is regular of degree three. Deletion of any vertex along with its
neighbors leaves a graph J with v(J) = 14« + 8 and e(J) = f (14« + 12) — 9
= 21« + 9. Since a 5« + 4-critical graph must have at least 21« + 10 edges,
we have i(J) > 5« + 4, and so i(G) > 5« + 5. Thus r(5« + 5) < 14« + 12.
A 5« + 5-critical graph may be constructed by taking n copies of a 6-critical
graph and one copy of a 5-critical graph. Thus r(5« + 5) = 14« + 12.

(b) If G is 5« + 5-critical, then v(G) = 14« + 11 and i(G) < 5« + 5. If G
has a vertex of degree less than two, a deletion of type X leaves a graph H,
v(H) = 14« + 9 and i(H) < 5« + 4, which is impossible since r(5« + 4) =
14« + 9. So G has only vertices of degree two and three. Suppose e(G) < 21«
+ 15. Since v(G) is odd a deletion of type a or y may be made. A deletion of
type a would leave a graph J with v(J) — 14« + 8, i(J) < 5« + 4, and
e(J) < 21« + 9, which is impossible since each 5« + 4-critical graph has at
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least 21« + 10 edges. A deletion of type y would leave a graph M with
v(M) = 14« + 6 and i(M) < 5« + 3. This is not possible since r(5« + 3) =
14« + 6. Thus, e(G) > 21« + 16. And f (14« + 11) = 21« + 16±, so e(G) =
21« + 16.

(9) (a) r(5« + 6) = 14« + 15.
(b) If G is 5« + 6-critical, then e(G) = 21« + 21.

Proof, (a) If G is a graph with v(G) = 14« + 15, then, since v(G) is odd,
G is not regular of degree three, so there is a vertex of degree less than three.
Deletion of such a vertex and its neighbors leaves a graph H with v(H) =
14« + 12. Thus i(H) > 5« + 5, since r(5« + 5) = 14« + 12. Thus i(G) > 5«
+ 6. It follows that r(5n + 6) < 14« + 15. A 5« + 6-critical graph can be
gotten by taking « + 1 copies of a 6-critical graph. Thus r(5« + 6) = 14« +
15.

Ço) Suppose that G is 5« + 6-critical. Then v(G) = 14« + 14 and i(G) <
5« + 6. If G has a vertex of degree less than two, a deletion of type X would
leave a graph H with v(H) = 14« + 12 and i(H) < 5« + 5. This is impossi-
ble since r(5« + 5) = 14« + 12, so G has only vertices of degree two and
three. Suppose e(G) < 21« + 20. Then G is not regular of degree three, and
so a deletion of type a, ß, or y is possible. A deletion of type a or ß would
leave a graph J with v(J) = 14« + 11, i(J) < 5« + 5, and e(J) < 21« + 15.
But this is not possible since a 5« + 5-critical graph must have 21« + 16
edges. Finally, a deletion of type y would leave a graph M with v(M) = 14«
+ 9, and i(M) < 5« + 4, which is not possible since r(5« + 4) = 14« + 9.
Thusc-(G) = 21« + 21.

All that remains in the proof of the theorem is to consider the cases
k = 2« — 1, 2«, 2« + 1, and 2« + 2 of part (2) and part (4). But these four
cases of part (2) are exactly the statements (6)(b), (7)(b), (8)(b), and (9)(b),
which we have now shown. So we consider the four cases of part (4).

If k = 2« - 1, we must show that if v(G) = 14« + 5, i(G) < 5« + 3, and
e(G) < 21 « + 6, then G contains C4 or is separated. If G had a vertex of
degree less than two, a deletion of type X would leave a graph H with
v(H) = 14« + 3 and i(H) < 5« + 2, which is not possible since r(5« + 2) =
14« + 3. Since v(G) is odd, we can make a deletion of type a or y. A deletion
of type a would leave a graph J with v(J) = 14« + 2, i(J) < 5« + 2, and
e(J) < 21«. By the case k = 2« — 2 of part (4), J must contain a C4. If we
make a y deletion from G, what remains is a graph M with v(M) = 14«, and
i(M) < 5« + 1. So M is 5« + l-critical and thus must have exactly 21«
edges, which means M is regular of degree three, and i(M) = 5«. So the
deletions must have removed no more than six edges, and must have no three
independent vertices. Looking at the several types of deletions of type A, we
see that types (a)-(d) have too many edges, types (g) and (h) contain a C4,
which is acceptable, and type (e) has an edge going into M, which is
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impossible since M is already regular of degree three. The only other case is
type (f). If this happens, G is separated since G is the disjoint union of M and
a pentagon. This concludes the proof of the case k = 2« — 1.

If k = 2«, we will show that if v(G) = 14« + 8, i(G) < 5« + 4, and
e(G) < 21 « + 11, then G contains a C4. If G had a vertex of degree less than
two, a deletion of type X would leave a graph H with v(H) = 14« + 6 and
i(H) < 5« + 3, which is not possible since r(5n + 3) = 14« + 6. Thus, G has
only vertices of degree two and three, and G is not regular of degree three. A
deletion of type a or ß would leave a graph J with v(J) = 14« + 5, i(J) < 5«
+ 3, and e(J) < 21« + 6. By the previous case, k = 2« — 1, J must have a
C4 or be separated. If J has a C4, then G does. If J is separated, then Lemma
4 applies to the part of G consisting of the pentagons in J and the deleted
vertices and edges. The result is that G contains a C4. Finally, a deletion of
type y from G would leave a graph M with u(M) = 14« + 3 and i(M) < 5«
+ 2, which is impossible since r(5« + 2) = 14« + 3. This concludes the proof
of the case k = 2«.

If k = 2« + 1, we will show that if v(G) = 14« + 11, i(G) < 5« + 5, and
e(G) < 21« + 17, then G contains a C4. Actually the only possibility for e(G)
is e(G) = 21« + 16, by (8)(b) and Proposition 3. The number of vertices of
degree three is 2[(21« + 16) - (14« + 11)] = 14« + 10, so there is exactly
one vertex of degree two, and all other vertices are of degree three. So a
deletion of type a is possible, leaving a graph H with v(H) = 14« + 8,
i(H) < 5« + 4, and e(H) = 21« + 10. But by the case k = 2«, just proven,
this implies that H contains a C4. Thus G contains a C4.

Finally, if k = 2« + 2, we will show that if v(G) = 14« + 14, i(G) < 5« +
6, and e(G) < 21« + 22, then G is separated. By (9)(b), e(G) = 21« + 21,
which means that G is regular of degree three, and hence trivially separated.

This concludes the proof of the theorem. Henceforth the word "graph" will
again mean graph, with no restriction about degree or containment of
triangles.

Theorem 6. If G is a graph with maximum degree k > 3, and if G contains
no triangles, then the independence ratio i(G)/v(G) is at least 5/(5k — 1).

Proof. For A: = 3, this follows immediately from Theorem 5, since the
smallest possible independence ratio would necessarily occur in some «-criti-
cal graph. So we induct on A:. Suppose k > 4 and we have shown the
statement of the theorem true for each r with 3 < r < k. Let G be a graph
with maximum degree k containing no triangles. Let M be a maximum
cardinality independent vertex set in G, so that i(G) = \M\. Suppose
\M\/v(G) < 5/(5k — 1), in contradiction to the theorem. Now G - M is a
graph with maximum degree not exceeding k — 1, and containing no trian-
gles, and so the independence ratio of G - M is at least 5/(5(k — 1) — 1). So
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there is an independent subset N of G — M with at least 5/(5A: — 6)(|G —
M\) vertices. But \M\ < 5/(5A: - 1)|G|, so \G - M\ > (1 - 5/(5* - 1))|G|
= (5A: - 6)\G\/(5k - 1). Thus,

m> 5*^1* - «I > (j¡^)(r&)\<*-(jihh-
Since N is independent in G — M, it is independent in G, and so the
independence ratio of G is at least 5/(5k — I), which was to be proven.

In the case k = 3, the independence ratio we have just shown is best
possible since 5/14 is achieved in the 6-critical graph due to Fajtlowicz. For
larger k, 5/(5k — 1) is evidently quite weak.
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