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Aeroelasticity is the field that examines, models and seeks to understand the interaction of 

the forces from an aerodynamic flow and the deformation of an elastic structure. The forces 

produce deformation, but the structural deformation in turn changes the aerodynamic 

forces. This feedback between force and deformation leads to a variety of dynamic responses 

of the fluid and the structure including flutter (a Hopf bifurcation), limit cycle oscillations 

and sometimes chaos. Selected recent advances in nonlinear aeroelasticity and fluid-

structure interaction are reviewed to identify and model the fundamental elements that they 

share. Topics discussed include the following.  

 

Transonic and Subsonic Panel Flutter 

Freeplay Induced Flutter and Limit Cycle Oscillations (LCO) 

Reduced Order Modeling (ROM) of Unsteady Aerodynamics 

Eigenmodes and POD Modes 

High Dimensional Harmonic Balance (HDHB) 

Nonlinear ROM based upon POD and HDHB 

Transonic Flutter and LCO of Lifting Surfaces 

Flight Experience 

Efficient and Accurate Computation of Aerodynamic Forces 

Experimental/Theoretical Correlations 

Aerodynamic LCO: Buffet, Abrupt Wing Stall and Non-Synchronous Vibration 

I. Introduction 

OME twenty plus years ago I had the pleasure of giving the SDM lecture in Mobile, Alabama and am happy to 

have the opportunity to do so again here in Orlando. When asked to give this SDM lecture, I mentioned my 

previous experience and suggested that being asked to do so again might be considered double jeopardy. But I was 

assured that no one would remember my earlier talk!  

However, I do recall that twenty years ago a then radical idea was discussed in the lecture, i.e. that one could use 

the eigenmodes of an aerodynamic flow to construct a modal model of the flow much as has been done for many 

years for structures. Whether that suggestion inspired anyone other than our group at Duke, I cannot be sure. But in 

any event, reduced order modeling of flow fields and their interaction with structural response is today a flourishing 

topic. Indeed reduced order modeling is now pervasive in many fields of engineering and science, no doubt having 

been discovered and rediscovered many times by many investigators. And the topic has been generalized in at least 

three significant ways that I will discuss in this lecture. Given the title of this lecture you will not be surprised that 

one of the generalizations is to treat the nonlinear as well as linear dynamics of aeroelastic or fluid-structural 

systems. Thus the major theme of this talk is the modeling of nonlinear aeroelastic systems both mathematically and 

computationally as well as experimentally. 

II. Motivation and Goals 

The motives for pursuing research and developing methods that are useful in practice are many. But to provide a 

context and rationale for much of the work to be described in this lecture, perhaps a few words about goals will be 

helpful. 

When my contemporaries and I first began the study and practice of aeroelasticity, and for a number of years 

thereafter, any difference between theory and experiment of design and reality was often attributed to nonlinear 

effects. However, it was generally understood that trying to model such nonlinear effects was not to be expected or 
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attempted. Since then many studies of nonlinear effects have been undertaken and today the subject is treated in 

review articles [1-4] and indeed in textbooks [5,6].  An engineer today no longer has the luxury of simply ignoring 

such effects and one of my predictions is that some years from now an SDM Lecturer will be discussing the 

favorable effects that can be created by a judicious analysis and design of nonlinearities in aeroelastic systems. Of 

course there are unfavorable and indeed potentially catastrophic consequences of nonlinearities in aeroelastic 

systems as well, as is also the case when an aeroelastic system is analyzed and designed with linear models. 

     The motivation for reduced order modeling is much the same for fluid systems as for structural systems. In either 

case, a relative small number of modes is often (but not always!) sufficient to describe the dynamics of a structural 

or fluid system. In the case of a structure an initial mathematical/computational model may consist of a finite 

element representation with several thousand degrees of freedom while for a computational fluid dynamics (CFD) 

model there may be millions of degrees of freedom. If one can use say one hundred modes or less to describe the 

structure or the fluid, then clearly there is a great potential for savings in the cost of the computation. Indeed at any 

given point in time of the state of the art in computer hardware and software, there will be computations that are 

only feasible if one uses a reduced order model. 

But here it is worth noting that another very important advantage of reduced order models is the greater physical 

insight they may give to the investigator. While a dynamical system with one hundred degrees of freedom or less 

may be still one of considerable complexity, it pales in complexity compared to a system with thousands not to 

mention millions of degrees of freedom. Moreover it is often the case that the response of the aeroelastic system is 

governed by an even smaller number of modes than the structural or fluid system individually. This is because the 

fluid and structural modes of greatest interest will be those that match most closely in both the spatial (wavelength) 

and temporal (frequency) domains. In the field of acoustics this matching of frequency and wavelength is called 

“coincidence.” Lest one think this means that reduced order models may be smaller than in fact they reasonably can 
be, it is well to point out two important facts. First, it cannot always be anticipated which fluid and structural modes 

will be most important for an aeroelastic system and thus more modes must be retained than would otherwise be the 

case (once the most dominant aeroelastic modes are determined!).Secondly, if one wishes to control or modify the 

aeroelastic system, some of the fluid, structural, and/or aeroelastic or coupled fluid-structural modes that may not 

have been important before can now become important. Therefore and again, more modes must be retained as 

control of the system is considered. 

It is sometimes said that the use of modes is only possible for a linear system. It is now widely, though not 

universally, appreciated that modes can be used for nonlinear systems as well. Having said that, for linear systems 

the use of eigenmodes is almost always the preferred choice for constructing a reduced order model. But for 

nonlinear systems other choices of modes may be preferred, e.g. the modes that can be constructed from Proper 

Orthogonal Decomposition, so called POD modes. These modes have been used very successfully by Dowell and 

colleagues at Duke, Beran and colleagues at the Air Force Research Laboratory (AFRL) and by Farhat and 

colleagues at Stanford. 

Finally, one can think of modes as a form of generalized Fourier series in the spatial domain. Therefore it is 

perhaps not surprising that a Fourier Series in time can also be very useful if the temporal response is periodic. As 

was the case for eigenmodes versus POD modes for the representation of the spatial domain of nonlinear systems, 

for nonlinear systems a standard Fourier Series or classical Harmonic Balance method may not be the best choice 

for describing the temporal response. The Higher Order Harmonic Balance method developed by Hall and his 

colleagues at Duke has proven to be a very effective method and it has now also been adopted and exploited by 

Jameson and colleagues at Stanford and Badcock and colleagues at Liverpool. A related method has also been 

developed by Beran and colleagues at AFRL. 

The remainder of the paper is organized as follows. In Section III.A transonic panel flutter and the effect of a 

viscous boundary layer is treated, in Section III.B the structural nonlinearity of freeplay and its effect on flutter and 

limit cycle oscillations (LCO) is discussed, in Section III.C reduced order modeling is summarized, in Section IV 

transonic flutter and LCO of lifting surfaces is reviewed and, finally, in Section V aerodynamic limit cycle 

oscillations are discussed, e.g. buffet, abrupt wing stall and non-synchronous vibration. The present discussion is not 

meant to be exhaustive of the study of either nonlinear aeroelasticity or the reduced order modeling. For example, 

the nonlinear aeroelasticity of very high aspect ratio, flexible wings is not treated here (for an introduction to that 

topic, see [2]) or the use of Volterra series for reduced order modeling (for an introduction to that topic see [4]). 

Also rotorcraft and turbomachinery aeroelasticity, morphing aircraft and other important topics are not treated here, 

but are nonetheless active areas of research as seen in papers at this SDM conference. The topics that have been 

chosen for this paper are representative of the active and productive work underway and are those for which the 

present author can claim some personal experience. 
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Figure 1: Schematics of Panel Flutter 

Problem 

 

III. Current Examples of Recent Advances 

A. Transonic and Subsonic Panel Flutter 

Although the vast majority of the literature on panel flutter analysis is devoted to high supersonic/hypersonic 

flow, many of the flutter incidents in practice have occurred in the low supersonic/transonic Mach number regime. A 

recent paper by Hashimoto, Aoyama and Nakamura [7] provides new insight into the importance of a viscous fluid 

boundary layer on the transonic flutter boundary. Previous work by Dowell [8] had shown this effect as well. But 

whereas Dowell used what is sometimes called a shear flow model that dates back to work of Lighthill and others, 

the more recent work of Hashimoto et al uses a modern CFD code that solves the Navier-Stokes equations within the 

framework of a Reynolds Averaged Navier-Stokes model. The shear flow model by contrast uses a mean flow that 

represents the boundary layer, but neglects the viscosity in the small perturbation equations of the fluid that arise 

from the panel oscillation. The more rigorous fluid model shows 

improved agreement with the excellent experiments of Muhlstein, 

Gaspers and Riddle [9]. 

    Figure 1 is a schematic of the panel and flow geometry. Figure 2 

shows the comparison between theory and experiment where the 

experimental data have been extrapolated to zero boundary layer 

thickness, δ/a = 0, where δ is the boundary layer thickness and a is 

the panel length. The theoretical results from Dowell are for transonic 

potential flow and those from Hashimoto et al are for inviscid Euler 

flow. The plot is of a non-dimensional dynamic pressure versus Mach 

number. The good agreement among all results is encouraging. 

Turning now to the case for a boundary layer thickness of δ/a = .1, a 
similar comparison is shown in Figure 3. Note that the flutter 

boundary predicted by theory and that determined experimentally has 

been very substantially changed from that for δ/a = 0, especially in 
the lower Mach number range. The dynamic pressure for flutter at M 

= 1.1 has been increased by a factor of 2-3 due to the viscous 

boundary layer. While the shear flow model used by Dowell is a 

substantial improvement over an inviscid analysis that neglects the 

boundary layer effect, the RANS flow model of Hashimoto et al is a 

notable further improvement and agrees better with experiment. 

Moreover, as Hashimoto et al note this is an excellent test case for new developments in CFD methodology for 

aeroelastic analysis in general and gives considerable confidence in the basic theory. They have also shown that in 

this particular case the results are not sensitive to the empirical turbulence model used in the RANS flow model. 

While subsonic panel flutter is unusual in aerospace applications it has been known for many years that panel 

flutter may occur at subsonic conditions under some circumstances [10]. Most notably if the trailing edge of the 

panel is free, then flutter will occur in subsonic flow. But, if the trailing edge, as well as the leading edge, of the 

panel is fixed then divergence (a static aeroelastic instability) will occur rather than flutter. Panel divergence is a 

form of aeroelastic buckling and, when the panel is in a buckled state, then oscillations in the flow due for example 

to engine or boundary layer noise may cause a buckled panel to “ oil can” from one buckled state to another. This is 

 
                  Figure 3: Flutter Boundary (Inviscid Case) 

 
     Figure 2: Flutter Boundary (Viscous Case) 
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sometimes referred to as “dynamic buckling” [10]. In experiments as well as in nonlinear numerical simulations it 
may be difficult to distinguish between limit cycle oscillations due to flutter and oil canning due to dynamic 

buckling. 

The classical example of subsonic panel flutter was described in the paper by Dugundji and colleagues [11] who 

considered a panel on an elastic foundation that can lead to a form of traveling wave flutter. Here recent work on 

subsonic flutter is emphasized. See [12,13]. The work of Tang, Yamamoto and Dowell [12] is for a panel clamped at 

its leading edge, but free on both side edges and, most importantly, free on its trailing edge. Both theoretical and 

experimental work has been done and the agreement between theory and experiment is very good for the prediction 

of flutter flow velocity and frequency.  However, in the experiments, hysteresis is observed that this is not predicted 

by the theory which includes a nonlinear structural model and a nonlinear vortex lattice aerodynamic model [12,13]. 

Moreover the amplitude of the limit cycle oscillation (LCO) that is observed in the experiment after the onset of 

flutter and indeed at lower flow velocities due to hysteresis is some two to three times greater than that predicted by 

the theoretical model. Currently the most plausible hypothesis for the differences between theory and experiment is 

that vortex shedding and flow separation may occur at the large amplitudes of the LCO. These effects are not 

included in the vortex lattice aerodynamic model, but would be included in a viscous flow model based upon the 

Navier-Stokes equations. 

Because the LCO amplitudes are on the order of the panel chord (LCO amplitudes of panels which are fixed on 

two opposing edges are typically much smaller and on the order of the panel thickness [11]), Tang, Paidoussis and 

Jiang [13] have suggested such a LCO is a prime candidate for energy harvesting. And they have analyzed this 

configuration inter alia using a similar theoretical model and obtained similar results. 

Figure 4 shows a stroboscopic picture of the panel in LCO during a wind tunnel test [12]. Note the amplitude of 

the LCO relative to the panel chord. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4: Flutter oscillations of an elastic panel with a clamped leading edge and all other edges free. Subsonic flow is from right to left. 

 

This configuration is also an example of what is sometimes referred to as “flag flutter”, but here the bending 
stiffness of the panel is dominant over the tension/membrane stiffness of the panel where the latter might be induced 

by gravity or shear stresses produced by a viscous flow. So this is a rather stiff “flag”. Current applications to micro 
airvehicles and coverings for gaps in conventional wing/control surfaces during landing may give rise to renewed 

interest in subsonic panel flutter for panels and/or thin membranes where both the bending stiffness and membrane 

stiffness may be important. 

B. Freeplay Induced Flutter and Limit Cycle Oscillations 

Freeplay is a concern with respect to control surface attachments, but it has also been suggested as a possible 

source of flutter and limit cycle oscillations in wing/store attachments. The latter is still an open area of 

investigation, but recent progress for freeplay in control surfaces offers an opportunity to enhance both analysis and 

design methods and may lead to a paradigm shift in design criteria. 

Here a brief review of history is provided, the results of recent advances in understanding based upon 

computations and wind tunnel testing are summarized and the current design criteria and the data on which they are 

based are reinterpreted in light of recent advances. 

Figure 5 is taken from one of a series of early reports [14] on the effect of freeplay on control surface flutter and 

limit cycle oscillations (LCO) conducted at the Wright Air Development Center, the predecessor to the Air Force 
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Research Laboratory. It is plot of the putative flutter velocity versus the total angular freeplay in an all movable 

control surface. The relevant conclusions drawn at that time from these data were the following. 

 

“The test data also show the variation in flutter speed as a function of free-play....” 

 

“Free-play in all movable controls should be limited to + or - 1/64 degrees unless it can be shown by means of 

experimental flutter model data that reasonable deviations from this free-play limit can be tolerated for the particular 

all-movable control design being considered.” 

 

This limit of + or - 1/64 degrees remains today more than fifty years later as the basic design criterion to 

preclude freeplay induced flutter (and limit cycle oscillations).  

Recent computational and experimental work [15-18] has shed new light on these earlier results. It is now 

understood that in fact, for an unloaded control surface, the flow velocity at which limit cycle oscillations (LCO) 

begins is independent of the degree of freeplay. Note that even in Figure 5 the early tests concluded that the flutter 

velocity was independent of the freeplay angle as this angle became large. 

However, it is now known that the amplitude of the LCO and the amount of loading required to preclude LCO is 

strongly dependent on the degree of freeplay. In fact the LCO amplitude scales in proportion to the degree of 

freeplay and the amount of loading required to suppress flutter/LCO does as well. For example, the LCO amplitude 

will be of the order of the degree of freeplay and if the loading is due to placing the airfoil at an angle of attack, the 

angle of attack required to totally eliminate freeplay is about five times the degree of freeplay. Thus for a freeplay of 

1/64 degrees the LCO amplitude will be about 1/64 degrees and an angle of attack of 5/64 degrees is sufficient to 

suppress the LCO altogether. This then likely explains the apparent variation of the flutter speed with freeplay angle 

shown in Figure 5 from the earlier tests. For small freeplay angles, it is likely the LCO amplitude was undetectable 

and/or unavoidable small amounts of angle of attack were sufficient to load the wing so that LCO was suppressed. 

More recent investigations by Tang and Dowell [15,16], Lee et al [17] and Schlomach [18] have confirmed the 

effect of freeplay and loading on LCO.  Figures 6 (full model view) and 7 (close up of the wire beam that moves 

between two rigid stops to produce freeplay) show the wind tunnel model from [11-13]. Figure 8 shows the LCO 

amplitude of the model versus flow velocity for plunge, pitch and flap (control surface) degrees of freedom of this 

model as well as the LCO frequency. Note the computational results are in very good agreement with the wind 

tunnel test data. These results are for zero angle of attack and a freeplay angle of 2.12 degrees. If the angle of attack 

is increased to 8 degrees, as shown in Figure 9 the range of flow velocity for which LCO exists is much decreased 

and a further increase in angle of attack to 10 degrees suppresses the LCO altogether. Note however that the flow 

velocity at which the LCO begins is not much changed by the angle of attack change. Results (not shown) also show 

that varying the degree of freeplay simply changes the LCO amplitude in proportion while the LCO frequency is 

unchanged [15-17]. 

Current work is underway to include the effect of a feedback control system in this model. 

The excellent work of Schlomach [18] for the F-35 program has provided independent verification of the above 

results and extended them into the high subsonic/transonic flow regime. As expected the quantitative agreement 

between theory and experiment is less satisfactory in the transonic regime because of the challenging environment 

for modeling the aerodynamic forces. However, even so, the same scaling laws for the effect of freeplay and loading 

were also found in this study. 
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Figure 5: Flutter Velocity Versus Freeplay 

 

 

Figure 6: Photograph of the Experimental Model with Gust 

Generator in the Wind Tunnel Test 
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C. Reduced Order Modeling of Unsteady Aerodynamics 

For an expanded discussion and reviews of this topic, see [1-

6]. 

1. Eigenmodes and POD Modes: 

The original impetus for such models was the thought that 

by using the eigenmodes of a computational fluid dynamics 

(CFD) model, one might construct a modal model of the fluid 

that is the counterpart for the modal model of a structure 

obtained from a finite element model (FEM). [1-6] And this 

turns out to be possible with some notable caveats. First of 

all, finding the eigenmodes of a CFD model is itself a 

formidable task because of the very large number of degrees 

of freedom in a typical CFD model. And indeed the use of Proper Orthogonal Decomposition (POD) to find a 

suitable set of fluid modes proves to be far more practical. However it is worth noting in passing that using POD 

modes one may find a good approximation to the dominant eigenmodes of a CFD model. Normally however one 

uses the POD modes themselves in an aeroelastic analysis. [3] 

Also it is worth noting that the fluid modal model is non-self adjoint and thus the fluid eigenvalues are complex 

with each fluid mode eigenvalue having both a frequency and a damping. Thus both the system and its adjoint must 

be considered when constructing the orthogonality relations for the complex eigenmodes. And perhaps most 

importantly, the eigenmodes and the POD modes can be very sensitive to small changes in system parameters, most 

notably there is a sensitivity to Mach number. Thus when using POD modes it is most convenient to fix the Mach 

number and vary the altitude or flow density for example. However Farhat [19-21] and his colleagues have made 

very good progress in showing how one may interpolate POD modes obtained at two different Mach numbers to 

obtain a good ROM model at intermediate Mach numbers thereby expanding the range of application of such 

ROMs. This interpolation proves to be surprisingly subtle. 

For a chronological development of this approach including the seminal paper by Romanowski [22], the reader 

may consult [22-29]. There is a discussion of the eigenmode and/or POD mathematical technique in most of these 

papers and readily accessible accounts are available in [3-6]. 

 

2. High Dimensional Harmonic Balance 

Here the essential idea is that most aeroelastic responses of interest are periodic in time. As those who have tried 

to compute the periodic in time limit cycle oscillation (LCO) using a time marching CFD code have observed, it 

takes a very long time to do so while waiting for the transient oscillation to decay in order to reach the steady state 

LCO. Indeed at the flutter point in parameter space which is usually the point at which LCO also begins, the 

damping in the critical aeroelastic mode is strictly speaking zero and the transient never decays. But even near the 

flutter point, the transients are usually very long. 

Thus it is natural to ask can one avoid computing the transient solution and compute the LCO directly. Classical 

Harmonic Balance has been used successfully in pursuit of this goal for low dimensional systems, e.g. the Duffing 

 
 

Figure 7: Close-Up of Freeplay Mechanism 
 

 

 
Figure 8: Theoretical and Experimental LCO 

R.M.S. Response Amplitudes and Frequency for 

the Initial Pitch Angles of α=0 and δ=2.12° 
 

 

 

 
Figure 9: Theoretical and Experimental LCO 

R.M.S. Response Amplitudes and Frequency for 

the Initial Pitch Angles of 0 = 80 and δ=2.12° 
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and Van der Pol oscillators. However for the high dimensional systems of interest using a nonlinear CFD model, the 

classical method becomes practically impossible. Thus Hall and colleagues [3] developed a significant extension to 

the classical Harmonic Balance method that is particularly useful for high dimensional dynamical systems such as 

those arising from CFD models. Other investigators have found this approach useful as well. See the work of 

Jameson et al [30,31] and Badcock [32]. 

For a chronological development of this approach including the seminal paper by Hall, Thomas and Clark [33], 

see [33-39]. For an accessible account of the mathematical formulation of the High Dimensional Harmonic Balance 

method, see [34,40]. Beran and Lucia [35] have developed a related approach that has some interesting alternative 

ideas. 

For systems that are not strictly periodic in time, but have two fundamental periods or frequencies, the classical 

and Higher Order Harmonic Balance Methods can also be useful if a Fourier Series for each period is constructed. If 

the system is nonlinear then the coupling between the (as well as within each of the) components of the two Fourier 

Series must be taken into account. While a system with only two fundamental periods may be thought to be rather 

limited from a mathematical point of view, in point of fact it includes systems of interest to aeroelasticians, e.g. an 

aeroelastic system undergoing a limit cycle oscillation of a certain period or frequency which is then excited by an 

external dynamic force such as a gust with its own characteristic 

frequency. 

 

3. Nonlinear Reduced Order Models Based Upon POD Modes 

and High Dimensional Harmonic Balance 

Thomas, Dowell and Hall [40] have recently combined the 

advantages of POD modes and High Dimensional Harmonic 

Balance to construct nonlinear reduced order models. In this 

approach, the solution is expanded in a Taylor Series with respect 

to CFD code parameters including variables such as Mach and the 

amplitude of the structural motion. If this expansion were done for 

each of the many fluid variable degrees of freedom that may 

number in the millions or more, the computation would quickly get 

out of hand. However if one relates the many flow variables 

through a coordinate transformation to the modal amplitudes of a 

relatively small number of POD modes, then the computational model can be made very efficient. The key then is to 

be able to differentiate the CFD code and its flow variables with respect to the POD modal amplitudes and this can 

be accomplished using adjoint automatic differentiation software that is now widely available [40]. In [40] this 

reduced order model is constructed in combination with a High Dimensional Harmonic Balance (HDHB) solver. In 

principle this POD approach could also be combined with a time marching solution algorithm, but that would not 

exploit the considerable advantages of the HDHB method. 

A representative result [40] is shown in Figure 10 where the results of the full CFD model and the reduced order 

model (ROM) are compared in a plot of LCO amplitude versus a reduced (non-dimensional) velocity. Results are 

shown for both a first and second order ROM. As can be seen the second order ROM is a distinct improvement over 

the first order ROM. Of course in principal one can go to a third order ROM etc. However in practice a better 

strategy is to choose a small number of full order solutions and expand in a Taylor Series up to say second order 

about each of them. Referring to Figure 10, it is seen that the common point on the three curves is the point about 

which the Taylor Series has been expanded. By choosing a few more such points, the several Taylor Series can be 

blended to produce the entire LCO response with sufficient accuracy. 

IV. Transonic Flutter and LCO of Lifting Surfaces 

This section* begins with a discussion of generic nonlinear aeroelastic behavior of wings especially as it relates 

to Limit Cycle Oscillations (LCO); then the important studies that come from flight experience with LCO are noted 

which have stimulated much of the other research on the subject. Next a summary is provided of the primary 

physical sources of fluid and structural nonlinearities that can lead to nonlinear aeroelastic response in general and 

LCO more particularly. 

                                                           
* This section is an abbreviated and revised version of [1]. 
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Figure 10: LCO Response Trends for the NLR 

 7301 Aeroelastic Configuration Including  

Reduced-Order-Model Results 
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A brief summary of unsteady aerodynamic models, both linear and nonlinear, is then given before turning to the 

heart of the section that provides a critique of  the results obtained to date via various methods using as a framework 

correlations between theory and experiment. 

A. Generic Nonlinear Aeroelastic Behavior 

There are several basic concepts that will be helpful for the reader to keep in mind throughout the discussion to 

follow. The first is the distinction between a static nonlinearity and a dynamic one. In the aeroelasticity literature the 

term “linear system” may either mean a (mathematical or wind tunnel) model or flight vehicle that is both statically 

and dynamically linear in its response or one that is nonlinear in its static response,  but linear in its dynamic 

response. So we will usually qualify the term “linear model” further by noting whether the system is dynamically 
linear or both statically and dynamically, i.e. wholly linear. 

An example of a system which is wholly linear is a structure whose deformation in response to either static or 

dynamic forces is (linearly) proportional to those forces. An aerodynamic flow is wholly linear when the response 

(say change in pressure) is (linearly) proportional to changes in downwash or fluid velocities induced by the shape 

or motion of a solid body in the flow. This is the domain of classical small perturbation aerodynamic theory and 

leads to a linear mathematical model (convected wave equation) for the fluid pressure perturbation or velocity 

potential. Shock waves and separated flow are excluded from such flow models that are both statically and 

dynamically linear. A wholly linear aeroelastic model is of course one composed of wholly linear structural and 

aerodynamic models. 

A statically nonlinear, but dynamically linear structure is one where the static deformations are sufficiently large 

that the static response is no longer proportional to the static forces and the responses to the static and dynamic 

forces cannot simply be added to give meaningful results. Buckled skin panels (buckling is a nonlinear static 

equilibrium that arises from a static instability) that dynamically respond to (not too large) acoustic loads or the 

prediction of the onset of their dynamic aeroelastic instability (flutter) are examples where a statically nonlinear, but 

dynamically linear model may be useful. 

In aerodynamic flows, shock waves and separated flows are themselves the result of a dynamically nonlinear 

process. But once formed they may often be treated in the aeroelastic context as part of a nonlinear static 

equilibrium state (steady flow). Then the question of the dynamic stability of the statically nonlinear fluid-structural 

(aeroelastic) system may be addressed by a linear dynamic perturbation analysis about this nonlinear static 

equilibrium. Sometime such aerodynamic flow models are call time linearized. 

Of course if one wishes to model limit cycle oscillations and the growth of their amplitude as flow parameters 

are changed, then either or both the structural and the aerodynamic model must be treated as dynamically nonlinear. 

Often a single nonlinear mechanism is primarily responsible for the limit cycle oscillation. However, one may not 

know apriori which nonlinearity is dominant unless one has designed a mathematical model, wind tunnel model or 

flight vehicle with the chosen nonlinearity. Not the least reason why limit cycle oscillations are more difficult to 

understand in flight vehicles (compared to say mathematical models) is that rarely has a nonlinearity been chosen 

and designed into the vehicle. More often one is dealing with an unanticipated and possibly unwanted nonlinearity. 

Yet sometimes that nonlinearity is welcome because without it the limit cycle oscillation would instead be replaced 

by catastrophic flutter leading to loss of the flight vehicle. 

It must be emphasized that the variety of possible nonlinear aeroelastic responses is not limited to ‘Limit Cycle 
Oscillations (LCO)’ per se.  In the context of nonlinear system theory [41], an LCO is one of the simplest dynamic 
bifurcations.  Other common possible nonlinear responses include higher harmonic and subharmonic resonances, 

jump-resonances, entrainment, beating and period doubling to name only a few.  These responses have been studied 

using low order model problems in the nonlinear dynamics literature; however in aeroelastic wind tunnel and flight 

testing the detailed knowledge required to identify these nonlinear responses has rarely been available.   

  Now consider the generic types of nonlinear dynamic response that may occur, i.e. limit cycle oscillations and 

the variation of their amplitude with flight speed (or wind tunnel velocity). Of course the frequency of the LCO may 

vary with flight parameters as well, but usually the frequency is near that predicted by a classical linear dynamic 

stability (flutter) analysis. 

The generic possibilities are indicated in Figure 11a and 11b where the limit cycle amplitude is plotted vs. some 

system parameter, e.g. flight speed. In Figure 11a, an aeroelastic system is depicted that is stable to small or large 

disturbances (perturbations) below the flutter (instability) boundary predicted by a linear dynamical model. Beyond 

the flutter boundary, LCO arise due to some nonlinear effect and typically the amplitude of the LCO increases as the 

flight speed increases beyond the flutter speed. In Figure 11b, the other generic possibility is shown. While again 

LCO exist beyond the flutter boundary, now LCO may also exist below the flutter boundary, if the disturbances to 

the system are sufficiently large. Moreover both stable (solid line) and unstable (dotted line) LCO now are present. 



 

American Institute of Aeronautics and Astronautics 
 

 

9 

Stable LCO exist when for any sufficiently small disturbance, the motion returns to the same LCO at large time. 

Unstable LCO are those for which any small perturbation will cause the motion to move away from the unstable 

LCO and move toward a stable LCO. Theoretically, in the absence of any disturbance both stable and unstable LCO 

are possible dynamic, steady state motions of the system. Information about the size of the disturbance required to 

move from one stable LCO to another can also be obtained from data such as shown in Figure 11b. Note also the 

hysteretic response as flight speed increases and then decreases. 

B. Flight Experience with Nonlinear Aeroelastic Effects 
Much of the flight experience with aircraft LCO has been 

documented by the Air Force SEEK EAGLE Office at Eglin AFB 

and is described in several publications by Denegri and his 

colleagues [42-45]. Most of this work has been in the context of 

the F-16 aircraft. Denegri distinguishes among three types of LCO 

based upon the phenomenological observations in flight and as 

informed by classical linear flutter analysis. “Typical LCO” is 
when the LCO begins at a certain flight condition and then with 

say an increase in Mach number at constant altitude the LCO 

response smoothly increases. “Flutter”, as distinct from LCO, is said to occur when the increase in LCO amplitude 
with change in Mach number is so rapid that the safety of the vehicle is in question. And finally “atypical LCO” is 
said to occur when the LCO amplitude first increases and then decreases and perhaps disappears with changes in 

Mach number. This is also sometimes called a “hump” mode.  Often changes in flight vehicle angle of attack lead to 
similar generic LCO responses to those observed with changes in Mach number. 

It has long been recognized [46] that the addition of external stores to aircraft changes the dynamic 

characteristics and may adversely affect flutter boundaries. Limit cycle oscillations (LCO) remain a persistent 

problem on high performance fighter aircraft with multiple store configurations. Using measurements obtained from 

flight tests, Bunton and Denegri [47] describe LCO characteristics of the F-16 and F/A-18 aircraft. While LCO can 

be present in any sort of nonlinear system, in the context of aeroelasticity, LCO typically is exhibited as an 

oscillatory response of the wing, the amplitude of which is limited, but dependent on the nature of the nonlinearity 

as well as flight conditions, such as speed, altitude, and Mach number. The LCO motion is often dominated by 

antisymmetric modes. LCO are not described by standard linear aeroelastic analysis, and they may occur at flight 

conditions below those at which linear instabilities such as flutter are predicted. Although the amplitude of the LCO 

may rise above structural failure limits, more typically the presence of LCOs results in a reduction in vehicle 

performance, leads to airframe-limiting structural fatigue, and compromises the ability of pilots to perform critical 

mission-related tasks. When LCO are unacceptable, extensive and costly flight tests for aircraft/store certification 

are required.  

Denegri [42,43] suggests that for the F-16, the frequencies of LCO might be identified by linear flutter analysis; 

however, linear analysis fails to predict the oscillation amplitude or the onset velocity for LCO. Thus, nonlinear 

analysis will be necessary to predict the onset of the LCO and their amplitudes with changing flight conditions.  

1. Nonlinear Aerodynamic Effects 

 There are several other flight experiences with limit cycle oscillations in addition to the F-16 including those for 

example with the F-18, the B-1 and B-2. Most of these LCO have been attributed by investigators to nonlinear 

aerodynamic effects due to shock wave motion and/or separated flow. However, there is the possibility that 

nonlinear structural effects involving stiffness, damping or freeplay may play a role as well. Indeed, much of the 

present day research and development effort is devoted to clarifying the basic mechanisms responsible for nonlinear 

flutter and LCO. For an authoritative discussion of these issues see Cunningham et al [48-50], Denegri [41-45] on 

the F-16 and F-18, Dobbs [51], Hartwich [52] on the B-1 and Britt, Jacobsen and Dreim [53] on the B-2. Recent 

experimental evidence from wind tunnel tests is beginning to shed further light on these matters as are advances in 

mathematical and computational modeling. 

2. Freeplay 

 There have been any number of aircraft that have experienced flutter induced limit cycle oscillations as a result 

of control surface freeplay. These are not well documented in the public literature, but are more known by word of 

mouth among practitioners and perhaps documented in internal company reports and/or restricted government files. 

 A recent and notable exception is the account in Aviation Week and Space Technology by Croft [54] of a 

flutter/limit cycle oscillation as a result of freeplay. In many ways this account is typical. The oscillation is of 

limited amplitude and there was a reported disagreement between the manufacturer and the regulating governmental 

 
Figures 11a and 11b 
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agency as to whether this oscillation was or was not sufficiently large as to be a threat to the structural integrity of 

the aircraft structure.  See also Section 3.2 of this paper. 

3. Geometric Structural Nonlinearities 

 Another not infrequently encountered and documented case is the limit cycle oscillation that follows the onset of 

flutter in plate-like structures. The structure has a nonlinear stiffening as a result of the tension induced by mid-plane 

stretching of the plate that arises from its lateral bending. This is most commonly encountered in what is often called 

panel flutter where a local element of a wing or fuselage skin encounters flutter and then a limit cycle oscillation. 

There have been many incidents reported in the literature dating back to the V-2 rocket of World War II, the X-15, 

the Saturn Launch Vehicle of the Apollo program and continuing on to the present day. Some of these are discussed 

in a monograph by Dowell [55] and also a NASA Special Publication by Dowell [56].  See also Section 3.1 of this 

paper. 

 It has been recently recognized that low aspect ratio wings may behave as structural plates and thus the entire 

wing may undergo a form of plate-like flutter and limit cycle oscillations. This has been seen in both wind tunnel 

models and computations to be discussed later. However there is not yet a clearly documented case of such behavior 

in flight. 

C. Physical Sources of Nonlinearities 

Several physical sources of nonlinearities have been identified through mathematical models (in almost all 

cases), wind tunnel tests (in several cases) and flight tests (less often). Among those most commonly studied and 

thought to be important are the following. Large shock motions may lead to a nonlinear relationship between the 

motion of the structure and the resulting aerodynamic pressures and forces that act on the structure. If the flow is 

separated (perhaps in part induced by the shock motion) this may also create a nonlinear relationship between 

structural motion and the consequent aerodynamic flow field. 

Structural nonlinearities can also be important and are the result of a given (aerodynamic) force on the structure 

creating a response that is no longer (linearly) proportional to the applied force. Freeplay and geometric 

nonlinearities are prime examples (already mentioned). But the internal damping forces in a structure may also have 

a nonlinear relationship to structural motion, with dry friction being an example that has received limited attention to 

date. Because the structural damping is usually represented empirically even within the framework of linear 

aeroelastic mathematical models, not much is known about the fundamental mechanisms of damping and their 

impact on flutter and LCO. 

All of these nonlinear mechanisms have nevertheless been considered by the mathematical modeling community 

and several have been the subject of wind tunnel tests as well. In some cases good correlation between theory and 

experiment has been obtained for limit cycle oscillation response. 

D. Efficient and Accurate Computation of Unsteady Aerodynamic Forces: Linear and Nonlinear 

The literature on unsteady aerodynamic forces alone is quite extensive. A comprehensive assessment of current 

practice in industry is given by Yurkovich, Liu and Chen [57]. An article that focuses on recent developments is that 

of Dowell and Hall [3]. Other recent and notable discussions include those of Bennett and Edwards [58] and Lucia, 

Beran and Silva [4]. Much of the present focus of work on unsteady aerodynamics is on developing accurate and 

efficient computational models. Standard computational fluid dynamic [CFD] models and solution methods that 

include the relevant fluid nonlinearities are simply too expensive now and for some time to come for most 

aeroelastic analyses. Thus there has been much interest in reducing computational costs while retaining the essence 

of the nonlinear flow phenomena.  See Section 3.3 of this paper. 

E. Experimental/Theoretical Correlations 

Much of what we know about the state of the art with respect to nonlinear aeroelasticity comes from the study of 

correlations between experiment and theory and between various levels of theoretical models. Hence the remainder 

of this discussion is largely devoted to such correlations and the lessons learned from them. The correlations 

selected are representative of the state of the art for transonic flutter boundaries and limit cycle oscillations. 

 

Flutter Boundaries in Transonic Flow: 

 
AGARD 445.6 WING MODELS – Bennett and Edwards [58] have discussed the state of the art of Computational 

Aeroelasticity (CAE) in a relatively recent paper and made several insightful comments about various correlation 

studies. The NASA Langley team pioneered in providing correlations for the AGARD 445.6 wing in the transonic 

flow region. For this thin wing, there are no significant transonic effects in the steady flow over the wing surface at 
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the Mach numbers with experimental results except for M=0.96 where there is a very weak shock on the surface. For 

the subsonic conditions, all computational results are in very good agreement with experiment. However, the two 

low supersonic test conditions have been problematic for CAE. Inviscid flow (Euler) computations have produced 

high flutter speed index (FSI) values relative to the experimental FSI and viscous flow (Navier-Stokes) 

computations have accounted for about one half the difference between theory and experiment.  Several 

investigators have now done similar Euler calculations and obtained similar results [59-61]. The excellent agreement 

of the wholly linear theory results with experiment should probably be regarded as fortuitous. Interestingly, Gupta 

[62], who also used an Euler based CFD model, obtains results in better agreement with experiment at the low 

supersonic conditions, though in less good agreement with experiment than the other Euler based results at subsonic 

conditions. Thus, CAE computations for this low supersonic region have unresolved issues which probably involve 

details such as wind tunnel wall interference effects and flutter test procedures, as well as CAE modeling issues. 

 

HSCT Rigid and Flexible Semispan Models – Two semispan models representative of High Speed Civil Transport 

(HSCT) configurations were tested in the NASA Langley Research Center Transonic Dynamics Tunnel (TDT) in 

heavy gas.  A Rigid Semispan Model (RSM) was tested mounted on an Oscillating Turn Table (OTT) and on a Pitch 

And Plunge Apparatus (PAPA).  The RSM/OTT test [63] acquired unsteady pressure data due to pitching 

oscillations and the RSM/PAPA test acquired flutter boundary data for simple pitching and plunging motions.  The 

RSM test [64] involved an aeroelastically-scaled model and was mounted to the TDT sidewall.  The test acquired 

unsteady pressure data and flutter boundary data.  The results show the unexpectedly large effect of mean angle of 

attack upon the flutter boundaries for the RSM/PAPA model.  Flutter of thin wings at subsonic conditions is 

typically independent of angle-of-attack within the linear flow region.  A region of increased response in first wing 

bending (8.5 Hz.) was encountered in the Mach number range of 0.90-0.98.  Finally, a narrow region of LCO 

behavior, labeled ‘chimney’, was encountered for M = 0.98-1.00 and over a wide range of dynamic pressures.   

 

Benchmark Active Control Technology (BACT) Model - This rectangular wing model had an aspect ratio of two 

and a NACA 0012 airfoil section. [65,66]   It was mounted on a pitching and plunging apparatus which allowed 

flutter testing with two structural degrees of freedom.  It was extensively instrumented with unsteady pressure 

sensors and accelerometers and it could be held fixed (static) for forced oscillation testing or free for dynamic 

response measurements.  Data sets for trailing-edge control surface oscillations and upper-surface spoiler 

oscillations for a range of Mach numbers, angle of attack, α, and static control deflections are available.  The model 
exhibited three types of flutter instability. 

 

A classical flutter boundary was found for 2 deg,   as a conventional boundary of flow density versus Mach 

number with a minimum, the transonic ‘dip’, near M = 0.77 and a subsequent rise.  Stall flutter was found, for 
4 deg,   near the minimum of the flutter boundary (and at most tunnel conditions where high angles of attack 

could be attained).  Finally, a narrow region of instability occurred near M = 0.92 consisting of plunging motion at 

the plunge mode wind-off frequency.  This type of transonic instability has sometimes been termed single-degree-

of-freedom flutter.  It is caused by the fore and aft motion of symmetric shocks on the upper and lower surfaces for 

this wing.  It was very sensitive to any biases and did not occur with nonzero control surface bias or nonzero alpha.  

Such a stability boundary feature is sometimes termed a ‘chimney’ since the oscillations are typically slowly 
diverging or constant amplitude (LCO) and it is found, sometimes, that safe conditions can be attained with small 

further increases in Mach number.   

Computational studies by Kholodar et al [67] were conducted to correlate with the flutter boundary obtained 

experimentally by Rivera et al [68].  Kholodar’s inviscid calculation agreed very well with the experimental findings 

except for M ≈ 0.88 to M ≈ 0.95 where a “plunge instability region” occurred.   
Experimental data for the flutter boundary were not obtained at Mach numbers just below the plunge instability 

region.  Using an inviscid aerodynamic model in the flutter calculations, no flutter solutions could be obtained for 

0.82 < M < 0.92 except at very low flow densities (inverse mass ratios).  This is approximately the same region for 

which experimental results were unavailable.  Kholodar conjectured this indicated that in this region, the flutter 

mass ratio (inversely proportional to flow density or dynamic pressure) rose precipitously as the airfoil entered a 

single degree-of-freedom flutter mode.  Conversely, flow density (or inverse mass ratio) dropped precipitously.   

Viscous CFD results obtained by Schwarz et al [69] revealed a number of surprising characteristics.  First, 

whereas inviscid aerodynamics made flutter solutions difficult to find in the region 0.82 ≤ M ≤ 0.91 due to the sharp 

increase in flutter mass ratio, µ; by contrast, viscous results on a 193 x 49 CFD grid yielded readily detectable 

solutions.  However, these viscous solutions showed some sensitivity to Mach number.  
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A grid refinement study was performed by Schwarz et al [69] to verify the results obtained on the nominal 193 x 

49 grid.  The flutter condition was recomputed on a coarser 97 x 25 grid and also a fine 385 x 97 grid at select Mach 

numbers, chosen to be representative of the range of Mach numbers examined.  This study showed that the coarse 97 

x 25 grid had insufficient resolution and produced results in poor 

agreement with experiment at low subsonic as well as transonic 

Mach numbers. 

Results on the 385 x 97 computational mesh agreed with 

those on the nominal 193 x 49 mesh except for a narrow range of 

transonic Mach numbers.  For M ≈ 0.84 – 0.86, computations on 

this mesh showed flow shedding to be occurring, a phenomenon 

not seen on the coarser meshes (shedding or buffeting is an LCO 

of the flow alone, even in the absence of structural motion).  The 

range in which this shedding occurred agrees very closely with 

the Mach number range for which experimental results were not 

obtained, approximately 0.82 < M < 0.88.   As seen in Figure 12, 

predictions on the 193 x 49 and 385 x 97 viscous grids largely 

agreed outside of this shedding region.  

Shedding or buffeting prohibits a linear flutter analysis at the 

Mach numbers for which it occurs, because it violates the 

assumption that the flow behaves in a dynamically linear way for 

small motions of the airfoil.  Still, the present calculation provides an insight into the flutter experiment.  The 

occurrence of shedding correlates with the range of Mach numbers for which airfoil motions became erratic in the 

experiments, indicating that shedding may have led to this unusual behavior.  

 

F-16 

The computed flutter boundaries for eight F-16 wing/store 

configurations are shown in Figure 13 in terms of altitude versus 

Mach number based upon standard atmospheric conditions.  Note 

the Mach number range over which flutter may occur varies 

substantially from one configuration to the next.  In these 

calculations, the viscous Reynolds Averaged Navier Stokes 

(RANS) version of the Duke University harmonic balance solver 

was used [70].  Calculations for some of these configurations were 

also done using an Euler version of the CFD code.  In general, the 

Euler code provides similar trends for the flutter onset boundary, 

but there are some quantitative differences, i.e. as much as 25%.  

Note that in Figure 13 there are no results for Configuration #7.  

This is because no flutter or LCO was found in the Mach number 

range shown which is in agreement with the flight test results.  

Also for configuration #6, flight tests were stopped at Mach 

numbers less than the highest shown in Figure 13.  Again no flutter 

or LCO was found in the flight test in agreement with the 

computations.  Moreover the computed flutter boundaries shown in Figure 13 generally agree reasonably well with 

the flight test results as seen in Figure 14.  Note that a range of Mach number is shown for configuration #5 for both 

computed and flight test results in Figure 14.  This is because flutter and LCO occur over a range of Mach number 

for configuration #5 with flutter/LCO starting at the lowest Mach number shown and ending at the highest Mach 

number shown.  Recall Figure 13.  This is sometimes called a “hump” flutter/LCO mode.   
A comparison between measured and computed frequencies at Mach numbers just beyond the onset of LCO for 

the several configurations where LCO was observed shows the agreement is generally quite good and it is noted that 

the LCO frequency does not vary rapidly with Mach number [70]. 

Limit Cycle Oscillations: 

 Airfoils with structural stiffness and freeplay nonlinearities 

 
Figure 12: Flutter inverse mass ratio versus Mach 

number from viscous and inviscid CFD results and 

experimental data from Rivera [68]. 

 

 
Figure 13: Computed F-16 Fighter Flutter Onset 

Altitude versus Mach Number 
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Some investigators have considered configurations with a variety of nonlinear stiffness and freeplay structural 

nonlinearities. For a description of the work on freeplay nonlinearities, see the article by Dowell and Tang [71] 

which focuses on correlations between theory and experiment as well as Section 3.2 of the present paper. In general 

good quantitative correlation is found for simple wind tunnel models and the basic physical mechanism that leads to 

LCO appears well understood. Among the important insights developed include the demonstration that the LCO 

amplitude and the effect of mean angle of attack on LCO 

amplitude both simply scale in proportion to the range of freeplay 

present in the aeroelastic system.  This result has received further 

confirmation from the excellent study of Schlomach for the F-35 

aircraft program [18]. 

An example of another stiffness nonlinearity is described next. 

 

 Delta wings with geometrical plate nonlinearities 

At low Mach numbers good correlation has been demonstrated 

between theory and experiment for LCO amplitudes and 

frequencies. Since these results are well documented elsewhere, 

see Dowell and Tang [71], here the recent work of Gordnier et al 

[72,73] that has extended these correlations into the transonic 

range for a cropped delta wing planform is emphasized. This 

configuration had been investigated experimentally by Schairer 

and Hand [74] and the theoretical calculations were done by 

Gordnier et al using both Euler and Navier-Stokes flow models. 

Initially the theoretical calculations were done using a linear 

structural model, which gave predicted LCO amplitudes much 

greater than those observed experimentally. This led Gordnier to include nonlinearities in the structural model via 

Von Karman’s nonlinear plate theory that provided much improved correlation between theory and experiment. 
Note that the effects of viscosity are modest based upon the good agreement of results using the Euler vs Navier-

Stokes models. Also the much improved agreement obtained with the nonlinear structural model suggests that 

aerodynamic nonlinearities per se are not as significant for this configuration as are the structural nonlinearities. 

 

 Large shock motions and flow separation 

These aerodynamic nonlinearities are both the most difficult to model theoretically and also to investigate 

experimentally. Hence it is not surprising that our correlations between theory and experiment are not yet what we 

might like them to be. As a corollary one might observe that it will in all likelihood be easier to design a favorable 

nonlinear structural element to produce a benign LCO, than to assure that flow nonlinearities will always be 

beneficial with respect to LCO. 

 

AGARD 445.6 Wing Models  
The AGARD 445.6 wing has been discussed earlier in 

terms of its flutter boundary; now we turn to results from 

Thomas, Dowell and Hall [75] for LCO. The correlation 

between theory and experiment for the flutter boundary is 

shown in Figure 15 where the Euler flow model is that of 

Thomas et al. But now we have in addition results for LCO 

amplitude versus FSI for various Mach number. See Figure 

16. Note that a value of first mode non-dimensional modal 

amplitude of ξ=0.012 as shown in this figure corresponds to a 
wing tip deflection equal to one fourth of the wing half-span. 

Note there is no Mach number for which a benign LCO is 

predicted and subcritical LCO is predicted at M=1.141 and 

1.072. This means that LCO may occur below the flutter 

boundary at these two Mach numbers and perhaps this 

explains at least in part why flutter (or really an unstable 

LCO) occurred in the experiment below the predicted flutter 

boundary. 

 
Figure 14: Flutter Mach Number Characteristics 

for Each F-16 Fighter Configuration 

 

 
Figure 15: Flutter Speed Index vs. Mach Number for AGARD  

Wing 445.6: Comparison of Theory and Experiment 
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Small amplitude LCO behavior for the AGARD 445.6 

wing has also been calculated by Edwards [76]. The 

majority of published calculations for this wing model 

(actually a series of models with similar planforms) are for 

the “weakened model #3” tested in air, since this test 

covered the largest transonic Mach number range and 

showed a significant transonic dip in the flutter boundary. 

The focus on this particular configuration may be in some 

ways unfortunate, in that the model tested in air resulted in 

unrealistically large mass ratios and small reduced 

frequencies. Weakened models #5 and #6 were tested in 

heavy gas and had smaller mass ratios and higher reduced 

frequencies. Very good agreement was obtained with 

experiment for flutter speed index using the CAP-TSDV 

code over the Mach number range tested. For the highest 

Mach number tested, M=0.96, it was noted that damping 

levels extracted from the computed transients were 

amplitude dependent, an indicator of nonlinear behavior. It was also found that small amplitude divergent (in time) 

responses used to infer the flutter boundary would transition to LCO when the calculation was continued further in 

time. The wing tip amplitude of the LCO was approximately 0.12 inches peak-to-peak, a level that is unlikely to be 

detected in wind tunnel tests given the levels of model response to normal wind tunnel turbulence. 

 

MAVRIC Wing Flutter Model – This business jet wing-

fuselage model (see Edwards [77,78]) was chosen by NASA 

Langley Research Center’s Models For Aeroelastic 

Validation Involving Computation (MAVRIC) project with 

the goal of obtaining experimental wind-tunnel data suitable 

for Computational Aeroelasticity (CAE) code validation at 

transonic separation onset conditions.  LCO behavior was a 

primary target. An inexpensive construction method of 

stepped-thickness aluminum plate covered with end-grain 

balsa wood and contoured to the desired wing profile was 

used.  A significant benefit of this method was the additional 

strength of the plate that enabled the model to withstand 

large amplitude LCO motions without damage. 

 

The behavior of the MAVRIC model as flutter was 

approached during the wind tunnel test indicated that wing 

motions tended to settle to a large amplitude LCO condition, 

especially in the Mach number range near the minimum FSI 

conditions.  Figure 17 demonstrates [78] the ability of the 

CAP-TSDV code to simulate these large amplitude LCO 

motions. Large and small initial condition disturbance 

transient responses clearly show the six inch peak-to-peak 

wingtip motions observed in the tests.  Such large amplitude 

aeroelastic motions have not been demonstrated by RANS CFD codes which have difficulty maintaining grid cell 

structure for significant grid deformations. Figure 18 shows the map of the regions of LCO found in the MAVRIC 

test in the vicinity of the minimum FSI (clean wingtip, 6   deg.) [78].  Numbers for the several contours in the 

figure give the half-amplitude of wingtip LCO motions, in g’s, in the indicated regions.  Two regions, signified by 

‘B’, are regions where ‘beating’ vibrations were observed.  For this test condition, wing motions are predominantly 
of the wing first bending mode at a frequency of 7-8 Hz. (wind-off modal frequency is 4.07 Hz.).  Two chimney 

features are seen, at M ~ 0.91 and at M ~ 0.94.  Edwards discusses flutter model responses which are indicative of 

more complex nonlinear behaviors than are commonly attributed to LCO.  Thus, flutter test engineers are familiar 

with responses such as ‘bursting’ and ‘beating,’ commonly used as indicators of the approach to flutter (and LCO).  
 

 
Figure 16: LCO Amplitude vs Flutter Speed Index 

(Reduced Velocity) for Various Mach Number for 

AGARD 445.6 Wing 

 

 
Figure 17: Transient Response Leading to a LCO: 

Simulation for Mavric Wing 
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Clipped-Tip Delta Wing Control Surface Buzz Model – Parker 

et al [79] describe a test of a clipped-tip delta wing model with a 

full span control surface.  The tests were conducted in air which is 

of concern since there are known to be severe Reynolds number 

and/or transition effects for this tunnel at dynamic pressures below 

50-75 pounds per square foot.  Pak and Baker [80] have performed 

computational studies of this case.  They compare the 

experimental buzz boundary with time-marching transient 

responses calculated with the CFL3D-NS code and the CAP-

TSDV code, respectively.  Both codes capture LCO behavior near 

the experimental buzz conditions with the higher level code 

appearing to have better agreement for the experimental trend 

versus Mach number.  The record lengths of a number of the 

responses, which are extremely expensive to compute, are not 

sufficient for clear determination of the response final status.  

Also, LCO behaviors can result from very delicate force balances 

and settling times to final LCO states can require many cycles of 

oscillation. 

 

Residual Pitch Oscillations on the B-2 – The B-2 bomber encountered a nonlinear aeroelastic Residual Pitch 

Oscillation (RPO) during low altitude high speed flight [53]. Neither the RPO nor any tendency of lightly damped 

response had been predicted by wholly linear aeroelastic design methods.  The RPO involved symmetric wing 

bending modes and rigid body degrees of freedom.  It was possible to augment the CAP-TSDV aeroelastic analysis 

code with capability for the longitudinal short-period rigid body motions, vehicle trim, and the full-time active flight 

control system including actuator dynamics.  This computational capability enabled the analysis of the heavyweight, 

forward center of gravity flight condition [53].  The simulation predicts open loop instability at M = 0.775 and 

closed loop instability at M = 0.81 in agreement with flight test.  In order to capture the limit cycle behavior of the 

RPO it was necessary to include modeling of the nonlinear hysteretic response characteristic of the B-2 control 

surfaces for small amplitude motions.  This is caused by the 

small overlap of the servohydraulic control valve spool flanges 

with their mating hydraulic fluid orifices.  With this realistic 

actuator modeling also included, limited amplitude RPO motions 

similar to those measured in flight were simulated.  A lighter 

weight flight test configuration exhibited very light damping near 

M = 0.82 but did not exhibit fully developed RPO.  Instead 

damping increased with slight further increase in speed, typical 

of hump mode behavior.  The CAP-TSDV simulations did not 

capture this hump mode behavior. 

 

F-16 – In Figure 19, a comparison of computational and flight 

test results is shown for Configuration #1 for both the flutter 

boundary and also for LCO response [70].  This is a plot of wing 

tip acceleration response versus Mach number at a fixed altitude 

of 2000 feet.  The flight test results are shown by the curve with 

open circles.  Three different computational results are shown.  

The curve with open squares shows the results for the nominal 

configuration with the aerodynamics of the stores neglected.  The 

curve with open triangles includes the effects of the 

aerodynamics of the wing tip launcher using slender body aerodynamic theory.  Note this curve is in better 

agreement with the flight test data.  Finally the curve with open diamonds is for a one percent change in one of the 

structural frequencies.  Here the computational model has been “tuned” to the experiment to give better agreement 
with the measured LCO frequency. That in turn has led to better agreement between computation and measurement 

for the LCO amplitude. Of course if a change in structural frequency in the opposite direction is made, this leads to 

poorer agreement between computations and flight test with the LCO response curve moving a similar amount from 

the nominal response but in the opposite direction.  So what has been shown by the “tuning” is that the results for 
this configuration are sensitive to small plausible changes in the structural frequencies.  

 
Figure 18: Dynamic Pressure vs. Mach Number 

Contours of Constant LCO Amplitude for Mavric 

Wing 

 

 
Figure 19: F-16 Configuration #1 Computed and 

Flight Test Forward Wingtip Launcher 

Accelerometer LCO Response Level versus Mach 

Number for an Altitude of 2000 feet and a Mean 

Angle-of-Attack of α0=1.5 degrees. 
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A final word about the correlation between computations and flight test is warranted.  Note that the computations 

show a precise Mach number at which flutter and the onset of LCO occurs, i.e. when the wing tip acceleration is 

zero.  This is because we have neglected the gust response of the aircraft to atmospheric turbulence as is traditional 

in flutter and LCO calculations.  Of course in the flight test there is always some (small) response even when there is 

no flutter or LCO due to atmospheric turbulence.  Thus it is impossible to define a precise Mach number at which 

flutter begins from the flight test data shown in Figure 19.  Indeed inferring a flutter Mach number from flight test 

data is a difficult art and requires a deeper study of the test data than simply a plot such as shown in Figure 19.  On 

the other hand, for the present purpose, this is not crucial.  From Figure 19, it is clear that neither flutter nor LCO is 

occurring for Mach numbers less than M∞= 0.8, but flutter onset and LCO do occur for Mach numbers greats than 

M∞= 0.85.  And thus one can compare the computed flutter Mach number to this range from the test data.  For LCO 

per se, the major goals are predicting the maximum LCO response level and the frequency and structural modal 

content of the LCO.  The frequency and modal content are well predicted by the computational model [70], and the 

maximum response is reasonably well predicted as well for this configuration.  See Figure 19.  Note in particular 

that both flight test and computations show the flutter and LCO motion is anti-symmetric. 

 
Time Marching Codes Compared to Various Experimental Results - In the paper by Huttsell et al [81] several 

state of the art time marching CFD codes are used to investigate flutter and LCO for challenging cases drawn from 

flight or wind tunnel tests. The CAP-TSD, CAP-TSDV, CFL3D and ENS3DAE codes are all used. The results are 

extremely helpful in providing a realistic assessment of the state of the art of these codes and they are also indicative 

future needs and improvements. For the F-15 aircraft example, difficulty was encountered in producing a 

computational grid with negative volumes being encountered. For the AV8-B aircraft a steady state flow field could 

not be found due to oscillations in the numerical solver from one iteration to the next. These difficulties are not 

unusual for CFD codes in the present authors' experience. Sometimes the difficulty in achieving a steady flow 

solution is attributed to shedding in the flow field, but in the absence of a full nonlinear dynamic CFD calculation, 

that must remain a speculation. For the B-2 aircraft example encouraging agreement was obtained for the frequency 

and damping variation of the critical flutter (and LCO) mode as a function of flight speed using the CAP-TSDV 

code. For the B-1 estimates of the damping associated with LCO were computed using the CFL3DAE code and 

favorably compared to those found in wind tunnel tests. It is not entirely clear what the “damping” of an LCO 
means, however, since by definition LCO is a neutrally stable motion. Two control surface “buzz” cases were 
considered and CFL3DAE had some success in predicting the behavior observed in the wind tunnel for a NASP like 

configuration. 

As Huttsell et al [81] note, additional work is needed to improve CFD model robustness, computational 

efficiency and grid deformation strategies. 

V. Aerodynamic LCO: Buffet, AWS and NSV 

The aerodynamic flow field itself can become unstable even in the absence of any structural motion. Of course, 

once the flow field becomes unstable, then oscillations in the flow will begin and due to aerodynamic nonlinearities 

such as shock motion and/flow separation a limit cycle oscillation may (and usually will) occur. This purely 

aerodynamically generated LCO may then drive the structure into motion and the structural motion may in turn 

modify the LCO. Often in practice it is difficult to distinguish this type of LCO from one that occurs because of an 

inherent aeroelastically generated LCO in which the aerodynamic flow per se is stable. Of course in mathematical 

models this distinction can be (but is not always) made 

clear. But in a wind tunnel or flight test it is more difficult 

to distinguish between these two different LCO scenarios. 

Even so, in recent years considerable progress has been 

made in understanding aerodynamically generated LCO and 

subsequent aeroelastic effects. This progress is briefly 

summarized here and the promise of greater progress in the 

future is substantial. 

In classical aerodynamics the transition from laminar to 

turbulent flow is one of the most important examples of a 

steady (laminar) fluid flow becoming unstable and thus 

leading to a (turbulent) fluid flow LCO. Determining the 

properties of this LCO of turbulence remains one of the 

great unresolved issues of all of science and engineering. 

 
Figure 20: Buffet Boundary: Angle of Attack versus Mach 

Number 
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However there are also other examples of flow instabilities which go by such names as buffet, abrupt wing stall 

(AWS) and non synchronous vibration (NSV), that have received much attention in aerospace (and other) research 

and engineering applications. Typically, in these examples the flow is already turbulent, but a further dynamic 

instability occurs whose intensity is far greater than typical turbulence (e.g. the oscillating lift coefficient is of order 

unity) and whose length scale is of the order of the airfoil or wing dimensions. By contrast, turbulence per se occurs 

over a great range of length scales including length scales much smaller than a wing chord or span and the intensity 

is a small fraction of the mean flow values. 

Here we discuss the work of Edwards [82], Barakos [83] and Raveh [84-86] on buffet and are content to cite some 

of the key literature on AWS and NSV. 

There is a well known experiment by McDevitt and Okuno [87] that considers the dynamic instability of the 

flow about a NACA 0012 airfoil in transonic flow conditions at certain prescribed angles of attack. The airfoil itself 

does not move, but the flow oscillates in what today might be called a limit cycle oscillation (LCO), but is more 

commonly referred to as a buffeting flow. Several investigators have undertaken computations to compare with 

these experiments. Edwards [78] has considered a potential flow model for the outer flow coupled to an integral 

boundary layer model and shown excellent agreement with the measured data for the buffet (LCO) boundary.  This 

boundary is expressed in terms of angle of attack versus Mach number and separates the no buffet (no LCO) region 

from the buffet (LCO) region. Barakos [79] has also done an 

interesting study where various turbulence models are used in a 

Reynolds Averaged Navier-Stokes (RANS) computation and 

shown that the k-omega and Spalart-Allmaras turbulence 

models also give good correlation for the buffet (LCO) 

boundary and the buffet (LCO) frequency. Figure 20 is a 

comparison of the computed and measured buffet boundary 

from Barakos [79], who also shows that other commonly used 

turbulence models such as k-epsilon fail altogether to predict 

the buffet boundary. Hence buffet experiments [83] and 

correlations with computational models may give essential and 

fundamental insights into the required computational fluid 

dynamics (CFD) models for unsteady aerodynamic flows. 

Very recently Raveh et al [84-86] have studied the effect of 

a prescribed airfoil motion on a buffeting flow. Many 

interesting findings have been uncovered including the 

possibility of “lock-in”. Lock-in occurs when response at the 

inherent flow buffet frequency is suppressed and the flow as 

well as the airfoil oscillates at the frequency of the prescribed airfoil motion. This occurs for certain combinations of 

the airfoil motion amplitude and frequency. The larger the airfoil motion, the wider the range of structural frequency 

(near the buffet flow frequency) for which lock-in will occur. Recently Raveh et al [85] have considered the case of 

an elastically mounted airfoil which is free to move, but for which there is no prescribed motion. Again lock in is 

found under certain conditions. It is an open question of how 

often this may occur in wind tunnel tests or flight tests of 

aeroelastic systems. However the BACT wind tunnel model 

discussed earlier [65-69], an elastically mounted rigid wing with 

a NACA 0012 airfoil profile, is an intriguing example of where 

such oscillations may have occurred. 

Figure 21 is from [86] and shows the time histories of lift on 

the NACA 0012 airfoil as the angle of attack is increased in 

prescribed steps of .5 degrees from 4.5 degrees and then 

decreased in steps starting from 8.5 degrees. Outside the range of 

angle of attack for which buffet occurs, a transient decay of the 

lift illustrates the approach to a time independent steady flow. By 

contrast, inside the range of angle of attack for which buffet 

occurs, the long time response is a periodic oscillation of the lift 

(and other flow variables).  

Then a prescribed airfoil motion is added and the effect of 

this motion on the buffet limit cycle oscillation is found. Figure 

22 is also from [86] and shows the lift response on the airfoil for 

–
 

Figure 21a: Lift coefficient vs. time in response to the  

step-up increments to the mean flow angle of attack; 

Mach 0.72, Re 1E7. 

 

–Figure 21b: Lift coefficient vs. time  

in response to the step-down increments to the 

mean flow angle  

of attack; Mach 0.72, Re 1E7 
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various cases of prescribed airfoil motion amplitudes and frequencies. This illustrates the approach to lock in when 

the frequency and amplitude of the prescribed motion are in the appropriate ranges. Figure 23 shows the range for 

which lock-in occurs in a plot of motion amplitude versus frequency. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The study of buffeting (and its counterparts of abrupt wing stall and non-synchronous vibration) appears ripe for 

even more significant advances and also suggests the need for further experiments building on the earlier wind 

tunnel tests of McDevitt and Okuno and the NASA Langley team with the BACT wind tunnel model. In particular 

the computational results suggest that one can exit the 

buffet region by continuing to increase the angle of attack 

at a given Mach number. Also the computational models 

are now capable of predicting the buffeting (LCO) 

amplitudes. Neither of these predictions have yet been 

validated by experiments, but these important issues could 

be addressed in new experiments that extend the earlier 

test results. 

Abrupt Wing Stall (AWS) appears to be a particular 

form of buffet, but with two possible caveats. First of all, 

the instability of the aircraft flow field appears to be 

asymmetric and/or anti-symmetric with respect to the 

fuselage and thus gives rise to an oscillating rolling 

moment that leads to what is sometimes called “wing 
drop”. At least a dozen distinct aircraft have encountered 

this phenomenon over several decades, but the ability to 

predict when it will occur is still beyond current 

computational modeling methods. Nevertheless there is 

real hope that this will become possible with a suitable 

CFD model in the near to mid-term future. Also it is still 

uncertain to what degree aeroelastic feedback is an issue 

including the rigid body motions in roll. Much of the 

recent work on AWS has been done in the context of the 

F-18 program which devoted very substantial effort to 

resolving this issue for that aircraft. For a summary and 

citation to recent literature, see for example [1]. 

Non-Synchronous Vibration (NSF) appears to be in 

substantial part a form of buffet encountered in 

Figure 22: Frequency content of lift coefficient 

response to prescribed airfoil motion of various 

amplitudes and frequencies: αm = 6°, Mach 0.72, Re 

1E7. 

 

– in map of shock buffet; α = 

 
Figure 23: Lock-in map of shock buffet; αm 

= 6°, Mach 0.72, Re 1E7 

 
Figure 24: Pressure versus angle of attack 
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turbomachinery. For an introduction to the literature on NSV, see [88]. 

One of the most interesting aspects of buffet is the relatively benign time signatures of the lift (and moment) 

oscillations on an airfoil or wing. See Figure 21. The lift oscillation is not only periodic, but nearly simple harmonic. 

Yet this is a result of a nonlinear limit cycle oscillation of the fluid and involves substantial shock oscillations and in 

at least some cases separated flow. How can this be? 

Some years ago, Williams [89] showed using transonic potential flow theory that as the motion of an airfoil or 

wing becomes small, the shock displacement is linearly proportional to the airfoil or wing motion and the lift and 

moment (and indeed all generalized forces) are linearly proportional to the airfoil or wing motion. This is a 

remarkable result because the pressure distribution along the airfoil is highly nonlinear even for small motions if one 

examines a position on the airfoil over which the shock moves. Williams was able to show these results analytically 

for the potential flow model and subsequent numerical computations using Euler and Navier-Stokes fluid models 

have confirmed a similar result. 

A recent paper by Woodgate and Badcock [90] has a nice result that graphically illustrates this point for an Euler 

flow model. At the many points along the airfoil that are not traversed by the shock motion, the pressure is nearly 

harmonic in time as illustrated by the nearly elliptical phase plane plot of pressure versus angle of oscillating motion 

of the airfoil (not shown here). On the other hand at the points along the airfoil that are traversed by the shock 

motion, the pressure time history although periodic has many higher harmonics as well. These computations were 

done using a harmonic balance method [3,4] and Woodgate and Badcock show that many higher harmonics are 

indeed needed to resolve the local pressure time history when the point on the airfoil is traversed by the shock. In 

Figure 24 results are shown for one, two, four, eight and sixteen harmonics. The good news for the modeling of 

aeroelastic systems is that the generalized forces including lift and moment do not usually have this higher harmonic 

content unless the airfoil or wing motions are very large (an effective angle of attack near the stall angle) because of  

the spatial filtering that occurs due to integration over the airfoil chord or wing area when computing lift, moment 

and other generalized forces.  

VI. Concluding Remarks 

Substantial progress has been made in modeling and understanding nonlinear aeroelastic phenomena.  

Experimental and theoretical investigations have shown good correlation for a number of nonlinear physical 

mechanisms. As a broad generalization, one may say that our understanding of and correlation among alternative 

theoretical models and experiment is further advanced for nonlinear structural mechanisms such as freeplay and 

large deflection geometric nonlinearities of beams and plates, than it is for nonlinear fluid mechanisms such as large 

shock motions and separated flows. Nevertheless more accurate and much more computationally efficient 

theoretical models are now becoming available for nonlinear aerodynamic flows and there is cause for optimism in 

addressing these issues going forward. 

As has been emphasized throughout this paper, a number of physical mechanisms can lead to nonlinear aeroelastic 

response including the impact of static (steady flow) fluid or static structural nonlinearities in changing the flutter 

boundary of an aeroelastic system. Of course dynamic nonlinearities play a critical role in the development of limit 

cycle oscillations, hysteresis  in flutter  and LCO response, and the sensitivity of both to initial and external 

disturbances. 

The good news for the flight vehicle designer is that because of nonlinear aeroelastic effects, finite amplitude 

oscillations can in some cases replace what would otherwise be the rapidly growing and destructive oscillations of 

classical flutter behavior. A careful consideration and design of favorable nonlinearities offers a new opportunity for 

improved performance and safety of valuable wind tunnel models, flight vehicles, their operators and passengers.  

Finally and inevitably some important topics have been omitted due to space and time limitations.  The insightful 

article on rotorcraft aeroelasticity by Friedmann [91] is highly recommended; for turbomachinery aeroelasticity, see 

the authoritative volume edited by Hall, Kielb and Thomas [92] and for an entrée to the literature on morphing 

aircraft such as the folding wing concept see the paper by Attar et al [93]. The work of Batina [94] on advanced 

concepts in transonic small disturbance potential flow theory and computation also reminds us that there are still 

valuable opportunities for significant advances in that field as well. 
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