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Introduction. In this article we wish to discuss a theory which is still 
developing very rapidly. It is only quite recently that many of the aspects 
of Fourier analysis of several parameters have been discovered, even though 
much of the corresponding one-parameter theory has been well known for 
some time. The topics to be covered include differentiation theory, singular 
integrals, Littlewood-Paley theory, weighted norm inequalities, Hardy spaces, 
and functions of bounded mean oscillation, as well as many other related 
topics. We shall begin in Part I by attempting to give a broad overview of 
some of the one-parameter results about these topics. The discussion here is, 
however, anything but encyclopedic. (For more detailed treatments of these 
matters in the one-parameter setting, the reader can consult such excellent 
treatments as E. M. Stein, Singular integrals and differentiability properties of 
functions [75], R. R. Coifman and G. Weiss, Extensions of Hardy spaces and 
their use in analysis [30], and, in the classical domain of the disc, D. Sarason, 
Function theory on the unit circle [72], and J. Garnett, Bounded analytic 
functions [46].) In Part II we take up these same areas in the two-parameter 
setting. Since this theory is less well known than the material of Part I, we 
go into greater detail and devote separate sections to each of several of the 
above topics. 

PART I. T H E ONE-PARAMETER THEORY 

To begin with the one-parameter theory, perhaps the most basic part is the 
differentiation of integrals and the maximal function of Hardy-Littlewood. If 
ƒ is a function on Rn which is Lebesgue integrable, and if 

Ar(f)(x) = m(1}(T)) f f(y)dy 
m{Br[x)) JBr(x) 

denotes the average value of ƒ over the ball with center x and radius r, then 

lim Ar(f){x) = f{x) for a.e. xeRn. 
r—+0 

This fundamental result of Lebesgue, proved in the earlier years of the century, 
was applied immediately in a number of contexts. For example, Lebesgue saw 
that it could be used to show that for integrable functions of one variable, the 
arithmetic means of the partial sums of the Fourier series converge pointwise 
almost everywhere. 
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2 S.-Y. A. CHANG AND ROBERT FEFFERMAN 

For the development of Fourier analysis, the most far reaching result con-
nected with Lebesgue's theorem was that of Hardy-Littlewood in the early 
thirties-the Hardy-Littlewood Maximal Theorem. It said that if we consider 
the operator 

Mf(x) = mpA(\f\)(x), 
r>0 

then 
\\Mf\\p < Cp\\f\\p f o r p > l , 

and for L1 -functions, 

m{Mf >a}< (C/<*)||/||i for all a > 0 

(where || ƒ ||p denotes the Lp-norm for p > 1). This maximal theorem is easily 
seen to imply Lebesgue's theorem, and the maximal function and its variants 
have played a leading role in many areas of analysis, including singular integral 
operators and Hardy spaces. 

The deepest part of the maximal theorem is the estimate 

m{Mf>a}<(C/a)\\f\\l, 

and this, in turn, depends on a geometric covering lemma. The covering 
lemma says, roughly, that from an arbitrary collection of balls in Rn we may 
select a disjoint subcollection whose total volume is at least a fixed fraction 
of the volume in the whole collection. It is interesting to note that if, in jRn, 
we denote by Ari)r2>...,rn(/)"(x) the average of ƒ over the rectangle centered at 
x with sides parallel to the axes of lengths r\, r2,..., rn , and if ƒ G Ll{Rn), 
then for every x G Rn 

lim Ariira,...,rw(/)(aO 
ri,r2,.-.^n-^0 

may not exist when n > 1! On the other hand, if a i ( r ) ,^( r ) , . . . ,ot n {r) are 
increasing functions of r > 0, and if Ar(f)(x) denotes the average over the rect-
angle centered at x with sides parallel to the axes of lengths ai(r) , ^ ( r ) , . . . , 
an(r), then, if ƒ G L1(i?n), \imr->o Ar{f)(x) again exists a.e. [85]. 

What these results tell us is that if we are interested in differentiating the 
integral of an integrable function in i?n, then, very roughly speaking, it is 
not the number of dimensions n that is important, but rather the number 
of parameters indexing the sets we are averaging over: only one-parameter 
families of sets can be expected to differentiate the integrals of Lebesgue 
integrable functions in Rn. 

The next topic we discuss in the classical theory is interpolation. This 
notion is already used in proving the Maximal Theorem. We said above that 
the basic estimate for the Hardy-Littlewood operator is 

(1) m{Mf >a}< (C/o) | | / | | i . 

Since, naturally, any average of a bounded function does not exceed the bound 
of that function, we also have 

(2) l|M/||oo < ll/ll 
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It turns out, according to a celebrated theorem of Marcinkiewicz, that any 
linear, or even sublinear, operator T satisfying the L1-estimate (1) and L°°-
estimate (2) is bounded on Lp(Rn) for all 1 < p < oo. There are a great 
many theorems these days of this same form-namely, if a linear operator T is 
bounded between spaces Xo and lo and also bounded between another pair 
of spaces X\ and Yi, then T is automatically bounded as an operator from 
X to Y for some appropriate intermediate pair of spaces. To give just one 
other example, if a linear operator T is bounded on the Hardy space H1^1) 
and also bounded on L2(i?1), then it must be bounded on Lv{Rl) for all p 
between 1 and 2 [44]. There are many, many more examples of this general 
technique of interpolation. 

In this setting of the maximal function and interpolation, another area of 
real variables and Fourier analysis developed-singular integrals of Calderón-
Zygmund. These singular integral operators are generalizations, to the setting 
of .Rn, of the Hilbert transform H on R1. if is defined by the nonabsolutely 
convergent integral 

/

°° fit 

-oo z 

It turns out that this operator is enormously important for several reasons. 
Here we shall content ourselves with two of them. 

First, there is the connection with complex analytic functions. Suppose 
ƒ (x) is real valued and U(x, y) is the harmonic extension (Poisson integral) of 
ƒ (x) to the upper half-plane R\. Let V(x, y) be the unique harmonic function 
vanishing as y —• oo so that U + iV is analytic in R\. Then the boundary 
values of V are none other than Hf(x). Thus, if we identify functions on R1 

with their harmonic extensions to R\, then H is the map which sends the 
real part of a complex analytic function to its imaginary part. 

The other important reason for considering H is the connection with 
Fourier analysis of functions on R1. If ƒ is a "nice" function on R1 and 

/ (0= f f{x)e-**dx 
JR1 

is the Fourier transform of ƒ, we wish to know in what sense the Fourier 
integral 

f Ht)***^ 
JRI 

represents f(x). It turns out that for ƒ € /^(i?1), 1 < p < oo, the integrals 

/
+« 

-R 

converge to f(x) in the Lp-norm, and it is easy to see that this is equivalent 
to H being a bounded operator on LP(RX) for 1 < p < oo. Originally, the 
proof of Marcel Riesz that H preserves LP used Cauchy's theorem in complex 
analysis. Somewhat later, real-variable proofs were developed, culminating in 
the Calderón-Zygmund work of the 1950s [14]. 
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In their investigation Calderón and Zygmund considered convolution oper-
ators 

Tf{x)= f f(y)K(x-y)dy, 

where the kernel K(x) defined on Rn "looks like" 1/x does on R1. They 
assumed that 

\K(x)\ < C/\x\n, \VK(x)\ < C/\x\n+\ 

K(x) is C1 away from the origin, and 

/ K(x) dx = 0 for all 0 < a < /?. 
Ja<\x\<l3 

Under these assumptions they proved that, for 1 < p < oo, a > 0 , 

P V I I P < Cpll/Hp and m{\Tf\>a}<(C/a)\\f\\1. 

The techniques they developed in their argument set the tone for real-variable 
theory for many years. 

Calderón and Zygmund begin by observing that the assumptions on K(x) 
imply that K(£) is bounded. Hence, by the Plancherel theorem, 

HT/1|3 = \\f~f h = \\K • f h < \\K\\oo II/||2 < C|| ƒ ||2, 

so T is bounded on L2. Next they prove the estimate 

(*) m{\Tf\>a}<(C/a)\\f\\i 

as follows: Let ƒ G L1(i?n) and a > 0. Calderón and Zygmund show how 
to replace ƒ by an L2-function g by averaging ƒ over certain disjoint cubes 
Qk where the average of ƒ is < 2na. Of course, Tg is easy to handle, since 
g G L2 and in the previous step the boundedness of T on L2 was proven. 
What remains in the proof of (*) is an argument to handle the error b = ƒ — g 
in order to show that 

m{\T{b)\>a}<(C/a)\\f\\1. 

b has mean value zero over each of the Qk and lives on \Jk Qk- It turns out to 
be not difficult to show that Tb is negligible outside \JQk- All that remains 
is to show that m(\JQk) is small enough, i.e., < (C/a) | | / | | i . 

Now we come to an important feature of the argument: the set (J Qk is 
precisely {Mf > a}\ In other words, the Hardy-Littlewood maximal function 
has been introduced to produce the desired L2-function g, which, as far as T is 
concerned, is about the same as ƒ itself. Notice that now the desired estimate 
of m((JQk) is now just the main part of the Hardy-Littlewood Maximal 
Theorem. Once the L^estimate is obtained, interpolation shows that T is 
bounded on Lp for 1 < p < 2. If we notice that the adjoint operator to T is 
again a singular integral of the same form, we see that T is also bounded on 
Lp when 2 < p < oo. 

There have been a great many applications of the Calderón-Zygmund the-
orem, and we shall present one of them here. Let f (9) be a function on 
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[0,2TT) with Fourier series E ^ - o o f(n)eine. Let {\n}t=-oo b e a S i v e n se-
quence of complex numbers. It is an important question in Fourier analysis 
to ask whether, if ƒ G Lp(0, 2TT), the same will be true of En^-oo *nf{n)eine. 
There are many interesting examples of {An} where the answer is "yes" when 
1 < p < oo. For instance, when An = —isgn(n), then EAn/ (^ )e m ö is the 
Hilbert transform of ƒ. Another fundamental example is the class of sequences 
0n such that A/c = en for all k with 2n < \k\ < 2 n + 1 and where en is either 
+1 or —1. Then we consider 

A„(/)(0) = x) fay™ 
2"<|/c|<2"+1 

and, finally, the so-called square function, 
1/2 / oo \ l ' z 

(£>fc(/)|2j =S(f). 

Of course, the function E ^kf{k)e%ke for the sequence Â  under consideration 
has exactly the same square function as ƒ. Therefore, the question at hand is 
answered by the following theorem of Littlewood and Paley: 

If 1 < p < oo then | |S(/) | |P « || ƒ ||p (a ~ b means a/b is bounded above and 
below by a quantity depending only on p). In order to better understand this, 
let us consider a similar operator acting on functions on R1. To do this, notice 
that the operators Afc(/) are convolutions of ƒ with functions of integral zero 
whose Fourier transforms are dilates of each other. We consider 

a°° r1t\ 1/2 

\f*M*)\2j) , 
where >ip G C^iR1), </> is odd, and ^t(x) = t'^x/t) (so 4 ( £ ) = </>(*£))• 
Then g^ is roughly the same kind of operator as S, and the point now is that 
g^ is a singular operator of Calderón-Zygmund (see [2]). 

The kernel is Hilbert-space-valued, but the Calderón-Zygmund proof goes 
over without change to such kernels. To be specific, if 

is given by K(x){t) = ^ ( x ) , then \K(x)\ < C/|x|, \VK{x)\ < C/|x|2, and 
L<\x\<p K{x) d* = 0 V0< a < /3, while ^ ( ƒ)(*) = 1/ * K{x)\. 

Now again, we wish to make an important point. If C denotes the class of 
Calderón-Zygmund singular integral kernels on Rn, and if 

K6{x) = 6-nK{x/6), 

then we have the following invariance: 

If K e C and S > 0 then K6 G C. 

That is, the class C is invariant with respect to the one-parameter class of 
dilations x —> Sx on Rn. Again, just as was the case for differentiation of 
integrals, the theory seems to be more or less the same independent of the 
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6 S.-Y. A. CHANG AND ROBERT FEFFERMAN 

dimension n. What is important is that the operators involved are invari-
ant under a one-parameter class of dilations. So, for instance, whatever the 
dimension n, we always have for a Calderón-Zygmund operator T, 

(X) m{x € Rn | |27(s) | > a} < {C/a)\\ fh. 

Later, we consider classes of kernels invariant with respect to several-parameter 
classes of dilations, and for these (X) will be false! 

The next feature of one-parameter theory which we take up is that of 
inequalities with respect to measures other than Lebesgue. In fact, there is a 
single, very simple, necessary and sufficient condition on a locally integrable 
function w(x) > 0 on Rn so that 

f Mf{x)pw{x) dx<Cp f fp{x)w{x) dx for ƒ 6 Ly{w) 

(here 1 < p < oo). This is the Muckenhoupt Ap condition [66]: (Ap) 

(mƒ«•*"*) {mL(*))"""" * ) " s c vcutoQin *"• 
According to a theorem of Hunt-Muckenhoupt-Wheeden [51], we also have 
w e AP iff 

f\Hf\pwdx<Cpf\f\
pojdx. 

In fact, Coifman and C. Fefferman [28] extended this to the class of all 
Calderón-Zygmund operators in Rn. These so called weighted norm inequal-
ities have proven to be of very great value in recent years. 

As the reader has no doubt noticed, it seems that the operators T we have 
considered are bounded on Lp(Rn) for 1 < p < oo, are unbounded on ^(R71), 
and satisfy only the weaker estimate 

m{m € Rn | \Tf(x)\ > a} < {CMW/WL 

Something must be done in order to have a satisfactory "Lp-theory" of maxi-
mal functions and singular integrals when 0 < p < 1. It is for this reason that 
one considers the Hardy spaces i7p(i2!£+1). First, let us consider n = 1. 

According to Hardy, for p > 0, an üfp-function is a complex analytic 
function F(z) in the upper half-plane R\ such that the Lp-norms 

a+oo \ 1/P 

\F(x + iy)\pdx) 
are bounded independent of y > 0. It turned out that when p > 1, the Hp 

theory was very similar to the Lp-theory. So, for example, one of the main 
theorems of the subject is that #p-functions, p > 0, have boundary values, 
i.e., when F(z) G HV(R\) then l i m ^ o F(x -f iy) exists for a.e. x £ R1. This 
can be reduced to the theorem on differentiation of integrals of functions in 
LP(RX) when p > 1 (see [77, 85, 71]). The ideas that were originally used 
to study the Hardy spaces when p < 1 are much less along the lines of real 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



FOURIER ANALYSIS AND #p-THEORY ON PRODUCT DOMAINS 7 

variables and are rather a part of the theory of analytic functions. One studied 
the zeros of these Hp-functions and showed that any function F(z) G Hp could 
be factored as F = JBG, where B{z) is bounded and analytic in R\, and where 
G G HV(R\) and never vanishes. Then since G(z) is never 0, one can form 
G(z)p/2-an analytic function easily seen to be in H2{R\). Since üP-functions 
are known to have boundary values when p > 1, G(z)p/2 and B(z) will have 
boundary values, and, hence, so will F(z). 

Next, we wish to mention an extension of the theory of Hardy spaces due 
to E. M. Stein and Guido Weiss. Suppose we denote by R7^1 the upper 
half-space in Rn+1, that is, {(#,y)\x G # n , y > 0}. Whereas Hardy spaces 
in R\ are just analytic functions, or pairs of conjugate harmonic functions, 
Stein and Weiss [77] considered ffp(i2™+1) functions as systems of n + 1 
harmonic functions, F{x,y) = {ui(x,y)}, i = 0,1, . . . ,n , defined on #+ + 1 , 
which are conjugate in the sense that they satisfy the generalized Cauchy-
Riemann equations 

dui _ duj Y ^ dui 
dxj ~ dxi f^ dx, 

and such that 

and Yl ~d^r. = ° (y= x°) 
i=0 l 

s l i p / V \F(x,y)\pdx) 
y>0 \jRn J 

< 00. 

(Here 
1/2 

^ = 0 

We should point out that these spaces have an interpretation in terms of 
singular integrals which was alluded to above. Suppose we have a system of 
harmonic functions no ,u i , . . . , un defined in R++1 which are suitably smooth 
up to the boundary and vanish rapidly at infinity. Then it is not hard to show 
that the Ui satisfy the generalized Cauchy-Riemann equations if and only if 
their restrictions on the boundary are related by singular integrals known as 
Riesz transforms. 

More specifically, if fi(x) = Ui(x,0) then U{ are a conjugate system iff 

fi = fo*cnXi/\x\n+1. 

The convolution operator 

Ri{f) = f*Xi/\x\n+\ » = l ,2 , . . . , n , 

the Riesz transforms, plays in Rn very much the same role as the Hilbert 
transform plays in R1. Identifying a function f(x) on Rn with the harmonic 
function u(x,y) on R++1 having boundary values equal to /(x), we see that 
i^1(i?++1) can be identified with the space of all real valued L1(i?n )-functions 
all of whose Riesz transforms are also in Ll{Rn). It can also be shown that 
for any such function whose Riesz transforms are in ^(R71), any reasonable 
singular integral T(f) will belong to Ll{Rn). So it really is the case that 
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8 S.-Y. A. CHANG AND ROBERT FEFFERMAN 

#p(jRri+1) s e r v e s to alleviate the problem of the bad behavior of singular 
integrals on Lp when p < 1. 

In order to prove theorems about these ifp-functions analogous to those 
which had been proven for the classical one, Stein and Weiss introduced a 
number of new ideas. To illustrate some of these, let us consider their theorem 
on boundary values of H ^ ( ^ + ^-functions: If F(x,y) E # P ( # J + 1 ) and p > 
(n — l)/n% then lim^^o F(x, y) exists for a.e. x E Rn. Again, for p > 1 
the theorem had been well known for a long time since it again boils down 
to Lebesgue's theorem on differentiation of integrals of functions in Lp(Rn). 
Now, in trying to pass from the case p > 1 to p < 1 we quickly see that the 
classical approach is not possible. A study of the zeros of F analogous to the 
classical case is obstructed by the fact that the zero set is no longer discrete, 
but may be higher dimensional. Also, factorization has no meaning since Hp 

functions cannot be multiplied meaningfully. 
How do we get around these difficulties? Let us sketch the method of Stein 

and Weiss to do this, pointing out the key features of their argument: 
(1) The equivalence of nontangential boundedness and nontangential con-

vergence almost everywhere for harmonic functions: Suppose Th(x) denotes 
the cone {(t,y) E J R J + 1 | 0 < y < h, \x-t\ < y}. Then we say that a function 
F(t, y) on R7^1 is nontangentially bounded at a: E Rn provided that for some 
h > 0, F is bounded on Th(x). We call F nontangentially convergent at x pro-
vided liHi(t}3/)_^(Xjo);(t,3/)er(a;) F{tiV) exists. Then there is the following basic 
fact: For a harmonic function u on i?™+1 which is nontangentially bounded 
at each point x of a set E Ç Rn, u has nontangential limits at a.e. x E E. 
This is due to Privalov [68] in R\ and to Calderón [10] in R\+1 for n > 1. 

(2) The subharmonicity of powers of\F\: By an ingenious calculation Stein 
and Weiss showed that if a > ( n - l ) / n a n d \F(x,y)\ > 0, then A(|F|a)(x,y) > 
0. This means that | F | a is subharmonic and allows us to pass from iP-theory 
when p < 1 to #P-theory when p > 1, as follows. Take F E i J p ( i ^ + 1 ) and 
assume that p > (n — l ) /n (the case p = (n — l) /n works with only slight 
modifications). Then let (n - l ) /n < a < p and consider G = \F\a. This 
function is subharmonic and has 

sap ƒ Gr{x,y) dx < oo where r = — > 1. 
y>ojRn a 

For such a function G it is not hard to show that there is a function g E L r(Rn) 
such that G at any point of R1]^1 is dominated by the appropriate weighted 
average of the values of g (the weighting depends, of course, on the point of 

(3) The introduction of the nontangential maximal function: If ƒ is any 
function on i2J+1 we set f*{x) = s u p ^ ^ r ^ ) \f(t,y)\ for every x E Rn. f* 
is called the nontangential maximal function of ƒ. In the case of the present 
theorem it will suffice, in view of (1), to show that F*(x) < oo for a.e. x E Rn. 
This is seen as follows: Since G is dominated by averages of the function g as 
in (2), it turns out that G*(x) < M(g)(x), where M is the Hardy-Littlewood 
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maximal function of g. But then 

f F*{x)pdx= [ G*(xf/adx< [M(g){x)r 

JR." JR™ J 

<C [ \g{x)\r dx < oo. 
JRn 

This shows that F*(x) < oo a.e. on Rn and finishes the proof. 
The last step in the above proof, that is, the introduction of the non-

tangential maximal function, is one of crucial importance, and we should 
mention another result related to it. Recall our mentioning the Littlewood-
Paley g function. This is defined on Rn by starting with a function I/J(X) 
which is sufficiently smooth, decays sufficiently rapidly at infinity, and has 
fRn i/)(x) dx = 0. Then letting 

xjjy{x) = y~nil>(x/y) for y > 0, 

we set, for ƒ a function on i2 n , 

gAf){*) = (f~\f*^*)\2j) 

and 

W ) ( * ) - ( / / w l / * ^ ( * ) l 3 ^ 

Classically, the most basic example occurs when -0 is the gradient of the 
Poisson kernel for JR™+1 and then 

S2(f)(x)= [ f IVufit^y^dtdy, 

where u is the Poisson integral of ƒ, that is, the function, harmonic in i2++ 1 , 
which has ƒ as its boundary values. For a harmonic function u on #™+1 we 
may also define 

S2(u)(x)= [ [ \Vu\2(t,y)y1-ndtdy. 
J Jr(x) 

Now comes the main point. According to a theorem of A. P. Calderón 
[11] and E. M. Stein [74], if u(x,y) is a harmonic function on i2++ 1 , then, 
except for a set of points x G Rn of measure zero, S(u)(x) < oo if and only 
if u*(x) < oo. What is the meaning of this result? In the case of n = 1 
in R\ [85] part of its meaning is given in the following corollary: If u and 
v are conjugate harmonic functions, then the set of x for which u and v 
approach nontangential limits at x differs only by a set of measure 0. This 
remarkable result is a consequence of the Calderón-Stein theorem and the fact 
that , by the Cauchy-Riemann equations, |Vu| = |Vv|, so S(u) = S(v). (In 
higher dimensions a similar result holds for Stein-Weiss systems of conjugate 
harmonic functions, and the proof is along similar lines; see [7].) 

There is another meaning of this similar behavior of S(u) and u*, and 
this was revealed in a result about harmonic functions in R\ (n — 1) due 
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10 S.-Y. A. CHANG AND ROBERT FEFFERMAN 

to Burkholder, Gundy, and Silverstein [7]. Their theorem says that for a 
harmonic u in R\, and for all p > 0, 

cP<| |5(u) | |Lp/ | |n* | |Lp<C p , 

where the positive constants cp and Cp are independent of u. This is the 
global variant of the Calderón-Stein result on finiteness of S(u)(x) and u*(x), 
and it has the following interpretation: 

If F{z) G HP{R\) we saw above that F* G Lp(Rl). Clearly, if F* G 
Lp{Rl) and F(z) is holomorphic in R\, then F G #p(#J_). Now according to 
Burkholder, Gundy, and Silverstein, if F(z) is holomorphic and F — u + iv, 
then F G # p iff u* € Lp(Rl). (This is because S(u) = S(v).) In other words, 
one can tell just by looking at u* whether or not F G Hp. We need not worry 
about v. This is a major step in the direction of freeing the theory of Hp from 
a dependence on the theory of holomorphic functions. (Incidently the proof 
of this theorem is by arguments involving Brownian motion, so it is important 
for its method as well as for the end result.) 

The last set of results we wish to mention here, due to Charles Fefferman 
and E. M. Stein [38], showed that we may think of IP-spaces entirely in 
terms of real variables with no dependence whatever on harmonic or holo-
morphic functions. For C. Fefferman-Stein an Hp- "function" is defined by 
first considering a Schwartz function <f)(x) on Rn such that ƒ (j> / 0 and say-
ing that a distribution ƒ on Rn is in Hp provided that the maximal function 
f*{x) = supy>0 | ƒ *<t>y{x)\ belongs to Lp{Rn) (here, <t>y(x) = y~n<t>{x/y)). The 
class of distributions so defined is proven to be independent of 0. Also, if if) is 
a suitably nontrivial function in the Schwartz class such that fRn ij)(x) dx = 0, 
then 

fismHp iff S^{f)GLp{Rn), 

where 

and again the choice of ij) is irrelevant. If u is harmonic in i?™+1 and suitably 
nice (smooth at the boundary and small at infinity), then 

\ 1/2 

\Vu\2{t,y)y1-ndtdy) G Lp iff S+tf) G Lp, S(u)=([ f 
\J Jr(x) 

where 

*m*)=ff \f*w)\2ffi r(x) 
and f(x) = u(x,0). Similarly, if 

wj(x) = sup |/*<£y(t)|, 
(t,y)er(x) 

where 0 is Schwartz and fRn (j) = 1, and if u*(x) is the usual nontangential 
maximal function of w, then 

uleLp iff u*€Lp. 
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FOURIER ANALYSIS AND Hp-THEORY ON PRODUCT DOMAINS 11 

At least when p > (n — l)/n, this newer notion of Hp coincides with the 
Stein-Weiss notion. Fefferman and Stein also show that Calderón-Zygmund 
singular integrals preserve these #p-spaces, so we are justified once again in 
regarding Hp-spaces as being the right replacement for Lp such that maximal 
and singular integral operators map the spaces to Lp when p < 1. 

Thus, the class of H * -functions is a space near L1 which is invariant under 
singular integrals. There is also a class of functions near L°° invariant under 
the Calderón-Zygmund operators, namely, BMO(i?n). This is the space of 
functions, introduced by John and Nirenberg [56], satisfying 

where CJ>Q denotes the mean value of (j) over the cube Q, and C is independent 
of Q. These functions of bounded mean oscillation are a priori only assumed 
to be locally integrable, but in fact are locally in the exponential class, as 
expressed by the John-Nirenberg inequality 

\Q\JQ P H\\. - ' 
where 

II0H* = S U p T ? r T / \<j){x) - (j)Q\dx 
Q IVI JQ 

is the BMO norm of (j). 
There are a number of very useful characterizations of BMO, and in order 

to discuss the one we have in mind it will be helpful to first consider a basic 
result of Lennart Carleson [15]. A positive measure fi on #™+1 is called a 
Carleson measure provided that /i(5(Q)) < Cm(Q) for all cubes Q in Rn, 
where 

S(Q) = {(x,y)\x e Q, 0 < y < side length(Q)}. 
Carleson proved that these measures are exactly the ones for which 

/ / \u(x,y)\pd»<C f \f(x)\pdx, p > l , 
J JR^1 JR" 

if u is the Poisson integral of ƒ. 
Charles Fefferman [35] was able to prove that if u is the Poisson integral 

of a function c/)(x) on i?n , then 

(j>{x) e BMO(iT) iff \Vu\2{x,t)tdtdx is a Carleson measure in R^1. 

He showed, using this characterization, that the dual space of H1 was BMO. 
Somewhat later, R. R. Coifman [27] found a particularly striking proof of 
this duality by using his constructive proof of a decomposition theorem for 
the space H1. 

This decomposition provides an enormously powerful tool for attacking 
problems relating to H1. It says that any if1-function can be written as 
ƒ = X}Afcafc, where A& are scalars such that Xll^fcl ^ C | | / I | H ^ and where 
the ak are üT1-atoms, i.e., a^ is supported in a cube Qfc, has mean value 0 over 
<3/c, and satisfies ||afc||L<x> < l/|Qfc|. From this it is clear that a BMO function 
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12 S.-Y. A. CHANG AND ROBERT FEFFERMAN 

</> acts on if1, since, if ƒ € if1, ƒ = Yl ^kO>k is an atomic decomposition of ƒ, 
then 

/ 
H = 

1 ./O* 

^ W È 

afc<£ = = |5>/ 
1 JQk 

f / \<t> - <l>Qk\dx 

a/b(0-- ^ Q f c ) 

< n<Aiu2^iAfe| < O I I ^ I U H / I I W 1 . 
The space BMO has been under intensive study in the past ten years or 

so. It turns out, even in the classical domain (i.e., the unit disk), that proper-
ties of BMO, its relation to Carleson measures and Ap weights, etc., become 
very powerful tools in dealing with problems arising in function algebras (e.g., 
Chang [20], Marshall [63], and Sarason [73] for the Douglas Problem), uni-
valent functions (e.g. Baernstein [1], Pommerenke [67], quasi-conformal maps 
[69]), and many other topics. For these and other developments about BMO, 
the reader is referred to [72, 46], and also the survey article of L. Carleson 
[19]. 

We have mentioned many topics here from classical real variables and 
Fourier analysis. These have one common thread running through them. That 
is, they all deal with operators indexed by one parameter or are invariant with 
respect to a one-parameter family of dilations on Rn. All the results therefore 
have a "one-dimensional" quality, since the dimension n seems to play no role 
at all. In the rest of this article we deal with the theory in several parameters, 
treating the maximal function, singular integrals, Littlewood-Paley theory, 
Ap-spaces, etc., in this new context. 

PART II . T H E THEORY FOR THE CASE OF SEVERAL PARAMETERS 

1. Differentiation theory and the maximal function. In what fol-
lows we are usually concerned with operators acting on functions on Rni x 
Rn2 x • • • x Rnk invariant under the full fc-parameter family of dilations 

(xi, x2, ...,&*) ^ - l i r k(8\x\, <$2x2,..., ftfeXfc). 

We sometimes call the theory of these operators "a product theory". Naturally 
there are many other interesting families of dilations that we could consider. 
For example, in J?3, we briefly consider the two-parameter family 

aSu62(
xl^x2iXs) = (^1^1^2^2,^1<^2^3)-

Most of the time we treat the product theory with respect to the full k-
parameter family T$1 J2 ,... ,6k • 

The maximal function invariant under the action of the dilations T ^ ^ , . . . ^ 

is the "strong maximal function" Ms of Jessen-Marcinkiewicz-Zygmund. To 
define it let B\, B2,..., Bk denote the unit balls of Rni, Rn2,..., Rnk, respec-
tively. Then 

M s ( / ) (xi ,x 2 , . . . ,x f c ) 

S U P rnk c D A / | / ( x i + * i , X i + * 2 , . . . , Z f c + * f c ) | 
«i,«2,...,*fc>o m(IIf=10t-ötJ Jn^SiBi) 

• dt\ dt2 • • • dtjç. 
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FOURIER ANALYSIS AND i/p-THEORY ON PRODUCT DOMAINS 13 

This maximal function with respect to products of balls, or "rectangles", 
behaves very differently from the Hardy-Littlewood maximal function. It 
is quite possible for a function ƒ € L1^™1 x Rn2 x ••• x Rnk) to have 
Ms(f)(x) = oo everywhere. The natural question to ask is then "What is 
the least stringent restriction on the size of a function which guarantees that 
Ms(f){x) < oo for a.e. x G n£=i # n i ? " T h e 

answer, which depends on fc, is 
that ƒ GL(logL)fc"1, i.e., 

f |/(o;)|(l + l o g + | / ( x ) | ) f c - 1 ^ < o o . 
JnRni 

In this case we also have 

m\xef[Rni, | * | < 1 | A f , u ^ a : j > a > S -| |/ | |L(iogt)*-
* 1 r 

xe~[[Rn\ H < l | M s ( / ) ( x ) > a U ^ | 
i=l ) 

This is the basic result for the operator Ms proven in the 1930s by Jessen, 
Marcinkiewicz, and Zygmund [54]. The proof is quite simple and proceeds 
as follows: we let Mi be the Hardy-Littlewood maximal operator in the ith 
factor space Rni, i.e., 

Mif(x) = sup ƒ | ƒ(xi, x 2 , . . . , Xi-x, Xi + U, Xi+u • • •, Xk)\ dU. 
r>o myrtti) JrB. 

Then a simple application of Fubini's theorem applied to the average of | ƒ | 
over a rectangle shows immediately that 

Ms f{x) < Mi o M2 o .. • o M* ƒ (x), 

where o denotes composition of operators. Now we know from the one-
parameter theory that each M» is bounded on Lp, p > 1, and immediately 
this gives the boundedness of M8 on IP for p > 1. The sharp result is obtained 
by using the fact that the one-parameter maximal operator maps L(logL)-7 

boundedly to L(logL)J~1, a result obtained through interpolating between 
the estimates 

(1) m{Mif>a}<(C/a)\\f\\i 

and 

(2) HMJHoo < ll/IU. 

Once we know this, each application of one of the Mi "loses a log", so that 
starting with ƒ E L(logL)fc_1, 

M 2 o M 3 o . . . o M f c / G L 1 ( | x | < l ) , 

and now M\ satisfies estimate (1) on L1 so that 

m{\x\ < l | M i ( M 2 o M 3 o . . . o M f c / ) ( x ) > a} < {C/a)\\f\\L(iogL)k-i. 

This is a very short argument, and the result that it obtains is sharp, so that 
one might suspect that this is the end of the story of Ms. This is not the case 
for several reasons. For example, if we change the operator Ms slightly, we 
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14 S.-Y. A. CHANG AND ROBERT FEFFERMAN 

may find that the preceding argument no longer applies to the new operator. 
Let us give two such perturbations of M8 for which this is the case. 

First, imagine that we have replaced Lebesgue measure on n t = i ^ n i = ^N 

with some measure /J, and we now wish to view all operators in terms of this 
measure, as though /i were the only existing measure on RN. Then the strong 
maximal function would be 

Mff(x) = mp-^[ \f\dp, 
x€R V\tt) JR 

where the sup is taken over all rectangles R (i.e., products of balls in the spaces 
Rni) containing the point x € RN. If fi is a product of measures arising from 
the factor spaces Rni, then the argument of Jessen-Marcinkiewicz-Zygmund 
works to prove estimates for Mjf. If /x is a measure which "looks very much" 
like Lebesgue measure, but is not a product measure, then the old methods 
no longer work. 

Next, suppose we return to averages taken with respect to Lebesgue mea-
sure, but we change the operator Ms by allowing the rectangles to tilt a little. 
To be precise, consider the case in R2 where B = {all rectangles with longest 
side making an angle of 2~fc, for some integer k > 0, with the positive x-axis} 
(in other words, we allow rectangles to tilt at the angles ^, ^, | , . . . only, and 
the side lengths are arbitrary). If we set 

Mf{x)= sup — - r / l/l dy, 
x€R€B m(K) JR 

then M, we might feel, should act quite a bit like Ms since the directions of 
the allowed rectangles are converging so rapidly to one fixed direction. Again, 
here, the iteration argument will not suffice, and something more is needed. 

There is another situation which cannot be handled by the Jessen-Marcin-
kiewicz-Zygmund method, and this is illustrated most simply as follows: In 
J?3 consider the family of rectangles S whose sides are parallel to the axes 
and whose side lengths are 61,62, and 6162- This is a two-parameter family 
of rectangles in R3. Hence, if our philosophy is right, and it is the number 
of parameters that is important, rather than the dimension of the underlying 
space, the corresponding maximal function 

Mzf{x)= sup ——r / \f\dy 
xeRes ™>\R) JR 

should satisfy 

H m{x € R3 I |*| < 1, Mz(f)(x) >a}< (C /a ) | | / | | L l o g L ( K 3 ) ; 

the method of iteration yields only the estimate (~) with ||/||L(iogL)2 on the 
right side. 

Even as far as Lp-estimates are concerned, sometimes a simple iteration 
argument will not work. A good example of this is the weighted norm in-
equalities for multiparameter maximal functions. If Ms is the strong maximal 
operator, and we are interested in those weights w(x) > 0 for which 

f[Msf{x)]pw{x)dx < f\f{x)\pw{x)dx, 
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where p > 1, then the simple iteration argument given above shows that 
these are exactly those weights which are uniformly in the Muckenhoupt class 
Ap(Rni) in the ith variable for each 1 < i < k. Equivalently, w satisfies an 
Ap-condition with respect to rectangles: 

(sfe/.-)(sng/,--1^"rsc 

for each R a product of balls in Rni. 
In other cases of multiparameter maximal functions, iteration does not yield 

the desired answers. For instance, if again B is the two-parameter family of 
rectangles in J?3 of sides 61,62, and 6162, where 61,62 > 0 are arbitrary, and 
Mz is the corresponding maximal operator, then one would expect a weighted 
inequality 

[ (Mzffw <C f \f\pw 
JR3 JR3 

if and only if w satisfies the Ap-condition, but only over the relevant rectangles 
in B: 

The proofs of the above results depend on a certain method having to do 
with covering lemmas for sets more general than balls. The basic result in 
this direction is the following: 

THE COVERING LEMMA FOR RECTANGLES. Let {Rj} be an arbitrary 
collection of rectangles in RN = nj=i^n** Then there exists a subcollection 
{Rj} of {Rj} satisfying 

(1) m ( U V ) > c m ( U V ) 
and 

(2) lly"xp| | <Cm([JRj). 

See Cordoba-R. Fefferman [33]. The meaning of this result is that, just 
as in the one-parameter case of balls, we have extracted a subcollection of at 
least a fixed fraction of the volume of the original rectangles in such a way 
that the chosen rectangles are sparse. Of course, they are not disjoint as in the 
one-parameter case, but rather merely sparse of varying degrees depending on 
the number of parameters k. 

To see why the Orlicz norm exp(L)1^/e~1^ should appear, let us observe 
that balls Bj are disjoint iff || ̂ 2 X§ lk°° - *» an(^ ^°° *s t n e ^ua^ °^ Ll. Since 
in the ^-parameter case the basic estimate on the maximal operator Ms is on 
L(logL)/c~1 functions (L1 when k — 1), we would expect the norm applied 
t o Yl XR to be that of the dual class of L(logL)fc_1, which is exp(L)1^fc~1^. 
The method of proof of this covering lemma is induction on the number of 
parameters k, and the important feature of this is that it provides a general 
method for controlling higher-parameter maximal functions by simpler lower-
parameter ones. This is the way the first results on maximal functions with 
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16 S.-Y. A. CHANG AND ROBERT FEFFERMAN 

respect to tilting rectangles, such as M above, were proven. (See Stromberg 
[78] and Cordoba-R. Fefferman [33]. See also the exciting article of E. Stein 
and S. Wainger, Problems in harmonic analysis related to curvature, Bull. 
Amer. Math. Soc. 82 (1978), where another approach to these problems is 
discussed in detail.) In this case the maximal operator (three-parameter) M 
is controlled by the classical (two-parameter) operator Ms. 

Nowadays many operators are known to be controlled by operators involv-
ing fewer parameters. This is also the method used to handle the operator 
Mg, In fact, if // = w(x)dx, and if w satisfies an A°°-condition in each of 
the factor spaces RUi uniformly (a weight w(x) on Rn is said to be A°° pro-
vided that for subsets E C Q, Q a cube, such that m(E)/m(Q) > 1/2, then 
IEW I Iow > e,> f ° r s o m e e independent of E and Q), then M g is bounded 
on Lp(dfjt) for p > 1. (See R. Fefferman [41] and Jawerth-Torchinsky [53].) 
Because of the control of a fc-parameter operator by a (k — l)-parameter op-
erator, we need only assume that w is uniformly in A°° (Rni ) for k — 1 of the 
i's. This is the key observation that enables us to show [43] that for w on 
R3 satisfying an Ap-condition for all rectangles of side lengths 61,62 and 6162, 
then we have the corresponding weighted norm inequality 

(*) j{MzfYw<CVj\f\vw, p>l . 

This follows easily from the boundedness of 

M?(f)(x) = sup * [ \f\dp on V(dn). 

In turn, this follows because our w G AP(B) is uniformly in the class Ap(Rl) 
in the x and y variables so that Mjff > Mg f satisfies 

f{M?f)»dp<CpJ\f\*dvL. 

This is also Cordoba's method of proof [31] of the estimate 

m{x e R3, \x\ < 1 I Mzf(x) >a}< (C/a)\\f\\L}ogL{R3). 

Thus, although there is still quite a number of unsettled questions in differen-
tiation theory of several parameters, the method of controlling /c-parameter 
operators by (k — l)-parameter operators started by the covering lemma for 
rectangles is quite a useful machine. 

2. Singular integrals. The reader will recall that in the introduction 
we discussed the one-parameter theory of singular integrals due to Calderón-
Zygmund [14]. This involved convolution operators Tf — ƒ *K on i în , where 
K satisfied 

(1) \K{x)\ < C/\x\n 

(2) \VK{x)\ < C/\x\n+\ 

and 

(3) / K{x) dx = 0 for all 0 < a < p. 
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We wish to formulate here the generalization of the Calderon-Zygmund 
theory to the two-parameter setting for functions on Rn x R™ introduced in 
R. Fefferman-E. M. Stein [44]. The basic example is the so-called double 
Hubert transform when n = m — 1. In this case the kernel is K(x1 y) = 1/xy, 
and we are, of course, in the product case, where the kernel is invariant with 
respect to the dilations (x,y) —• (S\x^2y) for all 61,62 > 0; i.e., 

K(x/61,y/ó2)6r1Sïl = K(x,y). 

Notice in this example that the kernel K splits into a product of the x and y 
variables separately: 

K{x,y)=K1{x)-K2{y), 

where K\ and K2 are Calderon-Zygmund kernels in the x or y variable. This 
is a great simplification for most of the problems we consider. In this case 
a simple iteration argument analogous to that used in handling the strong 
maximal operator often suffices. When K(x,y) does not split into such a 
product, things are trickier, and we shall concentrate on this general case. 

If we look at the integral defining the double Hilbert transform, 

Hf(x,y)=J JRJ(x-s,y-t)^, 

then it will not be absolutely convergent, even for the simplest of functions 
/(x,t/). So there is initially a problem of defining H and other singular in-
tegrals rigorously. This is done by principal value integrals, i.e., we consider 
the truncated integral 

HeueJ(x,y) = ƒ Jisi>£i f{x - s , y - t ) ~ 
\t\>e2 

and then prove that, as £1,62 tend to zero independently, lim£l?e2_>o H£l£2 ƒ 
exists in Lp-norm or pointwise almost everywhere, and the limit H ƒ yields a 
bounded operator on Lp(Rn x Rm). 

Let us begin by asking for the right way to formulate conditions on a kernel 
K(x,y) generalizing (l)-(3) in the one-parameter case for which we have the 
boundedness of the operators involved. 

The best way to understand these conditions is as follows: On Rn x 
i£m, K(x, y) will be given so that if we view K(x, y) as a kernel on Rn of the 
x variable taking on as values functions of the y variable, then K is a one-
parameter Calderon-Zygmund kernel in x, taking on values in the space of 
all Calderon-Zygmund kernels in y. We give the Calderon-Zygmund kernels 
a norm, || ||cz- If JPC(2/) is a kernel on Rm satisfying 

K{y)dy = 0 V 0 < a < / ? , \K(y)\ < r ^ , 
t*<\y\<p \y\ 

and 
mv + h)-K(y)\<C(\h\/\v\ni/\y\m) 

for some rj > 0, whenever 2\h\ < \y\, then the smallest C which makes all 
of the above inequalities valid will be called the Calderon-Zygmund norm of 
K, ||K||cz. 

/ 
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Now given if (x,y), set Kx(y) = K(x,y) and consider the class C of those 
K for which 

(1') f Kxdx = 0, 
Ja<\x\<(3 

(2') \\Kx\\cz < C/\x\n, 

and 

(3') \\Kx+h - KX\\CZ < C( |f t | /M)"(l/Mn) , 

and try to show that convolution with these kernels is bounded on Lp. De-
coding (l')-(3') so that we have conditions defined directly on X(x,y), we 
find that K must satisfy 

(i) / K(x, y)dx = 0 for each fixed y G Rm\ 
Ja<\x\<(3 

(ii) / K(x, y) dy = 0 for each fixed x G Rn', 
Ja<\y\<(3 

(iii) \K(x,y)\ < C/\x\n\y\m for x G Rn, y G R™; 

(iv) W x + fc|y)^(,fy)|<^(W)^ 

whenever 2\h\ < \x\, and where rj > 0 is fixed; 

(v) \K{x,y + h)-K{x,y)\<^n(^f^ 

whenever 2\h\ < \y\\ 
(vi) if we define A{*]K{x,y) = K{x + h,y) - K{x,y) and A^]K{x,y) = 

K(x, y + k) - K(x, y) then 

For kernels satisfying (i)-(vi), i.e., for K G C, it is proven in [44] that the 
operators 

TeueJ = ƒ * # e i , e a for ÜC e i > e a (x ,y) = X|x |>e i («) * X | y | > e 2 ( 2 / ) ^ ( ^ 2/) 

are uniformly bounded on Lp(Rnx Rm) for 1 < p < oo and converge in the Lp-
norm to an operator T which is therefore bounded on Lp. The proof does not 
follow the usual Calderón-Zygmund program as outlined in the introduction. 
The reason for this is that, although there is a procedure for modifying an 
Llog L(Rn x Rm) function so that it becomes L2, the error term, rather than 
consisting of functions of mean value zero living on disjoint cubes, consists 
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of functions which have the appropriate cancellation, but are supported on 
rectangles which have an enormous amount of overlap. 

The method of proof used compares the Littlewood-Paley functions of 
Tf and ƒ, a method which, in the one-parameter case, goes back to Stein 
[74]. If \j) is some suitably nontrivial function with tp £ C%°(Rn x Rm), 
fRn ^(x, y) dx = 0 for each y € i?m , and fRm t/>(x, y) dy = 0 for each x G Rn, 
then we let 

Sl(f)(x,y)= f f \f ^tlM{u,v)\2t^-nt^-m dudvdhdh, 
J Jr1(x)xT2(y) 

and, for À > 1, 

dAf)&v)= [ [ +1 + 1 l /*Vw9(t i , t ;) | a 
H \ An 

l + lu-xl/h 
Am 

-t71-ntö1-mdudvdt1dt2, 
l + \v-y\/t2 

where 

^t l fta (»,!/) = tïntïmil>{x/tuy/t2). 

In [44] it is shown that under assumptions (i)-(vi) on K, we have 

(#) S^(Tf)(x,y)<Cgl^(f)(x,y) 

for all (x,y)eRn xR™. 
Now we come to the main point. The operators S and g\ are every bit as 

bad as T is; they are Hilbert-space-valued two-parameter singular integrals. 
But the above inequalities are valid for virtually any choice of x/j(x,y). If we 
choose i/j(x,y) to be of the form ^i(x) • ̂ 2(2/)? then these singular integrals 
S and gl have kernels with some product structure and can be handled by 
iteration methods involving vector valued functions (see [50 and 44]) to give 

\\SAf)hp - Il/lit» and \\gxAf)h>> ~ Wfhv 
for 1 < p < 00 and for A large enough. 

It is interesting to note that (#) needs to be replaced by a different in-
equality in case we desire weighted norm inequalities, 

/ [ \Tf\vWdxdy <Cp f f \f\pwdxdy, 
J JRnxRm J JRnxRrn 

where w satisfies a uniform Ap-condition in each variable separately. To do 
this, it turns out that (#) must be replaced by an inequality with the same 
left side, but whose right side becomes 

a00 /*oo 

J M*(\f*rkut,i*,v)\) 
dhdh\1/2 

«1*2 

a vector maximal operator, which can be studied by iterating the techniques 
of Charles Fefferman and E. M. Stein in [38]. 
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The deepest of the estimates for singular integrals in the two-parameter 
setting has to do with the existence, pointwise almost everywhere, of the 
principal value integral in question, 

lim Teuet(f)(x,y), 

where 

T£u£2(f)(x,y) = f f f(x~xf,y-y')K(x',y')dxfdy'. 
J J x > £ i lv ' l>«2 

To prove that for ƒ € Lp(Rn x Rn) this limit exists a.e., it turns out to be 
sufficient to get an estimate of the form 

(*) sup |TC l ,e a(/) | 
£ l , £ 2 > 0 

< C P | | / | | L P , K p < oo. 
LP 

The proof of (*) turns out to be related to an interesting piece of work on 
differentiation of integrals due to Stein [74], and this is the following: Suppose 
on Rn we set, for ƒ <G Cc°°(#n), 

Ar(f)(x)= f \f(x + rt)\da(t), 

where Sn l is the unit sphere in Rn and da is the element of surface measure 
on S71'1. Let 

m(f)(x) = s\ipAr(f)(x). 
r>0 

Then according to Stein we have the a priori estimate 

IM/)||LP(i*«) < Cp,n||/||i,p(ft») 

whenever p > n/(n— 1) and n > 2. The tools necessary for this proof are a type 
of interpolation using so-called analytic families of operators and quadratic 
functionals resembling the Littlewood-Paley g function. The same techniques 
are required to obtain (*). The details are too complicated to discuss here, but 
we shall be content to discuss briefly the correct Littlewood-Paley g function 
in this setting. 

The way to understand it best is to return to the one-parameter setting 
of Calderón-Zygmund kernels K(x) on Rn. If we set K£(x) = x\x\>e(x)K(x) 
for e > 0 and T£ ƒ = ƒ * K£, then the usual proof that the operator T* ƒ (x) = 
sup£ > 0 \T£f{x)\ is bounded on Lp(Rn) depends on the inequality 

T*f(x)<C{M(Tf)(x) + Mf(x)}, 

where Tf = ƒ * K, which is known to exist as the Lp-norm limit, as £ —• 0, 
of T£ ƒ. This, in turn, is proven by picking a positive bump function <j>{x) G 
C£°(Rn) with fRn 0 = 1 and noting that K£ looks very much like K * 4>£ = 
T(0e), where <j>e(x) = £~n())(x/£). In fact, 

(**) \K*<l>e{x)-Ke(x)\<C9e{x), 
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where <J>£ is a radial function of x which decreases as \x\ increases and has the 
property that ƒ $£ = 1 \/e > 0. It is trivial to see that convolution with such 
functions as $ £ is dominated by the maximal Hardy-Littlewood operator: 

\f*9e(x)\<Mf{x). 

It follows from (**) that 

| ( / * K) * M*) ~ f * Ks(x)\ < CMf(x), 

so 

\Tef(x)\ < \J>e * (Tf)(x)\ + CMf{x) < C{M(Tf)(x) + M(f)(x)}. 

It turns out that the main estimate above—that supe > 0 ƒ * \(K * <j)£) — K£\ 
is bounded on LP—can be improved by replacing the supe by a quadratic 
expression, our desired Littlewood-Paley type function: 

\f*{(K*<f>e)-K£}(x)\^j . 

Even this is bounded on Lp{Rn), as can be seen by a little computation, 
which shows that it is a convolution operator whose kernel L(x) has values 
in L2((0, oo), de/e) and satisfies the Calderón-Zygmund assumptions. It is 
this type of quadratic functional whose Lp-boundedness in the two-parameter 
setting is responsible for the Lp-boundedness of sup£l)£2 \T£l,£2f(x,y)\. 

We should also point out just in the case of the strong maximal operator 
on Rn x i2m, there are also weak type inequalities for ƒ € L(logL): 

m{(x,y) ERnx Rml\ |x|, jy| < 1, \T*f(x,y)\ > a) 

< (C'/0!)||/||L(logL)(^XJR^)-

These are along the same lines as the Lp inequalities for 1 < p < oo; for more 
details we refer the reader to [43] (also see the deep work of C. Fefferman [36] 
for the case of the double Hilbert transform). 

3. üTp-theory on the poly disc. In this section we very briefly mention 
some results of M. P. and P. Malliavin [62] and Gundy-Stein [50] about I P -
theory on product domains. 

Recall the notation we have used in the introduction: Suppose u is a func-
tion defined on Rn. Let u* denote the nontangential maximal function of w, 
and let S(u) denote the Lusin area integral function of u. Then we have the 
qualitative statement about the relation between u* and S(u) (theorem of 
Calderón-Stein) : 

(1) {x G Rn: u*(x) < oo}a=*{z e Rn: S{u){x) < oo}, 

and also the quantitative statement (theorem of Burkholder-Gundy-Silver-
stein [7] and C. FefTerman-Stein [44]): 

(2) u* G Lp iff S{u) G U with ||u*||p - ||S(u)||p for all 0 < p < oo. 

Because of (2) we have adopted u* G Lp as the definition for the space 
#p(ir£+1). 
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In the late 1970s, both (1) and (2) have been generalized to product do-
mains. To make the statements on product domains more explicit, we intro-
duce more notation. Let D denote the unit disc {z G C: \z\ < 1}, D2 = D\X 
D2, the bidisc with variables 21, z2 G D, respectively. For each point 0 in the 
distinguished boundary T2 of D2, 0 = (cidl,e*da), we set T{0) = T{01)xT{02), 
the product cone with vertex at 0. For a function u defined on T2, if we let 
u{ziiZ2) denote its biharmonic extension (i.e., harmonic in both 21,22 in-
dependently) to D2, then we can define, similar to the situation i?++1, the 
nontangential maximal function of u as 

u*(6)= sup \u{zi,z2)\. 
(*i,22)er(0) 

The "area integral" of u will be the sum 

S2(u) = S?2(u) + 5?(u) + S2
3(u) + M0,0)|2 , 

where 
S?2(ti)(0)= f \V1V2u\2dm 

Jr(0) 
and 

S2(u)(0) = [ | V i < , 0 ) | 2 d m i 

(here drrij is Lebesgue measure on the disc Dj and dm — dm\ dm^)-
Suppose we restrict ourselves to the one-dimensional case again. One way 

to establish the part {eie G T: u*(0) < 00} C {S(u)(0) < 00} (up to a set of 
measure zero) of statement (1) is to establish the following inequality (cf. [39], 
[50] and also the expository article [47] from where the following explanation 
is taken); 

(3) mi(S(u) > A) < - § f \u"t{0)\2dm1+cm1(u*{0) > A). 
A Ju*<\ 

The original C. Fefferman-Stein strategy for proving (3) is based on the fol-
lowing observation: Consider the set 

G = {eie: u*(0)<A}, 

and the region 

G+ = (J m-
eeG 

To establish (3) we need only estimate the measure of the set {S(u)(0) > 
A, e%e G G}. Now observe that, on G+ , we have \u\ < A. The boundary 
of G + consists of a "sawtooth" type region which can be approximated by 
Lispchitz regions and on which Green's Theorem can be applied (based on the 
identity Au2 = 2|Vu|2). Thus, we can relate jGS2(u)dmi to fdG+ \u\2 dm\ 
and obtain (3). (For more details see [39, 50].) 

On the bidisc the corresponding region G+ has quite a complicated bound-
ary, and it is not clear how to apply Green's Theorem in this domain. In [62] 
M. P. and P. Malliavin overcame this geometric difficulty of the proof by some 
delicate and complicated algebraic arguments. 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



FOURIER ANALYSIS AND Hp-THEORY ON PRODUCT DOMAINS 23 

Essentially what they did is this: instead of applying Green's Theorem in 
G+ , they considered some function W2XG+ , where \G+

 ls a smooth version 
of the characteristic function XG+ » a n d applied Stokes' theorem to U2XQ+ on 
the entire domain D2. They established that 

{u*{0) < 00} C {S{u){0) < 00} 
a.e. 

on the bidisc. Their techniques were later generalized and simplified by Gundy 
and Stein ([50], see also [49]) to establish (3) and the full scope of (1) and (2). 
Statement (2) was actually verified in [52] in a much more general setting. 
Namely, suppose we take any <j> G S(R2) (S denotes the Schwartz class) with 
ƒ (j) dx ^ 0 and let 

u*{0) = sup|ii*<k(0)|. 
e>0 

Then 
KHp~| |S( t i ) | |p f o r a l l O < p < o o . 

Based on this we may henceforth identify the class of functions u with u* G Lp 

as the "real-variable" version of the definition for functions in Hp for product 
domains. 

4. BMO on product domains. A locally integrable function </> is of 
bounded mean oscillation (BMO) on Rn if 

I I^H* = sup ^Jri\ I Mx) ~ mQ^)\dx' 
Q mW) JQ 

where the Q are cubes in Rn, is finite, where rag(</>) denotes the mean value 
of (j) over Q. The space BMO was introduced by John and Nirenberg [56] and 
has been used in many different contexts (e.g., John [55], Moser [65]). For 
our purposes we only mention C. Fefferman's fundamental duality theorem on 
BMO{Rn) (i.e., BMO(iT) is the dual space of J f^ iC^ 1 ) ) and report some 
of our efforts to generalize this theorem to the setting of product domains. 
As the reader may clearly see, our generalizations are so far incomplete. (The 
main deficiency is that the characterization we had for BMO functions on 
product domains lacks the clear and clean geometrical description of the orig-
inal definition of BMO(ü£n) as given above). Nevertheless, there are some 
positive results which indicate that our approach is in the right direction. We 
list some of these results in §7. 

Before we restate C. Fefferman's theorem, we remark that, as a consequence 
of the John-Nirenberg inequality (see the introduction) on BMO, we have 

| M | P « s u p - ^ j r ƒ \4>{x)-mQ{4>)\pdx 
Q mVQ) JQ 

for all p > 0. As we shall see, the case p = 2 is especially interesting, since it 
relates the local behavior of functions in BMO more closely to other "square" 
functions in Hp-theory. 

If (j) is any locally integrable function satisfying 

JRn 1 + I X I ^ 1 
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let <p(x,t) denote its Poisson extension to P+ + 1 = {{x,t): x G Rn, t > 0} 
(<t>(x,t) = (Pt * (t>){x))- Recall that a measure // is a Carleson measure if 
A*(S(Q)) < C\Q\ for all cubes Q, where 

S(Q) = J (x,t) G JCf+1, f[(x; - t,Xi +1) c Q I . 

THEOREM. The following three conditions on <j> are equivalent: 
(a) (j) is in BMO. 
(b) </> = </>o + S?= i RjiÖj)} where 0o, </>i, • • •, </>n G L°°, tu/iere Py are the 

Riesz transforms defined by 

(Rjf)(0 = (t-fc/KI)/(0. 

(b ) The linear functional ƒ —* JRn ƒ (x)</>(x) dx is bounded on H1. 
(c) t\V(j)(x,t)\2 dxdt is a Carleson measure on P+ + 1 , where 

\V4>(x,t)\2 = 
cty 
dt 

2 90 
axy 

2 

In the above theorem, (b) and (b') are equivalent by a function-theoretical 
argument. 

A direct generalization of this theorem to two-parameter product domains 
may be stated as follows. (For simplicity we will state the result in R\ x R\. 
One may state the same result in P™+1 x P™+1 by changing intervals in R 
to cubes in Rn and Pm . ) 

In the following we suppose <j> to be a locally integrable function on R2 

satisfying 
f |0(S)| d» 

y R 2 ( i + i o : 1 p ) ( i + i x 2 n < 0 0 ' 
where x = (xi,x2) G P 2 , and let (/>(x,i) denote the biharmonic extension of 
(j) to R£ x R} (</>(x,t) = (P t3 * Pt! * 0)(x)). Then we have: 

PROPOSITION. The following conditions on (j) are equivalent: 
(a) (j> satisfies 

-±— j |0(x) - fa{x2) - (/>j(xi) + 0 K | 2 dx < C 
m[K) JR 

for every rectangle R = I x J on R2, where 

</>l{x2) = ^ r y r / </>(xi, X2) d x i , 

<M&l) = —TTT / 0 ( ^ 1 ^ 2 ) ^ 2 , 

and (/)/? zs the mean value of 4> over R. 
(c) The measure 

d[i^ = tit2|ViV2(/>(x,t)|2dxi dx2dt\ dt2 
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satisfies 

d^ < Cm(I x J) If 
J JS( 

rs(i)xs(j) 
for all I, J intervals in R {S(I) is the Carleson region associated with I). 

An immediate question arising from this proposition is this: Does the space 
of functions described by (a) characterize the dual space of Hl(R\ x R\)l 
As we have mentioned before, a dual form of C. Fefferman's duality theorem, 
BMO(#) = {Hx{R\)y, is the so-called "atomic decomposition" of if1. (More 
details of this paper in the next section.) If we formally "analyze" the function 
space in statement (a), it is not hard to see that it is the dual space of 
H^ect(R\ x R\) where H^ect(R\ x R\) is defined via atoms supported on 
rectangles as follows: 

DEFINITION. A rectangle atom is a function a(x) supported on a rectangle 
R = I x J having the property ||a||2 < l / (ra(#))1 / 2 , 

/ a(xi,x2)dxi = 0 = / a(x\,x2)dx2 for every (x\,x2) G R. 

DEFINITION. H-^ect{R\ x R\) is the space of functions Y, ^ka>k with each 
a/c a rectangle atom and J2k \Xk\ < oo. 

In other words, we may add the following equivalent statement to the above 
proposition: 

(b) The linear functional ƒ —> JR2 f(x)4>(x) dx is bounded on 

#Rect(#+ X # + ) ' 

The immediate question is then: Is H^ect(R2 x R}) the same as the space 
H1 (R+ x R%.) defined in §3? The question lingered for awhile until L. Carleson 
[17] constructed an example of a measure fi satisfying the product form of the 
Carleson measure condition (as in (c)) but is not bounded on Hl. Based on 
his example, R. Fefferman [6] then constructed a (j) which satisfies condition 
(a) but is not even on L4(R2) (hence, not in the dual of H1(R\ x R\)). 
However, one can still strive to say something positive. 

DEFINITION. For each open set H C R2, define 5(H) to be the (general-
ized) Carleson region 

{(x,i) e R% x # J , with (xi - ti,xi +ti) x (x2 -t2,x2 +t2) C 0} . 

Then call a positive measure ix defined on R% X R£ a Carleson measure if it 
satisfies the condition /J,(S(Q)) < C\Q\ for all open sets Q C R2. 

Notice that this definition coincides with the original one-dimensional def-
inition if Q C -R. The reason is that: in the real line R each Q can be written 
as a disjoint union of open intervals Ij and S(Q) = |J S(Ij). The situation 
changes quite a lot from one to two dimensions, mainly because one must 
consider overlapping rectangles of different lengths and widths contained in 

a 
THEOREM [22, 40, 23 , 7]. The following conditions on 4> are equivalent: 

(b) <{> = <fo + HX1(4>{) + HX2{<j)2) + HXl o H X 2 (0 3 ) , 
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where 0o,</>i, 02,^3 € L°°(R2) and HXj denotes the Hubert transform in the 
Xj direction. 

(b') <f) is in the dual of Hl(R\ x R\). 
(c) The measure d[i^ = M2|ViV20(z, t)\2 dxdt satisfies the Carleson mea-

sure condition for open sets as defined above. 
Here again the equivalence between (b) and (b') is function theoretic. 

The major deficiency of this theorem is that (c) is, in practice, difficult 
to check. Also, it does not give much insight about the geometric properties 
of 0. To overcome these difficulties, we tried in [23] to adopt other square 
functions to (j) which are more easily accessible than the gradients of the 
biharmonic extensions of </>. To motivate the reader, we first formulate our 
result in the one-dimensional "dyadic" form. (The "dyadic" version described 
below is a special case of the martingale theory. As we have mentioned before, 
#p-theory was first developed by Burkholder-Gundy-Silverstein [7, 8] in its 
martingale form. Thus, it is natural to understand BMO through its dyadic 
analogue.) 

Define BMOd{R) to be the space of functions satisfying the bounded mean 
oscillation properties with respect to dyadic intervals ƒ = [(fc — l ) /2 n , A;/2n], 
1 < k < 2n , n an integer only. Then it is easy to see that BMO(i?) Ç 
BMOd(i^) (for example, the function (j)(x) = 0 for x < 0, <j)(x) = log(l/|x|) 
for x > 0 is in BMOd(ii!)\BMO(#)). We also have the duality result that 
BMOd{R) = {H%(R%))* (where H\{R\) can be defined as the space of func-
tions with 

h*(x) = sup 
I dyadic 

xei 

jjjfh{t)dt 
m(I) 

in L1; actually H^ has several equivalent definitions), as Hl does (cf. [7, 8], 
and the section on unconditional bases in this article). There is an alternative 
way to describe functions in BMOd, that is, through its Haar series expansion. 
Fix a dyadic interval J. The Haar function hi associated with I is 

( l / M I ) ) 1 / 2 on left-half of/, 
hi{x) = < -\l{m{I)YI2 on right-half of / , 

v 0 otherwise. 
The constant function, together with {/&/}/ dyadic forms an orthogonal basis 
of L2(R). Notice that for a fixed dyadic interval J we have 

(<j)(x) - mi{<l>))xi{x) = Yl CJhj(x)i 
Jci 

where Cj is the Haar coefficient of (f> w.r.t. hj. Hence, we may reformulate 
the definition of BMOd(#) (through its L2-form) as follows. 

PROPOSITION. <j> e BMOd if and only if 

~ \Cj\2<Cm(I) 
JCI 

J dyadic 

for all dyadic intervals I. 
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Thus, if we try to understand BMO via BMO<j, it amounts to finding a 
"continuous" analogue of the Haar expansion of a function. We will describe 
two methods to do this. One is via the S^-function (cf. Part I); the other (and 
maybe the more original) is via the work of B. Maurey [64] and [18, 83, 23] 
on the unconditional basis of H1 (see §5). Before we do this we would like to 
remark that the dyadic version for the bidisc of this proposition was carried 
out in Bernard [4]. Also there is another point of view to understanding BMO 
via BMOd (or H1 via ifj)-that is, very roughly speaking, characterizing BMO 
functions ƒ through averaging of the translates ( ft = ƒ (x — t)) of ƒ which are 
in BMOd. For details and more precise information on this latter point of 
view see [34, 47]. 

We now begin to describe BMO(JS+ x R+) through the square function S^. 
If we choose a function tp € C°° with compact support in [—1,1] and mean 
value zero for x = (x\,X2) € R2, y — (2/1,2/2) with yi > 0, denote 

2/12/2 V2/1/ V2/2/ 

and normalize i/> so that J0°° |</>(£)|2 dÇ/Ç = 1, then, for ƒ £ C§?(R2) with 
ƒ f{xi,X2) dx\ = ƒ f{x1,x2)dx2 = 0, we have 

ƒ ( * ) = f f (f*^y)(t)Mx-t)^r 

(recall also that 

J Jr(x1)xr(x2) \yiV2J 

This expression, which can easily be proved by taking Fourier transforms on 
both sides, can be thought of as a continuous analogue of the Haar expansion 
of ƒ as follows: For each dyadic rectangle R = / x J , let #+ denote the region 
in the bi-upper-half-plane as follows: 

R+ = {(t,y) eR%xR2+:te R, | / | /2 < 2/1 < |J|, | J | /2 < 2/2 < \J\} • 

Notice as R runs through all dyadic rectangles in R2, {R+} forms a pairwise 
disjoint union of R\ x R\. Thus, if we let 

ƒ*(*)= i t (f*1>v)(t)fl>y(x-t)^ 
J J( ,y)eR+ VIM 

then 

/(*)= E /«(*) 
R dyadic 

rectangles 

(cf. also A. P. Calderón [12] for this decomposition). 
Notice that the properties of JR can be compared to the Haar function 

CRHR (CR = Haar coefficient of ƒ w.r.t. HR) as follows: Each JR is sup-
ported on R = / x J , where I is the interval with the same center and three 
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times the length of ƒ, and ƒ# like hR has the property ƒ /R(XI , X2)dxi = 
ƒ /JR(XI,X2)C/X2 = 0 for all (xi,X2) £ # 2 . Each ƒ# is a C1 function (unlike 
fo#) with L2-norm of ƒ# bounded by 

SRU)=[I!R
 |/*^)|2 dtdy 

2/12/2 

1/2 

The /# 's are not orthonormal to each other (unlike foj?), but their "almost" 
orthogonal property is expressed by the simple 

LEMMA. Suppose R — I x J, R\ — I\X J\ are two dyadic rectangles with 
RnRi^Q. Let 

r{RuR) 
min|f | , |J i | m i n l J | , | J i | V / 2 

max|/ | , | / i | ' max|J | , | J i | 

Then 
S2

R(fR1)<Cr(R,R1)S
2
Rl(f), 

where C is a constant depending only on ||^||oo JI ̂  I loo-

The continuous analogue of the proposition on BMO^ is the following: 

THEOREM. Suppose <j> e L2(R2) satisfies 

/ <j)(xi,Xi)dXi = / (j)(x\,X2)dX2 = 0 

for all (xi,X2) G R2. Then the following conditions on (j) are equivalent. 

(a) sup 
open 

E 4 
ficn 

jR dyadic rec tangle 

11*112 < 00; 

(b) <f> is in the dual of Hl{R\ x R\); 

(c) SUP " T m 
n open m(\l) 

E s*(<t>) < 00. 

Ren 
An immediate corollary is the following representation theorem for func-

tions in BMO. 

COROLLARY. A function </> is in BMO(i^ x R%) {in the sense of the 
dual space of Hl{R\ x R%)) if and only if there exist functions { ^ } H and 
nonnegative real numbers {XR}R, where R is taken over all dyadic rectangles 
in R2, such that (j) — YIR^R^R

 Wl^ support bR C R, ƒ &fl(xi,X2)dxi = 
ƒ bi?(xi,X2) dx2 = 0, for all (xi,X2) G R2, and each bR is in C1 with 

||fc«||oo<C, 
dh 
dx\ <-w 

dbR 

dxo 
< 

\J\' 

d2bf 

dxi dx-x 
C_ 

\R\ 
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for R — I x J', and with XR satisfying J2RCQ ^#1-^1 — C\Q\ for all open set 
ncR2. 

The one-parameter form this corollary has been adopted by A. Uchiyama 
[80] as the first (small) step in a complicated constructive proof of the 
C. Fefferman-Stein decomposition of BMO(Rn) (cf. also P. Jones [57] for the 
decomposition of BMO(R) using methods of complex analysis). We would like 
also to point out that it is not immediately clear how to apply Uchiyama's 
method to obtain constructive decompositions of BMO functions in product 
domains. 

5. The atomic decomposition of Hl(R\ x R\). In this section we 
wish to give the simplest possible treatment of an atomic decomposition of 
#p-functions in the multiparameter setting. To do this we shall restrict our 
attention to the case p = 1 and to the two-parameter space H1(R^_ x R+) 
defined previously. We have already seen that there are several equivalent 
ways to define iüTp-spaces (see §3). As in the case of BMO, on the product 
domain (R+ x R\), we found out it is somewhat easier to adopt the "square 
function" (in L1) definition of H1. When we are trying to decompose functions 
in Hl(R\xR\), our natural approach is to try to decompose it into L2-atoms. 
(See [30] for the equivalence of Lp-atoms 1 < p < oo on i?++1.) What should 
an L2-atom look like on R\ x R\l Our best hope is this: An atom a(x,y) 
on R2 is a function supported on a rectangle R such that 

ƒ a(x\,X2)dxx = a(xi,X2)dx2 =0 V(xi,x2) G R2 

and 
||o| |L, < 1/\R\V*. 

Unfortunately, as we have seen in the previous section, convergent sums of 
such atoms form the space H^ectangle which is a proper subspace of 

H^RlxRl). 

In addition, as suggested by our definition of Carleson measure on product 
domains, the role played by rectangles in the definition of atoms should be 
replaced by an arbitrary open set of finite measure in R2. Let us begin to 
describe the appropriate definition which we will use for our atoms. 

To do this we require some notation. Let Q Ç R2 be an open set of finite 
measure. Then we set 

H = {(xux2) G R2 I Ma(xn)(*i,x2) > 1/2} 

and, for £1,̂ 2 > 0> Rtut2(
x^^x2) — t n e rectangle of side lengths t\ and £2 

centered at (xi,X2). It will be convenient to define 

A = {all (j) € C^{R2)\(j) is supported in (|:n| < 1) x(|x2| < 1) and satisfies 

||<9a+/V/dx? da^Hoo < 1010 for all a, (5 such that \a\ + |/?| < 20} . 

Finally, we remind the reader that we are using the notation 

(/>tl,t2(xi,£2) =tï1t2~
1(l)(x1/t1,X2/t2) for t i , t 2 > 0. 
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Below, in the statement of the atomic decomposition for Hl(R\ x R\), we 
give three ways of thinking about atoms. First, there is the definition which is 
dual to our notion of BMO(R+ x R\) from the previous section. The second 
definition says, roughly, that an atom is an L2-function a(x) supported in an 
open set Q Ç R2 which has enough cancellation so that the averages of a(x) 
over rectangles far away from Q are all suitably small (much smaller than 
if a(x) had no cancellation). The third says, more or less, that the square 
function of a(x) is very small far from fi. 

In order to understand the meanings of these definitions, let us illustrate 
the second in some detail. Consider, in R1, an i^-atom a(x) supported on 
an interval I centered at the origin. Take a point x far from / , say |x| > 2|/ | . 
Then for a bump function 0 supported in [—1, +1] we have 

H |«*<M*)|<^ = g ( ^ ) 2 . 

It turns out that, in applications, the fact that a(x) has mean value 0 over I 
is not that crucial. What we need is that ||a||2 < 1/|/ |1/ /2 and that "averages" 
of a with respect to suitably dilated bump functions are very small, as given 
in (~). 

In fact these two properties of a(x) easily imply that a e H1. Letting 

a*(x) = sup|a* <l>t{x)\, 
t>o 

we have 

ƒ a*(x)dx= / a*(x)dx+ / a*{x)dx 
JR1 JI JIC 

< ( / M 2 ( | a | ) d x ) 1 / 2 | / r + C | / | r g < C ' . 

Finally, before stating the atomic decomposition, there is one last defini-
tion: A pre-atom 6#(a;i, £2) is a function supported on the double of a dyadic 
rectangle R = I x J so that 

L 
I 

bR{x\,x\)dx\ = 0 for all x\ G R 
1 

OR(X\,X2) dx2 = 0 for all X2 G JR1, and 
j 

da^bR , 

fe^f(Xl'X2) 
^ww ïora+^2-

T H E ATOMIC DECOMPOSITION F O R Hl{R\ x R%) [23, 24, 42]. Any 

function f G Hl{R\xR\) can be written as f = ]T] XkCtk, where Xk are scalars 
with J2 I'M < C\\ f\\H1(R2 xR2 )) and where the a^ are H1~atoms. Conversely, 
any sum ]T Afca/c, where ̂ 2\\k\ < °° andak are H1-atoms, defines an element 
ƒ G Hl(R\ x R\) with \\f\\m{R2 xR2 ) ^ ^ S I'M- ^n ^e above we may take 
as the definition of H1 -atom any of the following: 
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(1) An atom is a function a(x\,X2), supported in an open set Q Ç R2 of 
finite measure, which can be written as a = ^2RCQ CR^R for scalars CR and 
pre-atoms bR such that £ |Cj*|2 |JB| < 1/m1/2. 

(2) An atom is a function a(xi,X2) supported in an open set U of finite 
measure such that \\a\\2 < 1/lfil1/2 and 

/ ~ \ io 
I JL / M / ! / l ^ 2 t i , 2 t a ( « l i « 2 ) n n | \ 

\a*KM{*uX>)\ < m \^ jj—] j 

V0 E A,t\it2 > 0 and (£1,22) ^ ^-
(3) An atom is a function a(x\,X2) supported in an open set fi of finite 

measure such that f or every (#i,£2) € # 2 , 

S(a)(xi,x2) < Ms
10(xn)(xi,x2) • A(xux2) 

for some function A with \\A\\2 < 1/lfil1/2. 

Which definition is most useful depends on the problem at hand. We should 
point out that it is immediately clear from (2) or (3) that an atom belongs to 
Hl(R\ x R\). For instance, consider (2) and let 

a*{xux2)= sup |a*0 t l , t 2 (x i ,x 2 ) | . 
ti,t2>0 

Then 

/ a* dx\ dx2 = I a* dx\ dx2 + I a* dx\ dx2 
JR2 JQ JCÙ 

< (J M2(\a\)dXl dx2) M 1 / 2 + p ƒ M^(xn)dx1 dx2 

(J \a\2 dxx dx2) |fi|1/2 + p J xh° dxi dx: <C'. 

We should like to close this section by briefly mentioning some applications. 
First, the decomposition implies, almost immediately, that BMO(i?+ x R\) 

is the dual space of Hl(R\ x R\). (See [23] and the section of this article on 
BMO(#2 x R\).) 

Second, this kind of atomic decomposition allows us to prove that we can 
interpolate between Hl{R\ x R\) and L2{R2) in order to get LP(R2), 1 < 
p < 2, as an intermediate space. In other words, if T is a sublinear operator 
bounded from Hl(R\ x R\) to Ll{R2) and on L2{R2), then T is bounded 
on LP(R2) for 1 < p < 2. For more details, see §8 on interpolation and also 
[24]. 

Third, the method of proof (especially the use of the sets where S(f) is a 
certain size in order to produce the atoms of ƒ ) of the atomic decomposition is 
quite useful in the more classical one-parameter setting as well. In their work 
on #p-theory on the Heisenberg group, FoUand and Stein [45] make use of 
these methods. In the work of Coifman-Meyer-Stein [29] on the application 
of the "tent spaces" to commutator integrals, the methods are also used. 
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Finally, there is one last application which we wish to mention. As has 
already been pointed out, it is one of the most basic principles of the real-
variable theory of H * that H1 can be defined in an equivalent manner by 
area integrals or by maximal functions. For Hl(R\ x R\) this is due to 
Gundy and Stein [50]. However, their proof that S(f) G LX(R2) implies 
ƒ* 6 LX{R2) makes use of complex analytic functions. If we think about the 
atomic decomposition, it is clear that it provides an immediate real-variable 
proof of this theorem. Indeed, it shows how to take a function whose area 
integral is in L1 and cut it up into an absolutely covergent linear combination 
of pieces (the atoms), each of which obviously has its maximal function of 
bounded L1 (R2)-noria. 

6. Unconditional bases of H1. We would like to discuss another ap-
proach to obtain a "continuous" version of the Haar expansion of functions. 
It begins with the work of Maurey [64] on the existence of an unconditional 
basis of H x of the unit disc. Recall that a basis {bu}v is called an uncondi-
tional basis for a Banach space B if, whenever an element v = Ylv a ^ ^s 

in J5, so are the elements v€ = X ^ s ^ a ^ , where e = (eu) is a vector with 
components ev = ±1 for all v. For example, it is not hard to see that the 
Haar system {hi\i dyadic in R , together with constant functions, forms an un-
conditional basis for LP(R) for all p > 1. Yet when the exponent p —• l,the 
system becomes an unconditional basis for H\ instead of L1. (This latter 
fact may be seen through the square-function characterization of H\, i.e., a 
function h with Haar expansion Yli Cihi is in H\ if and only if its dyadic 
square function 

Sd(h)(x)=(^2\Ci\2/\I\) 
\x€l ) 

is in L1; for more details see [6, 7].) 
The main result in [16] states that there exists a linear isomorphism be-

tween H1 of the unit disc and H\ of the unit disk. Since H\ has Haar functions 
as unconditional basis, by a theorem in Banach space, Maurey concluded the 
existence of an unconditional basis for if1 of the unit disc. The first explicit 
unconditional basis for H1 was constructed by L. Carleson in [18]. Later, 
P. Wojtaszczyk [83] discovered that the orthogonal Franklin system also forms 
an unconditional basis of #*[(), 1]. (We may define iï^O, 1] as the subspace 
of functions in HX(R) which are supported in [0,1].) The Franklin system has 
been investigated in the earlier literature (cf. [26, 4]). For example, S. V. 
Bockarev [5] has used the system to construct a basis for the disk algebra. 
It is the system of orthonormal piecewise linear functions defined on [0,1] 
which is obtained through the Schmidt orthonormalization procedure from 
the functions 

</>o(x) = 1, ^i(x) = x, 4>i(x) = / hi{t)dt, x e [0,1], 
./o 

1 < 'k<2n, n = 0 ,1 ,2 , . . . , 

where each 

I = In,k = 
'k-1 k 

2n ' 2n 
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is a dyadic interval of [0,1]. (The order in the procedure is first 0Oi<£i> then 
<t>Intk for fixed n, 1 < k < 2n for n = 0,1,2,. . . .) 

Only the following specific properties of the system are used in establishing 
the main result in [83] (cf. [26] for proofs of these properties). 

(1) The system {/o, / i , ƒ /} / dyadic is an orthonormal set of functions which 
is a basis for L2[0,1]. 

(2) Each fixed ƒ/ satisfies 
(a)/J ƒ/(«)* = 0. 
(b) There exist a constant C and some q > 1 independent of / such 

that |//(*)| < (C / l / l 1 / 2 ) ^ ' 7 ) / ! ' ! , where d is the Lebesgue distance. 

(c) |/a(t0_/l(t3)|<£t^i^[*x.*,w/m. 

In establishing an unconditional basis for H1, the proof in both [18] and 
[83] depended on an explicit description of the dual space of H1 of the disc, 
namely BMO. As we have mentioned in the last section, such explicit geomet-
ric description for the dual space of H1 of the product domain is still unknown. 
Instead we only have Carleson measure type characerizations of the space. Yet 
unlike the situation in Carleson's counterexample on the bidisc ([17], namely 
a measure which satisfies the product form of the Carleson measure condition 
may not be in the dual of Hl of the bidisc), the product form of the Franklin 
system does form an unconditional basis of iJx([0,1] X [0,1]). We may state 
this result again in its dual form (cf. [22, 24]): 

THEOREM. If ƒ e L2([0,1] x [0,1]) satisfies 

(3) ƒ f(xux2)dxi = ƒ f(xux1)dx2 = 0 , 
Jo Jo 

(4) / x1f{x1,x2)dx1= x2f(xuX2)dx2=0, 
Jo Jo 

for all x\,x2 G [0,1] with expansion 

f{xi,x2)= Y2 Cufi(xi)fj{x2), 
I,J dyadic 

then ƒ is in the dual of i^1([0,1] x [0,1]) if and only if 

E \Ci,j\2<c\n\ 
IxJcO 

for all open sets fi contained in [0,1] x [0,1]. 
The proof of this theorem depends on a careful comparison of Sn(fifj) 

(same notation as in §4) to Cu in terms of the relative position between the 
dyadic rectangle R and I x J and is mainly technical. But we may draw from 
it the desired conclusion that the double Franklin system 

{{foJufi}x{foJufj}YitJ dyadic intervals 

forms an unconditional basis for functions in if1([0,1] x [0,1]). Actually, we 
can say a little more (cf. [23]): 
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COROLLARY. ffMM] = {ƒ in L1!0»1] with the series C0fo + Ci / i + 
S i Cifi converges unconditionally, where 

Ci = f f(x)fi(x)dx (t = 0,l), C/ = ƒ f{x)fI{x)dx\. 

Furthermore, if, for every e = (£o,£i> £1)1 (s% = ±1, i — 0,1, Si = ±1 V7), 

l 

i=0 I dyadic 

| | / | | H i « S U p | | / e | | L i . 
e 

The same result also is true for if1([0,1] X [0,1]) with the product Franklin 
system substituted for the Franklin system. 

We finish this section with some remarks: 
(1) One can also think of the above results as statements about the dual 

space of H 1(T) and Hl{T2) (where T denotes the unit circle, T2 the torus) 
after the usual identification of T as [0,1] and T2 as [0,1] x [0,1] with functions 
extending periodically at the endpoints 0 and 1. In doing so we need to 
modify the Franklin system as defined above. One possible way to do this is 
to apply the Schmidt orthonormalization procedure to {</>o = 1, </>/}ƒ dyadic 
and observe that for each dyadic / , 0/(0) = 0/(1) = 0; thus, the new system 
{/o, ƒ /} / dyadic forms an orthonormal basis for functions ƒ in L2[0,1], ƒ(0) = 
/ ( I ) . One can check (as in [26]) to see that {ƒ/} still satisfies properties 
(a)-(c) earlier. See [4] also for other methods to modify the Franklin system 
from [0,1] to T. 

(2) Although it is relatively difficult to compute the coefficient with respect 
to Carleson's [8J basis of Hl(T), the dual form of his basis gives very clear 
geometric insight about the structure of BMO(T). It remains open whether 
the product form of Carleson's basis also forms an unconditional basis for 
H1^2). A positive answer to the problem may help to form a clearer geo-
metric description of BMO(T2). 

(3) A very complicated "ordering" problem arises when one tries to gener-
alize the Franklin system as above to get an unconditional basis for H1(Rn). 
For the construction of such systems on J?n, n > 1, and actually constructions 
of spline systems of higher orders (which is necessary in order to obtain an 
unconditional basis for # p , 0 < p < 1), the reader is referred to the article of 
J. O. Stromberg [79]. 

7. Some further results. In this section we briefly report on some recent 
results on product domains which are applications of the techniques we have 
described. As the reader will see, the results are mainly incomplete, since the 
whole field is still in its developing stage. 

(1) The corona problem. Suppose / i , ƒ2, . . . , fn are bounded analytic func-
tions defined on the open disc D with | fi{z)\ -f |ƒ2(2)| H h |fn{z)\ > ô for 
all z G D. The corona problem is this: Do there also exist bounded analytic 
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functions #1,02, • • • ,9n in D with J2*j=x fj(z)9j{z) = 1 on D? The problem 
was answered affirmatively by L. Carleson [15] in the early 1960s. Actually, 
the terminology "Carleson measure" was invented as a device to solve this 
problem. One of the major difficulties in the solution is the construction of 
certain Carleson measures to solve some â-equation (cf. [16]). As we have 
now seen, one way to understand BMO functions is through the connection 
with associated Carleson measures; namely, if 0 G BMO(T) then 

\V4>(z)\2log(l/\z\)dzdz 

is a Carleson measure with norm comparable to ||0||J, where (j){z) is the har-
monic extension of </> to D evaluated at z in D. In particular, if 0 is a bounded 
analytic function in D (hence its boundary value on the unit circle is in L°°(T), 
hence in BMO(T)), then 

\cj>f{z)\2\og{\l\z\)dzdz 

is a Carleson measure (with norm « ||0||?o). It was the brilliant idea of T. 
Wolff to apply this latter fact to solve the following d-equation and obtain an 
alternative proof of the corona problem on D. 

If /x is any Carleson measure, we say IX€LC and denote its measure norm 
by IIMIIC 

MAIN LEMMA (T. WOLFF; SEE [46, CHAPTER VIII]). Suppose g is a 
smooth function defined on D and satisfies 

(a) \dg(z)/dz\\og(l/\z\)dzdz G C with measure norm < M 2 . 
(b) \g(z)\2 \og(l/\z\) dzdz G C with measure norm < M2. 
Then there exists a solution u of the equation du/dz = g on D, such that 

the radial limit of u exists on T with ||u||x,oo(T) < M. 

A straightforward generalization of Wolff's lemma to the bidisc D2 = D\X 
D2, with D\ = Z>2 = D, takes the following form. (We use the notation 
d%g = dg/dzi, dig = dg/dzi for i = 1,2, with (^,22) G Z>2, and dA = 
dz\dz\ dz2ctz~2-) 

2 

LEMMA 1 [22]. Suppose g is a smooth function on D satisfying 

(a) \did2g(zllz2)\ log -—r log 1—r dA G C on D2, 
\zl\ \z2\ 

(b) / / l ^ l ^ l . ^ l l o g ^ l o g ^ d A ^ C W j y i 
J JD2 PI I \z2\ 

forallheH^D2), 
(c) Same condition as in (b) with Z\, Z2 interchanged, 

(d) \g2(zu z2)\ log j — log y—^dA G C on D2. 
Pil F2| 

Then there exists a solution v on D2 with d\d2V = #, the radial limit of v 
exists on T2, and \\v\\L°°(T2) & bounded by a constant depending only on the 
Carleson measure constants in (a)-(d). 

Combining Wolff's lemma and Lemma 2 we get 
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LEMMA 2. Suppose h\,h2 are smooth functions on D satisfying 

(a)' \h1{zllz2)\
2 log 1—r dAu \d1h1{z1,z2)\ log -—- dAu 

\zi\ \zi\ 

(b); \h2{zuz2)\
2 log T—y dA2, \d2h2{zuz2)\ log r—- dA2 

are all Carleson measures in D with measure constants uniformly bounded for 
all (zi,z2) G D2. Suppose g = d\h2 = d2h\ satisfies (a)-(d) of Lemma (1). 
Then there exists a solution u of the d-equation d\u = h\, d2u = h2 such that 
the radial limit ofu exists onT2 andu G BMO(T2) with |M|BMO(T2) bounded 
by Carleson measure constants in (a) , (b) and (a)-(d) for the function g. 

We would like to point out that a BMO (instead of L°°-) solution is the 
best one may hope for under the given conditions in Lemma 2. This is similar 
to the situation that occurs in the unit ball in Cn (cf. [81]). The above lemma 
can be applied to obtain Hp-solutions for the corona problem on the bidisc: 

PROPOSITION [22]. Suppose fi,f2 are bounded analytic functions defined 

on the bidisc D2 satisfying J2j=i \fjiz)\ ^ Ö for a^ z ^ D2. Then there exist 

01,02 analytic in D2 and rip<oo HP(D2) with Ylj=i fj(z)aj(z) = 1 z n D2-

One would think that the number n of functions / i , ƒ2, . . . , fn is not impor-
tant for the existence of solutions for the corona problem. That this is not the 
case on Dd for d > 2 was pointed out to the first author by N. Varopoulous. 
This is due to the fact that, when d > 2, the (0, l)-forms on Dd may not be 
automatically d-closed (when n = 2 some special trick may be applied, and 
this difficulty does not show up). To overcome this difficulty when d > 2, 
Varopoulous [82] developed and applied some machinery in stochastic inte-
gration. Recently K. C. Lin [60] was able to handle the extra terms which 
occurred in the Koszul complex in solving 9-equations when d > 2 by esti-
mates similar (but somewhat easier) to those in Lemma 2. Based on this and 
some combinatorial arguments, Lin also obtained a real-analysis proof of the 
following result. 

THEOREM ([60]; ALSO [82]). Suppose / i , / 2 , . . . , / n are bounded ana-
lytic functions defined on the bidisc Dd satisfying £Zj=i |/j(^)| > 6 for all 
z G Dd. Then there exists gi,..., gn analytic in Dd and rip<oo Hp(Dd) with 

£"=1 ƒ;(*)<&(*) = !• 

The challenging problem of whether or not one can obtain bounded analytic 
gfj's remains open. (The same problem also remains open for unit balls in Cd.) 

(2) Interpolation between Hp-spaces on the bi-upper-half-plane. Methods 
similar to those used in obtaining the atomic decomposition of HX{R\ x R\) 
also yield the following "decomposition" result for Lp-functions (1 < p < 2), 
which can be viewed as a generalization of the (now) classical Calderón-
Zygmund decomposition lemma (cf. [75]) to the product domain {R\ x R\)\ 
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LEMMA 3 [25]. Let a > 0 be given and ƒ <E LP(R2), 1 < p < 2. Then we 
may write f = g + b, where g G L2(R2) and b € Hl(R\ X ü^_) with 

(*) llfflli < «2-pll/ll? and \\b\\Hl<Ca^\\f\\l, 

where C is a universal constant 

Just as the Calderón-Zygmund lemma served as a basic tool for various 
interpolation results between # p ( j?" + 1 ) [9, 38, 13, 70], the above lemma can 
be applied for interpolation between HP{R\ x R\). An immediate corollary 
of Lemma 3 is 

COROLLARY. Suppose T is a linear operator bounded from HX(R\ x R\) 
to Ll{R2) and on L2(R2). Then T is bounded on LP(R2) for alll<p<2. 

PROOF OF THE COROLLARY. Let ƒ e LP(R2) and a > 0. Applying 

Lemma 3 we may write ƒ = g + 6, where (*) holds. Then 

m{\Tf\ > a} <m{\Tg\ > | } +m{\Tb\ > | } < c (±\\Tg\\l + ±\\Tb\\^ 

<^(^M22 + ll\M^)<c^\\frP. 

T is therefore weak type (p, p) for all 1 < p < 2. Hence, by the Marcinkie-
wicz interpolation theorem, T is bounded on Lp for p in the same range. 

A typical T which satisfies the assumptions in the corollary is the double 
Hubert transform Tf = HXlHX2f. Thus, the above result is a generalization 
of the classical M. Riesz theorem to the setting of product domains. 

One can ask questions about interpolating between different iJp-spaces 
(particularly when p < 1). There are many interpolation methods which 
apply to Hp. Among them, two suffice for most applications: namely, the 
real interpolation method ( )o,q (0 < 0 < 1, 0 < q < oo) and the Calderón 
complex interpolation method ( )e (0 < 0 < 1) (cf. [9, 3] for definitions). For 
Hp on product domains R\ x R\, Lin [61] has the following results: 

THEOREM. 

{H\Lpi)e,q = Lp>\ K P l < o o , l/p=l-$ + 0/pu 

( a j {H\L°°)otq = (tf\BMO)0,g - LM, 1/p = 1 - 9. 

(Lp>q denotes Lorentz space) 

(H\Lp>) = Lp, K P l < o o , l/p=l-$ + 0/pu 

[ j (H\L°°)o = (H1,BMO)e = Lp, 1/p =1-0. 

It should be noted that for H1 on the unit disc or H1 on the domain i2!f+1, 
all statements in this theorem are known. (For the real method part (a), see 
[52, 39, and 70]; for the complex method part (b), see [38, 13 and 58]. 
For a general survey and references, see [39].) But the methods used in the 
proof for the classical domains (e.g., unit disk or R7^1)—especially the part 
concerning BMO functions in [38]—apparently do not apply in the product 
domain R\ x R\. To obtain endpoint results as BMO in the results above, 
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Lin used the constructive method for interpolation used in [13], and he also 
applied the elegant four interpolation theorem of Wolff [84]. 

(3) Singular integrals of commutator type. About twenty years ago Calderón 
[86] proved that a certain singular integral operator was bounded on Lp-
spaces. This operator, connected with the study of partial differential equa-
tions and complex variables, is known as the "first commutator integral" and 
is given by 

A(x) - A{y) 
Tf(x) 'L ~f{y)dy, 

{x - y)2 

where A(x) is a differentiate function on R1 and Af(x) G L°°. By the classical 
Calderón-Zygmund techniques, once it is proven that T is a bounded operator 
on L2,.it follows immediately that T is also bounded on IP for all 1 < p < oo. 
Somewhat later, the so called "higher commutators", Tk (fc > 1), given by 

Tkf(x) = [ 
JR1 

A(x)-A(y) 
x-y (*-y) 

f{y) dy, 

were proven to be bounded on L2 (hence, on Lp for 1 < p < oo) by Coifman 
and Meyer [87]. These operators Tk are different from the classical ones of 
Calderón-Zygmund discussed in Part I for two reasons. Of course, all these 
operators are integral operators of the form 

Tf(x)= f K(x,y)f(y)dy 

for some kernel K(x,y). The classical Calderón-Zygmund singular integrals 
have kernels of the form K(x — y), i.e., they are convolution operators, while 
the commutators are not. The cancellation possessed by the kernels of 
Calderón-Zygmund is quite obvious: 

/ K(x, y)dy = 0 V0 < a < 0. 
Ia<\x~-y\<p 

The cancellation of the kernels for T^, 

Kk(x,y) = (A(x)-A(y))/(x- V) 
fc+1 

is much more subtle. Quite recently, G. David and J. L. Journé have obtained 
beautiful, simple, and general theorems [88] concering the boundedness on L2 

of operators like Tk. One such theorem [88] is the following: 

Suppose Tf(x) = fR1 K(x,y)f(y) dy and K satisfies 

(1) K(x,y) = -K(y,x), 

(2) | t f(X , t f) |<_£_; 

and 
(3)T( l )eBMO(i? 1 ) . 

Then T is bounded on L2(RX). 

dK 
dx 

+ 
dK 
dy - ( x - y ) 2 ' 
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Even though this is an L2-theorem, just as in the work of Calderón, Coif-
man, and Meyer, the spaces H1 (and BMO) play a vital role here. For exam-
ple, in order to see that, for the kth. commutator T/c, we have Tfc(l) G BMO, 
David and Journé proceed inductively as follows: For k = 1, 

r W..^WS! dy, 

as is immediate upon integrating by parts. This last expression is just H(Af), 
the Hubert transform of a bounded function, which is well known to be in 
BMO. For k > 1 observe that integration by parts shows that 

T(UI, f [A(x)-A(y))k 

L 

{x - y)> 

[A{x)-A{y))^A>{y) 
dy 

/«* (x-y)k 

= Tk-i(A
f)(x). 

Now the point is that according to a theorem of C. Fefferman-Stein [38], if 
an integral operator Tf(x) = ƒ K(x, y)f(y) dy is bounded on I? and satisfies 

\dK(x,y)/dx\<C/(x-y)2, 

it is automatically bounded from L°° to BMO. By induction we may assume 
that Tfc_i(l) G BMO, and, hence, by the above theorem Tk-i is bounded on 
L2. Applying the C. Fefferman-Stein result, we see that Tk-i{A') G BMO, 
whereupon Tfc(l) G BMO. In order to prove that Tk is bounded on L2, it was 
important to understand the action of the operators Tk as operators from L°° 
to BMO. 

More recently, Journé has extended some of these results to the setting of 
product spaces. The model operator here is the "product commutator" Tfc, 
given as follows: Let A(xi, X2) be a C2-function on R2 such that (d2A/dx\dx2) 
G L°°, and let 

j ( r r „ „ „ x A(xi,x2) + A{yuy2) - À(yux2) - A(xuy2) 
A(xux2,yuy2) = j - —77- —\ • 

(xi -yi){X2 -2/2) 
Then 

Tkf{xux2)= (j [ i (s i ,S2,yi , t t ) ] f c , ^ ! ; f } ,dVldy2. 

Journé proves in [89] a general theorem on product singular integrals which, 
in particular, implies that the Tk are bounded on LP(R2) for 1 < p < 00. 
Rather than go into detail concerning the general class of operators involved, 
let us make a few observations about the method of proof. A basic prop-
erty of Tk which must be proved, just as in the one-parameter case, is that 
Tfc(l) G BMO(#3_ x R2.). This is done inductively by proving that Tk-\ is 
bounded from L°° to BMO{R\ xR\). Once this is done, the Tk will then be 
bounded on L2. The product domain theorems on Hx-BMO duality and inter-
polation (between H1 and L2) are then applied to obtain boundedness on Lp, 
1 < p < 00. 
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The arguments of Journé proving that the operators map L°° to 

BMO(#^ x R\) 

are ingenious and along the lines of the proof of Chang [21] that bounded 
functions have Poisson integrals which give rise to Carleson measures. We 
should also point out that the interpolation results of Lin, mentioned earlier 
in this section, are used in the arguments to prove L2-boundedness of the 2\ . 
The reader interested in applications of the methods described throughout 
this article is urged to see [89]. 
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