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1 Introduction

The rigid body dynamics is a core subject of the Classical Mechanics. Findings of
Mathematics of the last 40–50 years, shed a new light on Mechanics, and on rigid-
body dynamics in particular. Strong impetus to a novel approach and modernization
of Mechanics came from celebrated Arnold’s book (Arnold 1974). There are several
approaches and schools developing further those ideas. To mention a few: Kozlov,
Abraham, Marsden, Kharlamov, Manakov, Novikov, Dubrovin, Fomenko, Horozov,
Sokolov and their students and collaborators. Along that line, in 1993, the first author
initiated a new seminar in the Mathematical Institute of the Serbian Academy of
Sciences andArts, inspired by and named after Arnold’s book. One of themost popular
research topics within the Seminar was rigid body dynamics, and several young people
got involved. The purpose of this article is to make a review of some of the results
obtained in almost quarter of the century of the Seminar’s activity. Let us mention that
the classical aspects of rigid body dynamics occupied attention of Serbian scientists
for a long time, see for example books and monographs (Bilimović 1955; Dragović
and Milinković 2003; Andjelić and Stojanović 1966) and references therein.
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In this paper we will focus mostly on the problems related to the integrability of
motion of a rigid body either in the case of a heavy body fixed at a point or a body
embedded in an ideal fluid and their higher dimensional generalizations. Although
the first higher dimensional generalizations of rigid body dynamics appeared in XIX
century (see Frahm 1874; Schottky 1891), a strong development of the subject came
after Arnold’s paper (1966).

Integrability or solvability, is one of the fundamental questions related to the system
of differential equations of motion of some mechanical system. The integrability is
closely related to the existence of enough number of independent first integrals, i.e.
functions that are constant along the solutions of the system. Early history was devel-
oped by classics (Euler, Lagrange, Hamilton, Jacobi, Liouville, Kowalevski, Poincaré,
E. Noether, and many others). The basic method of that time was the method of sep-
aration of variables and Noether’s theorem was the tool for finding first integrals
from the symmetries of the system. With the work of Kowalevski a more subtle alge-
braic geometry and more intensive theory of theta functions entered on the stage. The
final formulation of the principle theorem of the subject of classical integrability, the
Liouville–Arnold theorem, which gives a qualitative picture of the integrable finite-
dimensional Hamiltonian systems appeared in the Arnold’s paper (Arnold 1963) (see
also Arnold 1974).

In the classical history of integration in rigid body dynamics, the paper of
Kowalevski (1889) occupies a special place. For the previously known integrable
examples, the Euler and the Lagrange case, the solutions are meromorphic func-
tions. Starting from that observation, Kowalevski formulated the problem of finding
all cases of rigid body motion fixed at a point whose general solutions are single-
valued functions of complex time that admit only moving poles as singularities. She
proved that this was possible only in one additional case, named later the Kowalevski
case. She found an additional first integral of fourth degree and completely solved
the equations of motion in terms of genus two theta-functions. The importance of the
Kowalevski paper is reflected in the number and spectra of papers that are devoted to
the Kowalevski top. We will present here some recent progress in the geometric inter-
pretation of the Kowalevski integration and certain generalizations of the Kowalevski
top see (Dragović 2010; Dragović and Kukić 2011, 2014a, b).

A modern, algebro-geometric approach to integration of the equations of motion is
based on the existence of the so-called Lax representations. This method originated in
the 1960’s, with a significant breakthrough made in the theory of integrable nonlinear
partial differential equations (Korteveg-de Vries (KdV), Kadomtsev-Petviashvili (KP)
and others). These equations appear to be integrable infinite-dimensional Hamiltonian
systems. A system admits a Lax representation (or an L-A pair) with the spectral
parameter if there exists a pair of linear operators (matrices, for example) L(λ), A(λ)

such that the equations of the system can be written in the form:

d

dt
L(λ) = [

L(λ), A(λ)
]
, (1.1)
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where λ is the complex spectral parameter. The first consequence of (1.1) is that the
spectrum of the matrix L(λ) is constant in time, i.e. the coefficients of the spectral
polynomial are first integrals. In the algebro-geometric integration procedure, the
so-called Baker–Akhiezer function plays a key role. This function is the common
eigenfunction of the operators d

dt + A(λ) and L(λ), defined on the spectral curve
C, which is naturally associated to the L-A pair. The Baker–Akhiezer function is
meromorphic on C except in several isolated points where it has essential singularities.
For more detailed explanations of modern algebro-geometric integration methods, see
(Dubrovin 1977, 1981; Dubrovin et al. 2001; Adler and vanMoerbeke 1980; Dragović
2006; Belokolos et al. 1994; Gajić 2002). An important class of Lax presentations,
when L(λ) and A(λ) arematrix polynomials in λ, was studied byDubrovin (1977) (see
also Dubrovin (1981); Dubrovin et al. (2001)). These methods have been successfully
applied to rigid body dynamics (see Manakov 1976; Bogoyavlensky 1984; Bobenko
et al. 1989; Ratiu and van Moerbeke 1982; Ratiu 1982; Gavrilov and Zhivkov 1998).

The Lax representations appear to be also a useful tool for constructing higher-
dimensional generalizations of a given system. We will review some of the results
obtained in Dragović and Gajić (2001, 2004, 2006, 2009, 2012, 2014), Dragović
(2010), Jovanović (2007, 2008), Gajić (2013).

The paper is organized as follows. The basic facts about three-dimensional motion
of a rigid body are presented in Sect. 2. In the same Section, the basic steps of the
algebro-geometric integration procedure for the Hess–Appel’rot case of motion of
three-dimensional rigid body are given. A recent approach to the Kowalevski integra-
tion procedure is given in Sect. 3. The basic facts of higher-dimensional rigid body
dynamics are presented in Sect. 4. The same Section provides the definition of the iso-
holomorphic systems, such as the Lagrange bitop and n-dimensional Hess–Appel’rot
systems. The importance of the isoholmorphic systems has been underlined by Gru-
shevsky and Krichever (2010). In Sect. 5 we review the classical Grioli precessions
and present its quite recent higher-dimensional generalizations. The four-dimensional
generalizations of the Kirchhoff and Chaplygin cases of motion of a rigid body in an
ideal fluid are given in Sect. 6.

2 The Hess–Appel’rot Case of Rigid Body Motion

2.1 Basic Notions of Heavy Rigid Body Fixed at a Point

A three-dimensional rigid body is a system of material points in R
3 such that the

distance between each two points is a constant function of time. Important case of
motion is when rigid body moves with fixed point O . Then the configuration space
is the Lie group SO(3). In order to describe the motion, it is usual to introduce
two Euclidian frames associated to the system: the first one Oxyz is fixed in the
space, and the second, moving, O XY Z is fixed in the body. The capital letters will
denote elements of themoving reference frame, while the lowercase letters will denote
elements of the fixed reference frame. Let B(t) ∈ SO(3) is an orthogonalmatrixwhich
maps O XY Z to Oxyz. The radius vector �Q of the arbitrary point in the moving
coordinate system maps to the radius vector in the fixed frame �q(t) = B(t) �Q. The
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velocity of that point in the fixed reference frame is given by

�v(t) = �̇q(t) = Ḃ(t) �Q = Ḃ(t)B−1(t)�q(t) = ω(t)�q(t),

where ω(t) = Ḃ B−1. The matrix ω is an skew-symmetric matrix. Using the iso-
morphism of (R3,×), where × is the usual vector product, and (so(3), [ , ]), given
by

�a = (a1, a2, a3) �→ a =
⎡

⎣
0 −a3 a2
a3 0 −a1

−a2 a1 0

⎤

⎦ (2.1)

matrix ω(t) is corresponded to vector �ω(t)—angular velocity of the body in the fixed
reference frame. Then �v(t) = �ω(t) × �q(t). One can easily see that �ω(t) is the eigen-
vector of matrix ω(t) that corresponds to the zero eigenvalue.

In the moving reference frame, �V (t) = B(t)−1�v(t), so �V (t) = ��(t) × �Q, where
��(t) is the angular velocity in the moving reference frame and corresponds to the
skew-symmetric matrix �(t) = B−1(t)Ḃ(t).

Here one concludes that it is natural to consider the angular velocity as a skew-
symmetricmatrix. The elementω12 corresponds to the rotation in the plane determined
by the first two axes Ox and Oy, and similarly for the other elements. In the three-
dimensional case we have a natural correspondence given above, and one can consider
the angular velocity as a vector. But, in higher-dimensional cases, generally speaking,
such a correspondence does not exist. We will see later how in dimension four, using
isomorphism between so(4) and so(3) × so(3) two vectors in the three-dimensional
space are joined to an 4 × 4 skew-symmetric matrix.

The moment of inertia with respect to the axis u, defined with the unit vector �u
through a fixed point O is :

I (u) =
∫

B
d2dm =

∫

B
〈�u × �Q, �u × �Q〉dm =

∫

B

〈 �Q × (�u × �Q), �u
〉
dm = 〈I �u, �u〉,

where d is the distance between corresponding point and axis u, I is inertia operator
with respect to the point O defined with

I �u =
∫

B

�Q × (�u × �Q)dm,

and integrations goes over the body B. The diagonal elements I1, I2, I3 are called
the principal moments of inertia, with respect to the principal axes of inertia. The
ellipsoid 〈I�,�〉 = 1 is the inertia ellipsoid of the body at the point O . In the
principal coordinates its equation is:

I1�
2
1 + I2�

2
2 + I3�

2
3 = 1.
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The kinetic energy of the body is given by:

T = 1

2

∫

B
V 2dm = 1

2

∫

B
〈 �� × �Q, �� × �Q〉dm

= 1

2
〈 ��,

∫

B

�Q × ( �� × �Q)dm〉 = 1

2
〈I ��, ��〉

Similarly, for the angular momentum �M with respect to the point O , we have:

�M =
∫

B

�Q × �V dm =
∫

B

�Q × ( �� × �Q)dm = I ��.

We consider a motion of a heavy rigid body fixed at a point. Let us denote by �χ the
radius vector of the center of masses of the body multiplied with the mass m of the
body and the gravitational acceleration g. By �� we denote the unit vertical vector.

The motion in the moving reference frame is described by the Euler–Poisson equa-
tions (Leimanis 1965; Whittaker 1952; Golubev 1953; Borisov and Mamaev 2001):

�̇M = �M × �� + �� × �χ
�̇� = �� × ��. (2.2)

Using that �M = I ��, one see that (2.2) as a systemof six ordinary differential equations
in �M and �� with six parameters I = diag(I1, I2, I3), �χ = (X0, Y0, Z0). These
equations have three first integrals:

H = 1

2
〈 �M, ��〉 + 〈��, �χ〉

F1 = 〈 �M, ��〉,
F2 = 〈��, ��〉. (2.3)

Since the equations preserve the standard measure, by the Jacobi theorem (see for
example Golubev 1953; Arnold et al. 2009) for integrability in quadratures one needs
one more additional functionally independent first integral.

On the other hand, the Eq. (2.2) are Hamiltonian on the Lie algebra e(3) with the
standard Lie-Poisson structure:

{Mi , M j } = −εi jk Mk, {Mi , � j } = −εi jk�k, i, j, k = 1, 2, 3. (2.4)

The structure (2.4) has twoCasimir functions F1 and F2 from (2.3). Thus, the symplec-
tic leaves are four-dimensional (they are diffeomorphic to the cotangent bundle of the
two-dimensional sphere (Kozlov 1995) and for the integrability in the Liouville sense
one needs, besides the Hamiltonian H from (2.3), one more functionally independent
first integral.

Thus a natural problem arises: for which values of the parameters I1, I2, I3,
X0, Y0, Z0, the Eq. (2.2) admit the fourth functionally independent first integral?
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2.2 Integrable Cases

The existence of an additional independent fourth integral gives strong restrictions on
the moments of inertia and the vector �χ . Such an integral exists in the three cases
(Euler 1765; Lagrange 1788; Kowalevski 1889) (see also Golubev 1953; Leimanis
1965; Whittaker 1952; Kozlov 1995; Borisov and Mamaev 2001; Arkhangel’skiy
1977):

• Euler case (1751): X0 = Y0 = Z0 = 0. The additional integral is F4 = 〈M, M〉.
• Lagrange case (1788): I1 = I2, �χ = (0, 0, Z0). The additional integral is F4 =

M3.
• Kovalewski case (1889): I1 = I2 = 2I3, �χ = (X0, 0, 0). The additional integral
is F4 = (�2

1 − �2
2 + X0

I3
�1)

2 + (2�1�2 + X0
I3

�2)
2.

There are also cases that admit a fourth first integral only for a fixed value of one
of the integrals. If the Casimir function F1 = 0, then we have

• Goryachev–Chaplygin case (1900): I1 = I2 = 4I3, �χ = (X0, 0, 0). The addi-
tional integral is F4 = M3(M2

1 + M2
2 ) + 2M1�3;

Following the Kowalevski paper (1889), a natural problem arises: to find all cases
of the Euler–Poisson equations that admit an additional fourth first integral. Using
the results of Liouville, in Husson (1906) Husson proved that an additional algebraic
integral exists only in the Euler, Lagrange and Kovalewski cases. Simplified proofs
of Liouville’s and Husson’s results were presented by Dokshevich (see Dokshevich
1974). On the other hand, Poincaré considered amore general problem of the existence
of an analytical first integral of the canonical systems. Using the method of a small
parameter, he developed a tool for proving nonintegrability of a perturbation of an
integrable Hamiltonian system. However, Poincaré observed that his method cannot
be applied to the Euler–Poisson equations. In 1970’s Kozlov in Kozlov (1975) (see
also Kozlov 1980; Arkhangel’skiy 1977) modified the Poincaré results and proved
that a nonsymmetric rigid body does not admit an additional analytical integral except
in the Euler case. The case of a symmetric rigid body is even more complicated. The
nonexistence of an additional (complex or real-valued) analytical or meromorphic
integral except in the three classical cases was finally proved in the papers of Kozlov
and Treschev (1985, 1986), Ziglin (1997). Ziglin also proved that having the value
of F1 fixed to be zero, an additional meromorphic integral exists only in one extra
case—the Goryachev–Chaplygin case.

2.3 Definition of the Hess–Appel’rot System

Beside the completely integrable cases, there are classically well-known systems
which possess an invariant relation instead of an additional first integral. A list of
such systems can be found, for example in Gorr et al. (1978).

Some of these cases where obtained using new forms of the Euler–Poisson equa-
tions and a method of constructing invariant relations given by Kharlamov (for details
see Kharlamov 1965, 1974a, b; Kharlamov and Kovalev 1997; Gorr et al. 1978;
Gashenenko et al. 2012). We will focus on the Hess–Appel’rot case.
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It is well known that Kowalevski, in her above mentioned celebrated 1889 paper
Kowalevski (1889), started with a careful analysis of the solutions of the Euler and
the Lagrange case of rigid-body motion, and formulated a problem to describe the
parameters (I1, I2, I3, X0, Y0, Z0), for which the Euler–Poisson equations have a
general solution in a form of a uniform (single-valued) function having moving poles
as the only possible singularities.

Then, some necessary conditions were formulated in Kowalevski (1889) and a
new case was discovered, now known as the Kowalevski case, as a unique possible
beside the cases of Euler and Lagrange. However, considering the situation where all
the momenta of inertia are different, Kowalevski came to a relation analogue to the
following:

X0

√
I1(I2 − I3) + Y0

√
I2(I3 − I1) + Z0

√
I3(I1 − I2) = 0,

and concluded that the relation X0 = Y0 = Z0 follows, leading to the Euler case.
But, it was Appel’rot (see Appel’rot 1892, 1894) who noticed in the beginning of

1890’s, that the last relation admitted one more case, not mentioned by Kowalevski:

Y0 = 0, X0

√
I1(I2 − I3) + Z0

√
I3(I1 − I2) = 0, (2.5)

under the assumption I1 > I2 > I3. Such an intriguing position corresponding to the
overlook in theKowalevski paper,made theHess–Appel’rot systems very attractive for
leadingRussianmathematicians from the end ofXIX century. Nekrasov andLyapunov
managed to provide new arguments and they demonstrated that the Hess–Appel’rot
systems didn’t satisfy the condition investigated by Kowalevski, which meant that her
conclusion was correct. It is interesting to mention that in Appel’rot (1892), Appel’rot
noticed that the first version of his paper had a mistake observed and communicated
to him by Nekrasov.

The system that satisfies the conditions (2.5) was considered also by Hess, even
before Appel’rot, in 1890. Hess (1890) found that if the inertia momenta and the radius
vector of the center of masses satisfy the conditions (2.5), then the surface

F4 = M1X0 + M3Z0 = 0 (2.6)

is invariant. It means that if at the initial moment the relation F4 = 0 is satisfied, then
it will be satisfied during the whole time evolution of the system.

2.4 A Lax Representation for the Classical Hess–Appel’rot System:
An Algebro-Geometric Integration Procedure

A Lax representation for the classical Hess–Appel’rot system, with an algebro-
geometric integration procedure was presented in Dragović and Gajić (2001). The
classical integration procedure leads to an elliptic function and an additional Riccati
equation (see Golubev 1953). In Dragović and Gajić (2001) an algebro-geometric
integration procedure was presented with the same properties.
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Using isomorphism (2.1), Eq. (2.2) can be written in the matrix form:

Ṁ = [M,�] + [�, χ ]
�̇ = [�,�],

where the skew-symmetric matrices represent vectors denoted by the same letter.
We have the following:

Theorem 2.1 (Dragović and Gajić 2001) If condition (2.5) is satisfied, the equations
of the Hess–Appel’rot case can be written in the form:

L̇(λ) = [L(λ), A(λ)],
L(λ) = λ2C + λM + �, A(λ) = λχ + �, C = I2χ. (2.7)

The spectral curve is defined by:

C : p(μ, λ) := det(L(λ) − μE) = 0,

is:

C : −μ(μ2 − ω2 + 2��∗) = 0

where

α = X0√
X2
0 + Z2

0

β = Z0√
X2
0 + Z2

0

� = y + λx, �∗ = ȳ + λx̄,

y = 1√
2
(β�1 − α�3 − i�2), x = 1√

2
(βM1 − αM3 − i M2),

ω = −i
[
α(C1λ

2 + M1λ + �1) + β(C3λ
2 + M3λ + �3)

]

= −i
[
α(C1λ

2 + �1) + β(C3λ
2 + �3)

]
. (2.8)

This curve is reducible. It consists of two components: the rational curve C1 given by
μ = 0, and the elliptic curve C2 :

μ2 = P4(λ) = ω2 − 2��∗. (2.9)

The coefficients of the spectral polynomial are integrals of motion. If one rewrites
the equation of the spectral curve in the form:

p(μ, λ) = −μ(μ2 + Aλ4 + Bλ3 + Dλ2 + Eλ + F) = 0,
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one gets:

A = I 22 (X2
0 + Z2

0),

B = 2I2(M1X0 + M3Z0)(= 0),

D = M2
1 + M2

2 + M2
3 + 2I2(X0�1 + Z0�3),

E = 2(M1�1 + M2�2 + M3�3),

F = �2
1 + �2

2 + �2
3(= 1).

Thus, the L-A pair (2.7) gives three first integrals and one invariant relation.
Now, we review some basic steps in the algebro-geometric integration procedure

fromDragović and Gajić (2001). Let ( f1, f2, f3)T denote an eigenvector of the matrix
L(λ), which corresponds to the eigenvalue μ. Fix the normalizing condition f1 = 1.
Then one can prove:

Lemma 2.1 (Dragović and Gajić 2001) The divisors of f2 and f3 on C2 are:

( f2) = −P1 + P2 − ν + ν̄,

( f3) = P1 − P2 + ν − ν̄,

where P1 and P2 are points on C2 over λ = ∞, and ν ∈ C2 is defined with νλ = − y
x ,

νμ = −ω |λ=− y
x
.

We are going to analyze the converse problem. Suppose the evolution in time of the
point ν is known. For reconstructing the matrix L(λ), one needs x = |x |ei arg x , y =
|y|ei arg y as functions of time.

Lemma 2.2 (Dragović and Gajić 2001) The point ν ∈ �2 and the initial conditions
for M and � determine |x |, |y| and arg y − arg x, where x and y are given by (2.8).

Thus, in order to determine L(λ) as a function of time, one needs to find the
evolution of the point ν and arg x as a function of time. In Dragović and Gajić (2001)
the following two theorems are proved:

Theorem 2.2 (Dragović and Gajić 2001) The integration of the motion of the point ν

reduces to the inversion of the elliptical integral

∫ ν

ν0

dλ√
ω2 − 2��∗ = 1

I2
t.

Denote by φx = arg x , and u = tan φx
2 .

Theorem 2.3 (Dragović and Gajić 2001) The function u(t) satisfies the Riccati equa-
tion:

du

dt
= [ f (t) + g(t)]u2 + [ f (t) − g(t)],
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where

f (t) = K

2|x |2 , g(t) = Q|x |
2

,

K = 〈M, �〉
2
√

X2
0 + Z2

0

, Q = β

α

√
2

(
1

I 2
− 1

I 1

)
;

|x | is a known function of time.

In recent years some other methods have been applied as well to study the Hess–
Appel’rot system (see Borisov and Mamaev 2003; Lubowiecki and Żoła̧dek 2012a, b;
Belyaev 2015; Simić 2000).

2.5 Zhukovski’s Geometric Interpretation

In Zhukovski (1894) Zhukovski gave a geometric interpretation of the Hess–Appel’rot
conditions. Denote Ji = 1/Ii . Consider the so-called gyroscopic inertia ellipsoid:

M2
1

J1
+ M2

2

J2
+ M2

3

J3
= 1,

and the plane containing the middle axis and intersecting the ellipsoid at a circle.
Denote by l the normal to the plane, which passes through the fixed point O . Then the
condition (2.5) means that the center of masses lies on the line l.

If we choose a basis of moving frame such that the third axis is l, the second one is
directed along the middle axis of the ellipsoid, and the first one is chosen according
to the orientation of the orthogonal frame, then (see Borisov and Mamaev 2001), the
invariant relation (2.6) becomes

F4 = M3 = 0,

the matrix J obtains the form:

J =
⎛

⎝
J1 0 J13
0 J1 0

J13 0 J3

⎞

⎠ ,

and χ = (0, 0, Z0).
One can see here that the Hess–Appel’rot system can be regarded as a perturbation

of the Lagrange top. In new coordinates the Hamiltonian of theHess–Appel’rot system
becomes

HH A = 1

2

(
J1(M2

1 + M2
2 ) + J3M2

3

)
+ Z0�3 + J13M1M3 = HL + J13M1M3

This serves as a motivation for a definition of higher-dimensional Hess–Appel’rot
systems in Dragović and Gajić (2006), which will be presented in Sect. 4.6.
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3 Kowalevski Top, Discriminantly Separable Polynomials, and Two
Valued Groups

We will present here a recent approach to a geometrization of the Kowalevski integra-
tion procedure from Dragović (2010), see also Dragović (2014).

3.1 Discriminantly Separable Polynomials

We will start from the equation of a pencil of conics F(w, x1, x2) = 0, where w, x1
and x2 are the pencil parameter and the Darboux coordinates respectively. We recall
some of the details: given two conics C1 and C2 in general position by their tangential
equations

C1 : a0w
2
1 + a2w

2
2 + a4w

2
3 + 2a3w2w3 + 2a5w1w3 + 2a1w1w2 = 0;

C2 : w2
2 − 4w1w3 = 0. (3.1)

Then the conics of this general pencil C(s) := C1+ sC2 share four common tangents.
The coordinate equations of the conics of the pencil are

F(s, z1, z2, z3) := det M(s, z1, z2, z3) = 0,

where the matrix M is:

M(s, z1, z2, z3) =

⎡

⎢⎢
⎣

0 z1 z2 z3
z1 a0 a1 a5 − 2s
z2 a1 a2 + s a3
z3 a5 − 2s a3 a4

⎤

⎥⎥
⎦ .

The point equation of the pencil C(s) is then of the form of the quadratic polynomial
in s

F := H + K s + Ls2 = 0

where H, K and L are quadratic expressions in (z1, z2, z3).

Given the projective planewith the standard coordinates (z1 : z2 : z3), we rationally
parameterize the conic C2 by (1, , 2) as above. The tangent line to the conic C2
through a point of the conic with the parameter 0 is given by the equation

tC2(0) : z1
2
0 − 2z20 + z3 = 0.

For a given point P outside the conic in the plane with coordinates P = (ẑ1, ẑ2, ẑ3),
there are two corresponding solutions x1 and x2 of the equation quadratic in 

ẑ1
2 − 2ẑ2 + ẑ3 = 0.
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Each of the solutions corresponds to a tangent to the conic C2 from the point P . We
will use the pair (x1, x2) as the Darboux coordinates (see Darboux 1917) of the point
P . One finds immediately the converse formulae

ẑ1 = 1, ẑ2 = x1 + x2
2

, ẑ3 = x1x2.

Changing the variables in the polynomial F from the projective coordinates (z1 :
z2 : z3) to the Darboux coordinates, we rewrite its equation F in the form

F(s, x1, x2) = L(x1, x2)s
2 + K (x1, x2)s + H(x1, x2).

The key algebraic property of the pencil equation written in this form, as a quadratic
equation in each of three variables s, x1, x2 is: all three of its discriminants are
expressed as products of two polynomials in one variable each:

Ds(F)(x1, x2) = P(x1)P(x2), Dxi (F)(s, x j ) = J (s)P(x j ), i, j = 1, 2,

where J and P are polynomials of degree 3 and 4 respectively, and the elliptic curves

�1 : y2 = P(x), �2 : y2 = J (s)

are isomorphic (see Proposition 1 of Dragović 2010).
As a geometric interpretation of F(s, x1, x2) = 0 we may say that the point P in

the plane, with the Darboux coordinates with respect to C2 equal to (x1, x2) belongs
to two conics of the pencil, with the pencil parameters equal to s1 and s2, such that

F(si , x1, x2) = 0, i = 1, 2.

Now we recall a general definition of the discriminantly separable polynomials.
With Pn

m denote the set of all polynomials of m variables of degree n in each variable.

Definition 3.1 (Dragović 2010) A polynomial F(x1, . . . , xn) is discriminantly sepa-
rable if there exist polynomials fi (xi ) such that for every i = 1, . . . , n

Dxi F(x1, . . . , x̂i , . . . , xn) =
∏

j �=i

f j (x j ).

It is symmetrically discriminantly separable if

f2 = f3 = · · · = fn,

while it is strongly discriminantly separable if

f1 = f2 = f3 = · · · = fn .
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It is weakly discriminantly separable if there exist polynomials f j
i (xi ) such that for

every i = 1, . . . , n

Dxi F(x1, . . . , x̂i , . . . , xn) =
∏

j �=i

f i
j (x j ).

3.2 Two-Valued Groups

n-Valued Groups: Defining Notions
The structure of formal (local) n-valued groups was introduced by Buchstaber and

Novikov (1971) in their study of characteristic classes of vector bundles. It has been
studied further by Buchstaber and his collaborators since then (see Buchstaber 2006
and references therein).

Following Buchstaber (2006), we give the definition of an n-valued group on X as
a map:

m : X × X → (X)n

m(x, y) = x ∗ y = [z1, . . . , zn],

where (X)n denotes the symmetric n-th power of X and zi coordinates therein.
Associativity is the condition of equality of two n2-sets

[x ∗ (y ∗ z)1, . . . , x ∗ (y ∗ z)n]
[(x ∗ y)1 ∗ z, . . . , (x ∗ y)n ∗ z]

for all triplets (x, y, z) ∈ X3.
An element e ∈ X is a unit if

e ∗ x = x ∗ e = [x, . . . , x],

for all x ∈ X .
A map inv : X → X is an inverse if it satisfies

e ∈ inv(x) ∗ x, e ∈ x ∗ inv(x),

for all x ∈ X .
Following Buchstaber, we say that m defines an n-valued group structure

(X, m, e, inv) if it is associative, with a unit and an inverse.
An n-valued group X acts on the set Y if there is a mapping

φ : X × Y → (Y )n

φ(x, y) = x ◦ y,
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such that the two n2-multisubsets of Y

x1 ◦ (x2 ◦ y) (x1 ∗ x2) ◦ y

are equal for all x1, x2 ∈ X, y ∈ Y . It is additionally required that

e ◦ y = [y, . . . , y]

for all y ∈ Y .

Example 3.1 (A two-valued group structure on Z+, Buchstaber and Veselov 1996)
Let us consider the set of nonnegative integers Z+ and define a mapping

m : Z+ × Z+ → (Z+)2,

m(x, y) = [x + y, |x − y|].

This mapping provides a structure of a two-valued group on Z+ with the unit e = 0
and the inverse equal to the identity inv(x) = x .

In Buchstaber and Veselov (1996) a sequence of two-valued mappings associated
with the Poncelet porismwas identified as the algebraic representation of this 2-valued
group. Moreover, the algebraic action of this group on CP

1 was studied and it was
shown that in the irreducible case all such actions are generated by the Euler–Chasles
correspondences.

In the sequel, we are going to show that there is another 2-valued group and its action
on CP

1 which is even more closely related to the Euler–Chasles correspondence and
to the Great Poncelet Theorem (see Dragović and Radnović 2011), and which is at
the same time intimately related to the Kowalevski fundamental equation and to the
Kowalevski change of variables.

However, we will start our approach with a simple example.

The Simplest Case: 2-Valued Group p2
Among the basic examples ofmultivalued groups, there are n-valued additive group

structures on C. For n = 2, this is a two-valued group p2 defined by the relation

m2 : C × C → (C)2

x ∗2 y = [(√x + √
y)2, (

√
x − √

y)2] (3.2)

The product x ∗2 y corresponds to the roots in z of the polynomial equation

p2(z, x, y) = 0,

where

p2(z, x, y) = (x + y + z)2 − 4(xy + yz + zx).

Our starting point in this section is the following
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Lemma 3.1 The polynomial p2(z, x, y) is discriminantly separable. The discrimi-
nants satisfy relations

Dz(p2)(x, y) = P(x)P(y) Dx (p2)(y, z) = P(y)P(z) Dy(p2)(x, z) = P(x)P(z),

where P(x) = 2x .

The polynomial p2 as a discriminantly separable, generates a case of generalized
Kowalevski system of differential equations from Dragović (2010).

3.3 2-Valued Group Structure on CP
1 and the Kowalevski Fundamental

Equation

Nowwe pass to the general case.We are going to show that the general pencil equation
represents an action of a two valued group structure. Recognition of this structure
enables us to give to ’the mysterious Kowalevski change of variables’ (see Audin 1996
for the wording “mysterious”) a final algebro-geometric expression and explanation,
developing further the ideas ofWeil and Jurdjevic (seeWeil 1983; Jurdjevic 1999a, b).
Amazingly, the associativity condition for this action from geometric point of view is
nothing else than the Great Poncelet Theorem for a triangle.

As we have already mentioned, the general pencil equation

F(s, x1, x2) = 0

is connected with two isomorphic elliptic curves

�̃1 : y2 = P(x)

�̃2 : t2 = J (s)

where the polynomials P, J of degree four and three respectively. Suppose that the
cubic one �̃2 is rewritten in the canonical form

�̃2 : t2 = J ′(s) = 4s3 − g2s − g3.

Moreover, denote byψ : �̃2 → �̃1 a birational morphism between the curves induced
by a fractional-linear transformation ψ̂ which maps three zeros of J ′ and ∞ to the
four zeros of the polynomial P .

The curve �̃2 as a cubic curve has the group structure. Together with its subgroupZ2
it defines the standard two-valued group structure of coset type onCP1 (seeBuchstaber
1990):

s1 ∗c s2 =
[

−s1 − s2 +
(

t1 − t2
2(s1 − s2)

)2

,−s1 − s2 +
(

t1 + t2
2(s1 − s2)

)2
]

, (3.3)

where ti = J ′(si ), i = 1, 2.
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Theorem 3.1 Dragović (2010) The general pencil equation after fractional-linear
transformations

F(s, ψ̂−1(x1), ψ̂−1(x2)) = 0

defines the two valued coset group structure (�̃2,Z2) defined by the relation (3.3).

For the proof see Dragović (2010).

3.4 Fundamental Steps in the Kowalevski Integration Procedure

Let us recall briefly that the Kowalevski top Kowalevski (1889) is a heavy top rotating
about a fixed point, under the conditions I1 = I2 = 2I3, I3 = 1, Y0 = Z0 = 0 (see
Sect. 2.1). Denote with c = mgX0, (m is the mass of the top), and with (p, q, r) the
vector of angular velocity ��. Then the equations of motion take the following form,
see Kowalevski (1889), Golubev (1953):

2 ṗ = qr �̇1 = r�2 − q�3

2q̇ = −pr − c�3 �̇2 = p�3 − r�1

ṙ = c�2 �̇3 = q�1 − p�2. (3.4)

The system (3.4) has three well known first integrals of motion and a fourth first
integral discovered by Kowalevski

2(p2 + q2) + r2 = 2c�1 + 6l1
2(p�1 + q�2) + r�3 = 2l

�2
1 + �2

2 + �2
3 = 1

(
(p + iq)2 + �1 + i�2

) (
(p − iq)2 + �1 − i�2

)
= k2. (3.5)

After the change of variables

x1 = p + iq, e1 = x21 + c(�1 + i�2)

x2 = p − iq, e2 = x22 + c(�1 − i�2) (3.6)

the first integrals (3.5) transform into

r2 = E + e1 + e2
rc�3 = F − x2e1 − x1e2
c2�2

3 = G + x22e1 + x21e2
e1e2 = k2, (3.7)
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with E = 6l1 − (x1 + x2)2, F = 2cl + x1x2(x1 + x2), G = c2 − k2 − x21 x22 . From
the first integrals, one gets

(E + e1 + e2)(F + x22e1 + x21e2) − (G − x2e1 − x1e2)
2 = 0

which can be rewritten in the form

e1P(x2) + e2P(x1) + R1(x1, x2) + k2(x1 − x2)
2 = 0 (3.8)

where the polynomial P is

P(xi ) = x2i E + 2x1F + G = −x4i + 6l1x2i + 4lcxi + c2 − k2, i = 1, 2

and

R1(x1, x2) = EG − F2 = −6l1x21 x22 − (c2 − k2)(x1 + x2)
2

−4lc(x1 + x2)x1x2 + 6l1(c
2 − k2) − 4l2c2.

Note that P from the formula above depends only on one variable, which is not obvious
from its definition. Denote

R(x1, x2) = Ex1x2 + F(x1 + x2) + G.

From (3.8), Kowalevski gets

(
√

P(x1)e2 ±√
P(x2)e1)

2 = −(x1 − x2)
2k2 ± 2k

√
P(x1)P(x2) − R1(x1, x2).

(3.9)

After a few transformations, (3.9) can be written in the form

[√
e1

√
P(x2)

x1 − x2
± √

e2

√
P(x1)

x1 − x2

]2
= (w1 ± k)(w2 ∓ k), (3.10)

where w1, w2 are the solutions of an equation, quadratic in s:

Q(s, x1, x2) = (x1 − x2)
2s2 − 2R(x1, x2)s − R1(x1, x2) = 0. (3.11)

The quadratic Eq. (3.11) is known as the Kowalevski fundamental equation. The dis-
criminant separability condition for Q(s, x1, x2) is satisfied

Ds(Q)(x1, x2) = 4P(x1)P(x2)

Dx1(Q)(s, x2) = −8J (s)P(x2), Dx2(Q)(s, x1) = −8J (s)P(x1)
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with

J (s) = s3 + 3l1s2 + s(c2 − k2) + 3l1(c
2 − k2) − 2l2c2.

The equations of motion (3.4) can be rewritten in new variables (x1, x2, e1, e2, r, �3)

in the form:

2ẋ1 = −i f1, ė1 = −me1
2ẋ2 = i f2, ė2 = me2. (3.12)

There are two additional differential equations for ṙ and �̇3. Here m = ir and f1 =
r x1 + c�3, f2 = r x2 + c�3. One can easily check that

f 21 = P(x1) + e1(x1 − x2)
2, f 22 = P(x2) + e2(x1 − x2)

2. (3.13)

Further integration procedure is described in Kowalevski (1889), and in Dragović
and Kukić (2014a).

We get the following

Theorem 3.2 (Dragović 2010) The Kowalevski fundamental equation represents a
point pencil of conics given by their tangential equations

Ĉ1 : −2w2
1 + 3l1w

2
2 + 2(c2 − k2)w2

3 − 4clw2w3 = 0;
C2 : w2

2 − 4w1w3 = 0. (3.14)

The Kowalevski variables w, x1, x2 in this geometric settings are the pencil parameter,
and the Darboux coordinates with respect to the conic C2 respectively.

The Kowalevski case corresponds to the general case under the restrictions a1 =
0 a5 = 0 a0 = −2. The last of these three relations is just normalization condition,
provided a0 �= 0. The Kowalevski parameters l1, l, c are calculated by the formulae

l1 = a2
3

l = ±1

2

√

−a4 +
√

a4 + 4a2
3 c = ∓ a3√

−a4 +
√

a4 + 4a2
3

provided that l and c are requested to be real.
Let us mention that Kowalevski in (1889), instead the relation (3.11), used the

equivalent one, where the equivalence is obtained by putting w = 2s − l1.
The Kowalevski change of variables is the following consequence of the discrimi-

nant separability property of the polynomial F = Q:

dx1√
P(x1)

+ dx2√
P(x2)

= dw1√
J (w1)

dx1√
P(x1)

− dx2√
P(x2)

= dw2√
J (w2)

. (3.15)
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The Kowalevski change of variables (see Eq. (3.15)) is infinitesimal of the corre-
spondence which maps a pair of points (M1, M2) to a pair of points (S1, S2). Both
pairs belong to a P1 as a factor of the appropriate elliptic curve. In our approach, there
is a geometric view to this mapping as the correspondence which maps two tangents
to the conic C to the pair of conics from the pencil which contain the intersection point
of the two lines.

If we apply fractional-linear transformations to transform the curve �̃1 into the
curve �̃2, then the above correspondence is nothing else then the two-valued group
operation ∗c on (�̃2,Z2).

Theorem 3.3 The Kowalevski change of variables is equivalent to infinitesimal of the
action of the two valued coset group (�̃2,Z2) on P

1 as a factor of the elliptic curve.
Up to the fractional-linear transformation, it is equivalent to the operation of the two
valued group (�̃2,Z2).

Now, the Kötter trick (see Kotter 1893; Dragović 2010) can be applied to the
following commutative diagram.

Proposition 3.1 (Dragović 2010) The Kowalevski integration procedure may be cod-
ded in the following commutative diagram:

C
4 �̃1 × �̃1 × C �̃2 × �̃2 × C

�̃1 × �̃1 × C × C CP
1 × CP

1 × C

C × C CP
1 × CP

1 × C

CP
2 CP

2 × C/ ∼

�
i
�̃1

×i
�̃1

×m

�
i
�̃1

×i
�̃1

×id×id
�������

ia×ia×m

�
p1×p1×id

�ψ−1×ψ−1×id

�
�

�
�

�
���

p1×p1×id

�
ϕ1×ϕ2

�
ψ̂−1×ψ̂−1×id

�
m2

�
mc×τc

� f

The mappings are defined as follows

i
�̃1

: x �→ (x,
√

P(x))

m : (x, y) �→ x · y

ia : x �→ (x, 1)

p1 : (x, y) �→ x

mc : (x, y) �→ x ∗c y

τc : x �→ (
√

x,−√
x)

ϕ1 : (x1, x2, e1, e2) �→ √
e1

√
P(x2)

x1 − x2

ϕ2 : (x1, x2, e1, e2) �→ √
e2

√
P(x1)

x1 − x2

f : ((s1, s2, 1), (k, −k)) �→ [(γ −1(s1) + k)(γ −1(s2) − k), (γ −1(s2) + k)(γ −1(s1) − k)]
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From the Proposition 3.1 we see that the two-valued group plays an important role
in the Kowalevski system and its generalizations.

3.5 Systems of the Kowalevski Type: Definition

Following Dragović and Kukić (2011, 2014a, b), we are going to present a class of
dynamical systems, which generalizes the Kowalevski top. Instead of the Kowalevski
fundamental equation (see formula (3.11)), the starting point here is an arbitrary dis-
criminantly separable polynomial of degree two in each of three variables.

Given a discriminantly separable polynomial of the second degree in each of three
variables

F(x1, x2, s) := A(x1, x2)s
2 + B(x1, x2)s + C(x1, x2), (3.16)

such that

Ds(F)(x1, x2) = B2 − 4AC = 4P(x1)P(x2),

and

Dx1(F)(s, x2) = 4P(x2)J (s)

Dx2(F)(s, x1) = 4P(x1)J (s).

Suppose, that a given system in variables x1, x2, e1, e2, r, γ3, after some transfor-
mations reduces to

2ẋ1 = −i f1, ė1 = −me1,

2ẋ2 = i f2, ė2 = me2, (3.17)

where
f 21 = P(x1) + e1A(x1, x2), f 22 = P(x2) + e2A(x1, x2). (3.18)

Suppose additionally, that the first integrals of the initial system reduce to a relation

P(x2)e1 + P(x1)e2 = C(x1, x2) − e1e2A(x1, x2). (3.19)

The equations for ṙ and �̇3 are not specified for the moment and m is a function of
system’s variables.

If a system satisfies the above assumptions wewill call it a system of the Kowalevski
type. As it has been pointed out in the previous subsection, see formulae (3.8, 3.11,
3.12, 3.13), the Kowalevski top is an example of the systems of the Kowalevski type.

The following theorem is quite general, and concerns all the systems of the
Kowalevski type. It explains in full a subtle mechanism of a quite miraculous jump
in genus, from one to two, in integration procedure, which has been observed in the
Kowalevski top, and now it is going to be established as a characteristic property of
the whole new class of systems.
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Theorem 3.4 Given a system which reduces to (3.17, 3.18, 3.19). Then the system is
linearized on the Jacobian of the curve

y2 = J (z)(z − k)(z + k),

where J is a polynomial factor of the discriminant of F as a polynomial in x1 and k
is a constant such that

e1e2 = k2.

The last Theorem basically formalizes the original considerations of Kowalevski, in
a slightly more general context of the discriminantly separable polynomials. A proof
is presented in Dragović and Kukić (2014b).

In the following subsectionswe present the Sokolov systemgiven in Sokolov (2002)
as an example of systems of the Kowalevski type, and one more recent example of the
systems of the Kowalevski type.

3.6 An Example of Systems of the Kowalevski Type

Consider the Hamiltonian (see Sokolov 2002; Sokolov and Tsiganov 2001)

Ĥ = M2
1 + M2

2 + 2M2
3 + 2c1γ1 + 2c2(γ2M3 − γ3M2) (3.20)

on e(3) with Lie-Poisson brackets

{Mi , M j } = εi jk Mk, {Mi , γ j } = εi jkγk, {γi , γ j } = 0 (3.21)

where εi jk is the totally skew-symetric tensor. In Komarov et al. (2003), an explicit
mapping of the integrable system on e(3)with Hamiltonian (3.20) and the Kowalevski
top on so(3, 1) has been found and a separation of variables for the system (3.20) was
performed. In this section wewill show that the system fits into the class of the systems
of the Kowalevski type.

The Lie-Poisson brackets (3.21) have two well known Casimir functions

γ 2
1 + γ 2

2 + γ 2
3 = a,

γ1M1 + γ2M2 + γ3M3 = b.

Following Komarov et al. (2003) and Kowalevski (1889) we introduce new vari-
ables

z1 = M1 + i M2, z2 = M1 − i M2

and

e1 = z21 − 2c1(γ1 + iγ2) − c22a − c2(2γ2M3 − 2γ3M2 + 2i(γ3M1 − γ1M3)),

e2 = z22 − 2c1(γ1 − iγ2) − c22a − c2(2γ2M3 − 2γ3M2 + 2i(γ1M3 − γ3M1)).
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The second integral of motion for system (3.20) then may be written as

e1e2 = k2. (3.22)

The equations of motion for new variables zi , ei can be written in the form of (3.17)
and (3.18), as we supposed in definition of Kowalevski type systems. It is easy to
prove that:

ė1 = −4i M3e1, ė2 = 4i M3e2

and

− ż1
2 = P(z1) + e1(z1 − z2)

2,

−ż2
2 = P(z2) + e2(z1 − z2)

2 (3.23)

where P is the fourth degree polynomial given by

P(z) = −z4 + 2H z2 − 8c1bz − k2 + 4ac21 − 2c22(2b2 − Ha) + c42a. (3.24)

InKomarov et al. (2003) the biquadratic formand the separated variables are defined
as the next step:

F(z1, z2) = −1

2

(
P(z1) + P(z2) + (z21 − z22)

2
)

,

s1,2 = F(z1, z2) ± √
P(z1)P(z2)

2(z1 − z2)2
(3.25)

such that

ṡ1 =
√

P5(s1)

s1 − s2
, ṡ2 =

√
P5(s2)

s2 − s1
, P5(s) = P3(s)P2(s)

with

P3(s) = s(4s2 + 4s H + H2 − k2 + 4c21a + 2c22(Ha − 2b2) + c42a2) + 4c21b2,

P2(s) = 4s2 + 4(H + c22a)s + H2 − k2 + 2c22ha + c42a2.

To fit this system into the class of the Kowalevski type systems, we still need to show
that a relation of the form of (3.19) is satisfied and to relate it with a corresponding
discriminantly separable polynomial in the form of (3.16). Starting from the equations

ż1 = −2M3(M1 − i M2) + 2c2(γ1M2 − γ2M1) + 2c1γ3

and

ż2 = −2M3(M1 + i M2) + 2c2(γ1M2 − γ2M1) + 2c1γ3
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one can prove that

ż1 · ż2 = −
(

F(z1, z2) + (H + c22a(z1 − z2)
2)
)

where F(z1, z2) is given by (3.25). After equating the square of ż1 ż2 from previous
relation and ż12 · ż22 with żi

2 given by (3.23) we get

(z1 − z2)
2[2F(z1, z2)(H + c22a) + (z1 − z22)

4(H + c22a)2 − P(z1)e2 − P(z2)e1
−e1e2(z1 − z2)

2] + F2(z1, z2) − P(z1)P(z2) = 0. (3.26)

Denote with C(z1, z2) biquadratic polynomial such that

F2(z1, z2) − P(z1)P(z2) = (z1 − z2)
2C(z1, z2).

Then we can rewrite relation (3.26) in the form of (3.19):

P(z1)e2 + P(z2)e1 = C̃(z1, z2) − e1e2(z1 − z2)
2 (3.27)

with

C̃(z1, z2) = C(z1, z2) + 2F(z1, z2)(H + c22a) + (H + c22a)2(z1 − z2)
2. (3.28)

Further integration procedure may be done following Theorem 3.4, since all assump-
tions on the systems of the Kowalevski type are satisfied with (3.26), (3.27) and (3.23).
A discriminantly separable polynomial of three variables degree two in each which
“plays role” of the Kowalevski fundamental equation in this case is

F̃(z1, z2, s) = (z1 − z2)
2s2 + B̃(z1, z2)s + C̃(z1, z2) (3.29)

with

B̃(z1, z2) = F(z1, z2) + (H + c22a)(z1 − z2)
2.

Discriminants of (3.29) as a polynomial in s and in zi , for i = 1, 2 are

Ds(F̃)(z1, z2) = P(z1)P(z2)

Dz1(F̃)(s, z2) = 8J (s)P(z2), Dz2(Q)(s, z1) = 8J (s)P(z1)

where J is polynomial of the third degree

J = s3 + (H + 3ac22)s
2 + (4c22Ha + 4c42a2 + 4ac21 − 4c22b2 − k2)s − 8c21b2

− 4c42ab2 + 4c21a2c22 − k2c22a − Hk2 + 2aH2c22 − 4Hb2c22 + 4Hc21a

+ 4c42Ha2 + 2c62a3.
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The roots of (3.29) are related with si from Komarov et al. (2003) in the following
manner:

s̃i = si + H + c22a

2
.

Finally, as a result of direct application of Theorem 3.4 we get

ds̃1√
�(s̃1)

+ ds̃2√
�(s̃2)

= 0

s̃1 ds̃1√
�(s̃1)

+ s̃2 ds̃2√
�(s̃2)

= dt,

where

�(s) = −4J (s)(s − k)(s + k).

3.7 Another Example of an Integrable System of the Kowalevski Type

Now, we are going to present one more example of a system of the Kowalevski type.
Let us consider the next system of differential equations:

ṗ = −rq

q̇ = −r p − γ3

ṙ = −2q(2p + 1) − 2γ2
γ̇1 = 2(qγ3 − rγ2)

γ̇2 = 2(pγ3 − rγ1)

γ̇3 = 2(p2 − q2)q − 2qγ1 + 2pγ2. (3.30)

Lemma 3.2 The system (3.30) preserves the standard measure.

After a change of variables

x1 = p + q, e1 = x21 + γ1 + γ2,

x2 = p − q, e2 = x22 + γ1 − γ2,
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the system (3.30) becomes

ẋ1 = −r x1 − γ3

ẋ2 = r x2 + γ3

ė1 = −2re1
ė2 = 2re2
ṙ = −x1 + x2 − e1 + e2

γ̇3 = x2e1 − x1e2. (3.31)

The first integrals of the system (3.31) can be presented in the form

r2 = 2(x1 + x2) + e1 + e2 + h

rγ3 = −x1x2 − x2e1 − x1e2 − g2
4

γ 2
3 = x22e1 + x21e2 − g3

2
e1 · e2 = k2. (3.32)

From the integrals (3.32) we get a relation of the form (3.19)

(x1 − x2)
2e1e2 +

(
2x31 + hx21 − g2

2
x1 − g3

2

)
e2 +

(
2x32 + hx22 − g2

2
x2 − g3

2

)
e1

−
(

x21 x22 + x1x2
g2
2

+ g3(x1 + x2 + h

2
) + g2

2

16

)

= 0. (3.33)

Without loss of generality, we can assume h = 0 (this can be achieved by a simple
linear change of variables xi �→ xi − h/6, s �→ s − h/6), thus we can use directly
theWeierstrass℘ function. Following the procedure described in Theorem 3.4 we get

dx1√
P(x1)

+ dx2√
P(x2)

= ds1√
P(s1)

dx1√
P(x1)

− dx2√
P(x2)

= ds2√
P(s2)

(3.34)

where P(x) denotes the polynomial

P(x) = 2x3 − g2
2

x − g3
2

, (3.35)
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and s1, s2 are the solutions of quadratic equation in s:

F(x1, x2, s) := A(x1, x2)s
2 + B(x1, x2)s + C(x1, x2)

= (x1 − x2)
2s2 +

(
−2x1x2(x1 + x2) + g2

2
(x1 + x2) + g3

)
s

+ x21 x22 + x1x2
g2
2

+ g3(x1 + x2) + g2
2

16
= 0. (3.36)

Finally, we get

Corollary 3.1 The system of differential Eq. (3.30) is integrated through the solutions
of the system

ds1√
�(s1)

+ ds2√
�(s2)

= 0

s1 ds1√
�(s1)

+ s2 ds2√
�(s2)

= 2 dt, (3.37)

where �(s) = P(s)(s − k)(s + k).

3.8 Another Class of Systems of the Kowalevski Type

In this section we will consider another class of systems of Kowalevski type. We
consider a situation analogue to that from the beginning of the Sect. 3.5. The only
difference is that the systems we are going to consider now, reduce to (3.17), where

f 21 = P(x1) − C

e2

f 22 = P(x2) − C

e1
. (3.38)

The next Proposition is an analogue of Theorem 3.4. Thus, the new class of systems
also has a striking property of jumping genus in integration procedure.

Proposition 3.2 Given a system which reduces to (3.17), where

f 21 = P(x1) − C

e2

f 22 = P(x2) − C

e1
(3.39)

and integrals reduce to (3.19); A, C, P form a discriminantly separable polynomial
F given with (3.16). Then the system is linearized on the Jacobian of the curve

y2 = J (z)(z − k)(z + k),
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where J is a polynomial factor of the discriminant of F as a polynomial in x1 and k
is a constant such that

e1e2 = k2.

Proof Although the proof is a variation of the proof of the Theorem 3.4 there are some
interesting steps and algebraic transformations we point out in next few lines. In the
same manner as in Theorem 3.4 we obtain

(
√

e1

√
P(x2)

A
+ √

e2

√
P(x1)

A

)2

= (s1 + k)(s2 − k)

(
√

e1

√
P(x2)

A
− √

e2

√
P(x1)

A

)2

= (s1 − k)(s2 + k)

where s1, s2 are the solutions of the quadratic equation

F(x1, x2, s) = 0

in s. From the last equations, dividing with k = √
e1e2 we get

2

√
P(x2)

e2A
= 1

k

(√
(s1 + k)(s2 − k) +√

(s1 − k)(s2 + k)
)

2

√
P(x1)

e1A
= 1

k

(√
(s1 + k)(s2 − k) −√

(s1 − k)(s2 + k)
)

.

Using (s1 − s2)2 = 4 P(x1)P(x2)
A2 , we get

f 21 = P(x1)− C(x1, x2)

e2
= (s1−s2)2A2

4P(x2)
− C

e2
= A2

4P(x2)

[
(s1 − s2)

2 − C

A

4P(x2)

e2A

]

= P(x1)

(s1 − s2)2

[
(s1 − s2)

2 − s1s2
1

k2

(√
(s1 + k)(s2 − k) +√

(s1 − k)(s2 + k)
)2]

= P(x1)

(s1 − s2)2

[
s21 − 2s1s2 + s22 − 2s1s2

k2

(
s1s2 − k2 +

√
(s21 − k2)(s22 − k2)

)]

= P(x1)

k2(s1 − s2)2

[
k2(s21 + s22 ) − 2s21s22 − 2s1s2

√
(s21 − k2)(s22 − k2)

]

= − P(x1)

k2(s1 − s2)2

[
s2

√
s21 − k2 + s1

√
s22 − k2

]2
.

Similarly

f 22 = − P(x2)

k2(s1 − s2)2

[
s2

√
s21 − k2 − s1

√
s22 − k2

]2
.
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From the last two equations and from the equations of motion, we get

2ẋ1 = −ı
√

P(x1)

k(s1 − s2)

[
s2

√
s21 − k2 + s1

√
s22 − k2

]

2ẋ2 = −ı
√

P(x2)

k(s1 − s2)

[
s2

√
s21 − k2 − s1

√
s22 − k2

]
,

and

d x1√
P(x1)

+ d x2√
P(x2)

= −ıs2
√

s21−k2

k(s1−s2)
dt

d x1√
P(x1)

− d x2√
P(x2)

= −ıs1
√

s22−k2

k(s1−s2)
dt.

Discriminant separability condition (see Corollary 1 from Dragović 2010) gives

dx1√
P(x1)

+ dx2√
P(x2)

= ds1√
J (s1)

dx1√
P(x1)

− dx2√
P(x2)

= − ds2√
J (s2)

. (3.40)

Finally

ds1√
�(s1)

+ ds2√
�(s2)

= ı
k d t

s1 ds1√
�(s1)

+ s2 ds2√
�(s2)

= 0, (3.41)

where

�(s) = J (s)(s − k)(s + k),

is a polynomial of degree up to six. ��

3.9 A Deformation of the Kowalevski Top

In this Sectionwe are going to derive the explicit solutions in genus two theta-functions
of the Jurdjevic elasticae Jurdjevic (1999a) and for similar systems (Komarov 1981;
Komarov and Kuznetsov 1990). First, we show that we can get the elasticae from
the Kowalevski top by using the simplest gauge transformations of the discriminantly
separable polynomials.

Consider a discriminantly separable polynomial

F(x1, x2, s) := s2A + s B + C
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where

A = (x1 − x2)
2, B = −2(Ex1x2 + F(x1 + x2) + G), C = F2 − EG. (3.42)

A simple affine gauge transformation s �→ t + α transforms F(x1, x2, s) into

Fα(x1, x2, t) = t2Aα + t Bα + Cα,

with
Aα = A, Bα = B + 2αA, Cα = C + αB + α2A. (3.43)

Next, we denote Fα = F + αF1, Eα = E + αE1, Gα = G + αG1. From

Cα = F2
α − EαGα,

by equating powers of α, we get

B = 2F F1 − E1G − EG1, A = F2
1 − E1G1. (3.44)

From (3.42) one obtains

F1 = −(x1 + x2), G1 = 2x1x2, E1 = 2. (3.45)

One easily checks that F2
1 − E1G1 = A,

Eα = 6l1 − (x1 + x2)
2 + 2α

Fα = 2cl + x1x2(x1 + x2) − α(x1 + x2)

Gα = c2 − k2 − x21 x22 + 2αx1x2. (3.46)

Not being aware on that time of the fundamental work of Komarov (1981) and
Komarov and Kuznetsov (1990), where the following deformations of the Kowalevski
case were constructed and considered, Jurdjevic associated these systems to the
Kirchhoff elastic problem, see (Jurdjevic 1999a). The systems are defined by the
Hamiltonians

H = 1

4

(
M2

1 + M2
2 + 2M2

3

)
+ γ1

where the deformed Poisson structures {·, ·}τ are defined by

{Mi , M j }τ = εi jk Mk, {Mi , γ j }τ = εi jkγk, {γi , γ j }τ = τεi jk Mk,

and where the deformation parameter takes values τ = 0, 1,−1. These structures
correspond to e(3), so(4), and so(3, 1) respectively. The classical Kowalevski case
corresponds to the case τ = 0. These systems have been rediscovered by several
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authors in the meantime. Here, we are giving explicit formulae in theta-functions for
the solutions of these systems.

Denote

e1 = x21 − (γ1 + iγ2) + τ

e2 = x22 − (γ1 − iγ2) + τ,

where

x1,2 = M1 ± i M2

2
.

The integrals of motion

I1 = e1e2
I2 = H

I3 = γ1M1 + γ2M2 + γ3M3

I4 = γ 2
1 + γ 2

2 + γ 2
3 + τ(M2

1 + M2
2 + M2

3 )

may be rewritten in the form

k2 = I1 = e1 · e2
M2

3 = e1 + e2 + Ê(x1, x2)

−M3γ3 = −x2e1 − x1e2 + F̂(x1, x2)

γ 2
3 = x22e1 + x21e2 + Ĝ(x1, x2),

where

Ĝ(x1, x2) = −x21 x22 − 2τ x1x2 − 2τ I2 + τ 2 + I4 − I1

F̂(x1, x2) = (x1x2 + τ)(x1 + x2) − I3
Ê(x1, x2) = −(x1 + x2)

2 + 2(I2 − τ). (3.47)

Lemma 3.3 Let c = −1. If

τ = −α, I2 = 3l1, I3 = 2l, I4 = 1 − α2 − 6l1α,

then the relations (3.47) and (3.46) coincide.

Let us point out that the previous consideration does not establish an isomorphism
between the Kowalevski top and the Jurdjevic elastica. It does not provide a coordinate
transformation which would map the former to the latter. Nevertheless, the previous
Lemma opens a possibility to integrate the latter system along the same scheme used
for the former system: the generalized Kötter trick is related to discriminatly separable
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polynomials, see Dragović (2010), and thus applicable to the Jurdjevic elasticae as
well, see Dragović and Kukić (2014b).

More explicitly,we apply the generalizedKötter transformation derived inDragović
(2010) to obtain the expressions for Mi , γi in terms of Pi and Pi j -functions for
i, j = 1, 2, 3. A generalization of the Kötter transformation which provides com-
muting separated variables for the above systems was performed in Komarov and
Kuznetsov (1990), Komarov et al. (2003). First, we rewrite the equations of motion
for Jurdjevic elasticae:

Ṁ1 = M2M3

2

Ṁ2 = − M1M3

2
+ γ3

Ṁ3 = −γ2

γ̇1 = − M2γ3

2
+ M3γ2

γ̇2 = M1γ3

2
− M3γ1 + τ M3

γ̇3 = − M1γ2

2
+ M2γ1

2
− τ M2. (3.48)

Now we introduce the following notation:

R(x1, x2) = Ê x1x2 + F̂(x1 + x2) + Ĝ,

R1(x1, x2) = Ê Ĝ − F̂2,

P(xi ) = Ê x2i + 2F̂ xi + Ĝ, i = 1, 2.

Lemma 3.4 For a polynomial F(x1, x2, s) given by

F(x1, x2, s) = (x1 − x2)
2s2 − 2R(x1, x2)s − R1(x1, x2),

there exist polynomials A(x1, x2, s), B(x1, x2, s), f (s), A0(s) such that the following
identity holds

F(x1, x2, s)A0(s) = A2(x1, x2, s) + f (s)B(x1, x2, s). (3.49)

The polynomials are defined by the formulae:

A0(s) = 2s + 2I1 − 2τ

f (s) = 2s3 + 2(I1 − 3τ)s2 + (−4τ(I1 − τ) − 2I2 + 4τ 2 + 2I4 − 4τ I2)s

+ (I1 − τ)(−2I1 + 2τ 2 + 2I4 − 4τ I2) − I 23 + 2(I1 − τ)τ 2

A(x1, x2, s) = A0(s)(x1x2 − s) − I3(x1 + x2) + 2τ(I1 − τ) + 2τ s

B(x1, x2, s) = (x1 + x2)
2 − 2s − 2I1 + 2τ.
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Denote by mi the zeros of polynomial f and

Pi = √
(s1 − mi )(s2 − mi ) i = 1, 2, 3,

Pi j = Pi Pj

( ṡ1
(s1 − mi )(s1 − m j )

+ ṡ2
(s2 − mi )(s2 − m j )

)

One can easily get

Pi =
√

A0(mi )(x1x2 − mi )

x1 − x2
+ −I3(x1 + x2) + 2τ(I1 − τ + mi )

(x1 − x2)
√

A0(mi )
, i = 1, 2, 3.

(3.50)
Put

X = x1x2
x1 − x2

, Y = 1

x1 − x2
,

Z = −I3(x1 + x2) + 2τ(I1 − τ)

x1 − x2
,

ni = A0(mi ) = 2mi + 2I1 − 2τ, i = 1, 2, 3.

The relations (3.50) can be rewritten as a system of linear equations

X + Y m1

(
2τ

n1
− 1

)
+ Z

n1
= P1√

n1

X + Y m2

(
2τ

n2
− 1

)
+ Z

n2
= P2√

n2

X + Y m3

(
2τ

n3
− 1

)
+ Z

n3
= P3√

n3
.

The solutions of the previous system are

Y = −
3∑

i=1

√
ni Pi

f ′(mi )

X = −
3∑

i=1

Pi
√

ni

f ′(mi )

(
m j + mk + I1 − 2τ

)

Z =
3∑

i=1

2
√

ni Pi

f ′(mi )

(n j · nk

4
+ τ(τ − I1)

)
, (3.51)

with (i, j, k)—a cyclic permutation of (1, 2, 3).
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Finally, we obtain

Proposition 3.3 The solutions of the system of differential Eq. (3.48) in terms of
Pi , Pi j functions are given with

M1 =
∑3

i=1
2
√

ni Pi
f ′(mi )

(
n j ·nk
4 + τ(τ − I1))

I3
∑3

i=1

√
ni Pi

f ′(mi )

+ 2τ(I1 − τ)

I3

M2 = − 1

ı
∑3

i=1

√
ni Pi

f ′(mi )

M3 = 2i
∑3

k=1
nk

√
ni n j Pi j

f ′(mk )
∑3

i=1

√
ni Pi

f ′(mi )

and

γ1 = I2 + 1

8

⎛

⎝
∑3

k=1
nk

√
ni n j Pi j

f ′(mk )
∑3

i=1

√
ni Pi

f ′(mi )

⎞

⎠

2

−
∑3

i=1
Pi

√
ni

f ′(mi )
(m j + mk + I1 − 2τ)

∑3
i=1

Pi
√

ni
f ′(mi )

γ2 = −2i
(
∑3

k=1
nk

√
ni n j

f ′(mk )

Pi Pj
2 ) · (

∑3
i=1

√
ni Pi

f ′(mi )
)

(∑3
i=1

√
ni Pi

f ′(mi )

)2

+2i
(
∑3

k=1
nk

√
ni n j Pi j

f ′(mk )
) · (

∑3
i=1

√
ni

f ′(mi )

Pk Pik−Pj Pi j
2(m j −mk )

)

(∑3
i=1

√
ni Pi

f ′(mi )

)2

γ3 =
∑3

k=1

√
ni n j Pi j

f ′(mk)

2ı
∑3

i=1

√
ni Pi

f ′(mi )

.

The formulae expressing Pi , Pi j in terms of the theta-functions are given
Kowalevski (1889). This gives the explicit formulae for the elasticae.

4 The Lagrange Bitop and the n-Dimensional Hess–Appel’rot Systems

4.1 Higher-Dimensional Generalizations of Rigid Body Dynamics

In 1966, in his seminal paper Arnold (1966), Arnold observed that two very impor-
tant examples of the equations of motion, the ones of the Euler top and the Euler
equations of the motion of inviscid incompressible fluid can be seen in a unified
way and interpreted as the equations of the geodesic flows on a corresponding Lie
group. The Riemannian metric is given by the kinetic energy. In the case of the Euler
top, the Lie group is SO(3) and the Riemannian metric, given by the Hamiltonian
2H = 〈M,�〉 is left invariant. In the case of the fluid flow, the Lie group is a group
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of the volume-preserving diffeomorphisms and the metric is right-invariant. Starting
from that observation, Arnold derived the equations of the geodesic flows of a left
invariant metric on an arbitrary Lie group—and the Euler–Arnold equations emerged.
The left invariance of the metric implies, for example, that the equations of the Euler
top are written in the Lax form Ṁ = [M,�], and hence one gets the family of the
first integrals tr(Mk). The importance of Arnold’s result is highlighted by the fact that
many of the equations that appear in Physics can be represented as the Euler–Arnold
equations.

The first ideas for constructing the higher-dimensional generalizations of the Euler
top go back to the XIX century. Using some ideas of Cayley, Frahm presented the
equations of the n-dimensional Euler top in 1874. He also constructed the family of
the first integrals. However, the number of the first integrals was not enough to prove
the integrability for n > 4 (see Frahm 1874; Schottky 1891). In Manakov (1976)
(not being aware of the results of Frahm) found an L-A pair for a wider class of
metrics on SO(n) given by Mi j = ai −a j

bi −b j
�i j , and showed that this class belongs to the

class considered by Dubrovin (1977). Hence, the solutions can be expressed in theta
functions.

Arnold’s observation was a starting point for a wide class of generalizations of the
rigid body motion. For some of them see for example (Belokolos et al. 1994; Fedorov
and Kozlov 1995; Trofimov and Fomenko 1995) and references therein.

Let us consider motion of N points in Rn such that the distance between each two
of them is constant in time. As an analogy with the three-dimensional case, we have
two reference frames: the fixed and the moving ones. In the moving reference frame,
the velocity of the point A is:

VA(t) = B−1q̇A(t) = B−1 Ḃ Q A = �(t)Q A

where again Q A represents the radius vector of the point A, and � is skew-symmetric
matrix (� ∈ so(n)) representing the angular velocity of the body in the moving
reference frame. The angular momentum is a skew-symmetric matrix defined by

M =
∫

B
(V Qt − QV t )dm =

∫

B
(�Q Qt − Q Qt�t )dm

=
∫

B
(�Q Qt + Q Qt�)dm = �I + I�,

where I = ∫
B Q Qt dm is a constant symmetric matrix called the mass tensor of the

body (see Fedorov and Kozlov 1995) and integration goes over the body B.
If one chooses the basis in which I = diag(I1, . . . , In), the coordinates of angular

momentum are Mi j = (Ii + I j )�i j .
The kinetic energy is

T = 1

2

∫

B
〈Q̇, Q̇〉dm = 1

2

∫

B
〈�Q,�Q〉dm.
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Since it is a homogeneous quadratic formof angular velocity�, one has 〈 ∂T
∂�

,�〉 = 2T
where 〈A, B〉 = − 1

2T race(AB) is an invariant scalar product on so(n). One gets

∂T

�kl
=
∑

m

(�km Iml + Ikm�ml),

or ∂T
∂ Q = M and finally

T = 1

2
〈M,�〉.

The Lie group E(3) can be regarded as a semidirect product of the Lie groups
SO(3) and R

3. The product in the group given by

(A1, r1) · (A2, r2) = (A1A2, r1 + A1r2)

corresponds to the composition of two isometric transformations of the Euclidian
space. TheLie algebra e(3) is a semidirect product ofR3 and so(3).Using isomorphism
between the Lie algebras so(3) and R3, given by (2.1), one concludes that e(3) is also
isomorphic to the semidirect product s = so(3) ×ad so(3). The commutator in s is
given by:

[(a1, b1), (a2, b2)] = ([a1, a2], [a1, b2] + [b1, a2]).

One concludes, that there are two natural higher-dimensional generalizations of Eq.
(2.2). The first one is on the Lie algebra e(n) that is a semidirect product of so(n) and
R

n . The other one is on semidirect product s = so(n) ×ad so(n).

4.2 The Heavy Rigid Body Equations on e(n)

The Euler–Arnold equations of motion of a heavy rigid body fixed at a point on e(n)

are (see Belyaev 1981; Trofimov and Fomenko 1995; Jovanović 2007 and references
therein):

Ṁ = [M,�] + � ∧ X, �̇ = −��. (4.1)

Here M and � are connected by M = I� + �I . The n-dimensional vectors �, fixed
in the space, and X , fixed in the body, are generalizations of the unit vertical vector
and of the radius vector of the center of masses respectively.

The n-dimensional Lagrange top on e(n) is defined by Belyaev in Belyaev (1981)
by conditions:

I = diag(I1, I1, . . . , I1, In), X = (0, 0, . . . , 0, xn) (4.2)

Belyaev also proved the integrability of these systems.
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4.3 The Heavy Rigid Body Equations on s = so(n)×ad so(n)

The equations of themotion of a rigid body on semidirect product s = so(n)×ad so(n)

were given by Ratiu (1982):

Ṁ = [M,�] + [�, χ ] , �̇ = [�,�] . (4.3)

Here M ∈ so(n) is the angular momentum, � ∈ so(n) is the angular velocity, χ ∈
so(n) is a given constant matrix (describing a generalized center of the mass), � ∈
so(n). Angular momentum M and � are connected by M = I� + �I . If the matrix
I is diagonal, I = diag(I1, . . . , In), then Mi j = (Ii + I j )�i j . The Lie algebra s is the
Lie algebra of Lie group S = SO(n) ×Ad so(n) that is semidirect product of SO(n)

and so(n) (here so(n) is considered as the Abelian Lie group). The group product in
S is (A1, b1) · (A2, b2) = (A1A2, b1 + AdA1b2).

Ratiu proved that Eq. (4.3) areHamiltonian in theLie-Poisson structure on coadjoint
orbits of group S given by:

{ f̃ , g̃}(μ, ν) = −μ([d1 f (μ, ν), d1g(μ, ν)])
− ν([d1 f (μ, ν), d2g(μ, ν)])
− ν([d2 f (μ, ν), d1g(μ, ν)]), (4.4)

where f̃ , g̃ are restrictions of functions f and g on orbits of coadjoint action and di f
are partial derivatives of d f . On so(n) a bilinear symmetric nondegenerate biinvariant
(i.e. k([ξ, η], ζ ) = k(ξ, [η, ζ ])) two form exist, which can be extended to s as well:

ks((ξ1, η1), (ξ2, η2)) = k(ξ1, η2) + k(ξ2, η1).

Hence, one can identify s∗ and s. Then, the Poisson structure (4.4) can be written in
the form

{ f̃ , g̃}(ξ, η) = −k(ξ, [(grad2 f )(ξ, η), (grad1g)(ξ, η)])
− k(ξ, [(grad1 f )(ξ, η), (grad2g)(ξ, η)])
− k(η, [(grad2 f )(ξ, η), (grad2g)(ξ, η)]), (4.5)

where gradi are k-gradients in respect to the i-th coordinate.
In Ratiu (1982), the Lagrange case was defined by I1 = I2 = a, I3 = · · · = In =

b, χ12 = −χ21 �= 0, χi j = 0, (i, j) /∈ {(1, 2), (2, 1)}. The completely symmetric
case was defined there by I1 = · · · = In = a, where χ ∈ so(n) is an arbitrary constant
matrix. It was shown in Ratiu (1982) that Eq. (4.3) in these cases could be represented
by the following L-A pair:

d

dt
(λ2C + λM + �) = [λ2C + λM + �, λχ + �],

where in the Lagrange case C = (a + b)χ , and in the symmetric case C = 2aχ .
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4.4 Four-Dimensional Rigid Body Motion

To any 3 × 3 skew-symmetric matrix one assigns one vector in three-dimensional
space using isomorphism between R3 and so(3). Using the the isomorphism between
so(4) and so(3) × so(3), one can assign two three-dimensional vectors A1 and A2 to
(4 × 4)-skew-symmetric matrix A.

Vectors A1 and A2 are defined by:

A1 = A+ + A−
2

, A2 = A+ − A−
2

,

where A+, A− ∈ R
3 correspond to Ai j ∈ so(4) according to:

(A+, A−) →

⎛

⎜
⎜
⎝

0 −A3+ A2+ −A1−
A3+ 0 −A1+ −A2−

−A2+ A1+ 0 −A3−
A1− A2− A3− 0

⎞

⎟
⎟
⎠ . (4.6)

Here A j
± are the j-th coordinates of the vector A±.

By direct calculations, we check that vectors 2A1× B1 and 2A2× B2 correspond to
commutator [A, B], if vectors A1, A2 and B1, B2 correspond to A and B respectively.

Consequently, equations of motion (4.3) on so(4) × so(4) can be written as:

Ṁ1 = 2(M1 × �1 + �1 × χ1) �̇1 = 2(�1 × �1)

Ṁ2 = 2(M2 × �2 + �2 × χ2) �̇2 = 2(�2 × �2) (4.7)

Recall that M = I� + �I . The matrix elements of the mass tensor of the body I
are Ikl = ∫

B Qk Qldm, k, l = 1, . . . , 4. Choose the coordinates (X1, X2, X3, X4) of
the moving reference frame in which I has diagonal form I = diag(I1, I2, I3, I4).
Then, for example I1 = ∫

B X2
1dm, I2 = ∫

B X2
2dm,

∫
B X1X2dm = 0 etc. In the three-

dimensional case the moments of inertia were defined with respect to the line through
the fixed point O . We derive the angular velocity � as a skew-symmetric matrix the
elements of which correspond to the rotations in two-dimensional coordinate planes.
Hence, here it is natural to define the moments of inertia of the body with respect to the
two-dimensional planes through the fixed point. For example the moment of inertia
with respect to the plane X1O X2 is I1 + I2, and M12 = (I1 + I2)�12, etc.

Here we observe a complete analogy with the three-dimensional case. For example,
the moment of inertia with respect to O Z axis I33 = ∫

B(X2 + Y 2)dm consists of two
addend

∫
B X2dm and

∫
B Y 2dm that are diagonal elements of the mass tensor of the

body.
For vectors M+ and M− one has

M+ = (
(I2 + I3)�

1+, (I3 + I2)�
2+, (I3 + I1)�

3+
) = I+�+

M− = (
(I1 + I4)�

1−, (I2 + I4)�
2−, (I3 + I4)�

3−
) = I−�−.

123



Some Recent Generalizations of the Classical. . . 549

Finally, one can calculate

M1 = 1

2

(
(I+ + I−)�1 + (I+ − I−)�2

)

M2 = 1

2

(
(I+ − I−)�1 + (I+ + I−)�2

)
(4.8)

At a glance it looks that (4.7) are equations of motion of two independent
three-dimensional rigid bodies. However, the formulas (4.8) show that they are not
independent and that each of M1, M2 depends on both �1 and �2.

4.5 The Lagrange Bitop: Definition and a Lax Representation

Generalizing the Lax representation of the Hess–Appel’rot system, a new completely
integrable four-dimensional rigid body system is established in Dragović and Gajić
(2001). A detailed classical and algebro-geometric integration were presented in
Dragović and Gajić (2004).

The Lagrange bitop is a four-dimensional rigid body system on the semidirect
product so(4) ×ad so(4) defined by (see Dragović and Gajić 2001, 2004):

I1 = I2 = a
I3 = I4 = b

and χ =

⎛

⎜⎜
⎝

0 χ12 0 0
−χ12 0 0 0
0 0 0 χ34
0 0 −χ34 0

⎞

⎟⎟
⎠ (4.9)

with the conditions a �= b, χ12, χ34 �= 0, |χ12| �= |χ34|.
We have the following proposition:

Proposition 4.1 (Dragović and Gajić 2001, 2004) The equations of motion (4.3)
under conditions (4.9) have an L − A pair representation L̇(λ) = [L(λ), A(λ)] ,
where

L(λ) = λ2C + λM + �, A(λ) = λχ + �, (4.10)

and C = (a + b)χ .

Let us briefly analyze the spectral properties of the matrices L(λ). The spectral
polynomial p(λ, μ) = det (L(λ) − μ · 1) has the form

p(λ, μ) = μ4 + P(λ)μ2 + [Q(λ)]2,

where

P(λ) = Aλ4 + Bλ3 + Dλ2 + Eλ + F,

Q(λ) = Gλ4 + Hλ3 + Iλ2 + Jλ + K . (4.11)
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Their coefficients

A = C2
12 + C2

34 = 〈C+, C+〉 + 〈C−, C−〉,
B = 2C34M34 + 2C12M12 = 2 (〈C+, M+〉 + 〈C−, M−〉) ,

D = M2
13 + M2

14 + M2
23 + M2

12 + M2
34 + 2C12�12 + 2C34�34

= 〈M+, M+〉 + 〈M−, M−〉 + 2 (〈C+, �+〉 + 〈C−, �−〉) ,

E = 2�12M12 + 2�13M13 + 2�14M14 + 2�23M23 + 2�24M24 + 2�34M34

= 2 (〈�+, M+〉 + 〈�−, M−〉) ,

F = �2
12 + �2

13 + �2
14 + �2

23 + �2
24 + �2

34 = 〈�+, �+〉 + 〈�−, �−〉,
G = C12C34 = 〈C+, C−〉,
H = C34M12 + C12M34 = 〈C+, M−〉 + 〈C−, M+〉,
I = C34�12 + �34C12 + M12M34 + M23M14 − M13M24

= 〈C+, �−〉 + 〈C−, �+〉 + 〈M+, M−〉,
J = M34�12 + M12�34 + M14�23 + M23�14 − �13M24 − �24M13

= 〈M+, �−〉 + 〈M−, �+〉,
K = �34�12 + �23�14 − �13�24 = 〈�+, �−〉.

are integrals of motion of the system (4.3), (4.9). Here M+, M− ∈ R
3 are defined by

(4.6) (similar for other vectors). System (4.3), (4.9) is Hamiltonian with the Hamil-
tonian function

H = 1

2
(M13�13 + M14�14 + M23�23 + M12�12 + M34�34) + χ12�12 + χ34�34.

The algebra so(4)×so(4) is 12-dimensional. The general orbits of the coadjoint action
are 8-dimensional. According to Ratiu (1982), the Casimir functions are coefficients
of λ0, λ, λ4 in the polynomials [det L(λ)]1/2 and − 1

2T r(L(λ))2. One calculates:

[det L(λ)]1/2 = Gλ4 + Hλ3 + Iλ2 + Jλ + K , −1

2
T r (L(λ))2 = Aλ4 + Eλ + F.

Thus, Casimir functions are J, K , E, F . Nontrivial integrals ofmotion are B, D, H, I .
As one can check easily, they are in involution. When |χ12| = |χ34|, then 2H = B or
2H = −B and there are only 3 independent integrals in involution. Thus,

Proposition 4.2 (Dragović and Gajić 2004) For |χ12| �= |χ34|, system (4.3), (4.9) is
completely integrable in the Liouville sense.

System (4.3), (4.9) doesn’t fall in any of the families defined by Ratiu (1982) and
together with them it makes complete list of systems with the L operator of the form

L(λ) = λ2C + λM + �.
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More precisely, if χ12 �= 0, then the Euler–Poisson Eq. (4.3) could be written in
the form (4.10) (with arbitrary C) if and only if Eq. (4.3) describe the generalized
symmetric case, the generalized Lagrange case or the Lagrange bitop, including the
case χ12 = ±χ34 (Dragović and Gajić 2001).

4.5.1 Classical Integration

For classical integration we will use Eq. (4.7). On can calculate that

χ1 =
(
0, 0,−1

2
(χ12 + χ34)

)
, χ2 =

(
0, 0,−1

2
(χ12 − χ34)

)

and also

M1 = ((a + b)�(1)1, (a + b)�(1)2, (a + b)�(1)3 + (a − b)�(2)3)

M2 = ((a + b)�(2)1, (a + b)�(2)2, (a − b)�(1)3 + (a + b)�(2)3).

If we denote �1 = (p1, q1, r1), �2 = (p2, q2, r2), then the first group of the
Eq. (4.7) becomes

ṗ1 − mq1r2 = −n1�(1)2, ṗ2 − mq2r1 = −n2�(2)2

q̇1 + mp1r2 = n1�(1)1, q̇2 + mp2r1 = n2�(2)1

(a + b)ṙ1 + (a − b)ṙ2 = 0, (a − b)ṙ1 + (a + b)ṙ2 = 0

where

m = −2(a − b)

a + b
, n1 = −2χ(1)3

a + b
, n2 = −2χ(2)3

a + b
.

The integrals of motion are for i = 1, 2:

(a + b)αiχ(i)3 = fi1

(a + b)[(a + b)(p2i + q2
i ) + (a + b)α2

i + 2χ(i)3�(i)3] = fi2

(a + b)pi�(i)1 + (a + b)qi�(i)2 + (a + b)αi�(i)3 = fi3

�2
(i)1 + �2

(i)2 + �2
(i)3 = 1,

where

α1 = (a + b)r1 + (a − b)r2
a + b

α2 = (a + b)r2 + (a − b)r1
a + b

ai = α2
i (a + b)2 − fi2

(a + b)2
i = 1, 2.
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Introducing ρi , σi , defined with pi = ρi cos σi , qi = ρi sin σi , after calculations, one
gets

ρ2
1 σ̇1 + mr2ρ

2
1 = n1(

f13
a + b

− α1�(1)3)

[(ρ2
i )·]2 = 4n2

i ρ
2
i [1 − 1

n2
i

(ai + ρ2
i )2] − 4n2

i (
fi3

a + b
− αi ai − αi

ni
ρ2

i )2, i = 1, 2

ρ2
2 σ̇2 + mr1ρ

2
2 = n2(

f23
a + b

− α2�(2)3). (4.12)

Let us denote u1 = ρ2
1 , u2 = ρ2

2 . From (4.12) we have

u̇2
i = Pi (ui ), i = 1, 2,

Pi (u) = −4u3 − 4u2Bi + 4uCi + Di , i = 1, 2;

Bi = 2ai + α2
i , Ci = n2

i − a2
i − 4

αiχ(i)3 fi3

(a + b)2
− 2α2

i ai ,

Di = −4(
2χ(i)3 fi3

(a + b)2
+ αi ai )

2, i = 1, 2.

From the previous relations, we have

∫
du1√
P1(u1)

= t,
∫

du2√
P2(u2)

= t.

So, the integration of the Lagrange bitop leads to the functions associated with the
elliptic curves E1, E2 where Ei = Ei (αi , ai , χ(i)3, fi2, fi3) are given with:

Ei : y2 = Pi (u). (4.13)

Equation (4.7) are very similar to those for the classical Lagrange system. However,
the system doesn’t split on two independent Lagrangian systems.

4.5.2 Properties of the Spectral Curve

The spectral curve of the Lagrange bitop is given by:

C : μ4 + P(λ)μ2 + [Q(λ)]2 = 0

where P and Q are given by (4.11).
There is an involution σ : (λ, μ) → (λ,−μ) on the spectral curve which corre-

sponds to the skew symmetry of thematrix L(λ). Denote the factor-curve byC1 = C/σ .
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Lemma 4.1 (Dragović and Gajić 2004) The basic properties of the spectral curve
are:

• The curveC1 is a smooth hyperelliptic curve of genus three: g(C1) = 3. The spectral
curve C is a double covering of C1. The arithmetic genus of C is ga(C) = 9.

• The spectral curve C has four ordinary double points Si , i = 1, . . . , 4. The genus
of its normalization C̃ is five.

• The singular points Si of the curve C are fixed points of the involution σ . The
involution σ exchanges the two branches of C at Si .

• The involution σ extended to the normalization C̃ is fixed-points free.

The general theories describing the isospectral deformations for polynomials with
matrix coefficients were developed by Dubrovin (1977), Dubrovin et al. (1976, 2001)
in the middle of 70’s and by Adler and van Moerbeke (1980) a few years later.
Dubrovin’s approach was based on the Baker-Akhiezer function and it was applied in
rigid body problems in Manakov (1976), Bogoyavlensky (1984). Application of the
Adler van Moerbeke approach to rigid body problems were given in Adler and van
Moerbeke (1980), Ratiu (1982), Ratiu and van Moerbeke (1982), Adler et al. (2004).

However, non of these two theories can be directly applied for an algebro-geometric
integration of the Lagrange bitop.

The detailed algebro-geometric integration procedure of the system is given in
Dragović and Gajić (2004). Analysis of the spectral curve and the Baker–Akhiezer
function shows that the dynamics of the system is related to a certain Prym variety �

that corresponds to the double covering defined by the involution σ and to evolution
of divisors of some meromorphic differentials �i

j . It appears that

�1
2, �2

1, �3
4, �4

3

are holomorphic during the whole evolution. Compatibility of this requirement with
the dynamics puts a strong constraint on the spectral curve: its theta divisor should
contain some torus. In the case presented here such a constraint appears to be satisfied
according toMumford’s relation fromMumford (1974) (see Dragović and Gajić 2004,
formula (2)). These conditions create a new situation from the point of view of then
existing integration techniques. We call such systems the isoholomorphic systems.

We characterize the class of isoholomorphic integrable systems by the following
properties:

(a) There exists an involution on the (normalized) spectral curve without fixed points.
(b) The standard Krichever axioms for the Baker-Akhiezer function are not satisfied.
(c) The Mumford relation on the theta-divisors as a geometric realization of the

dynamics is satisfied.

For more detail see Dragović and Gajić (2004). Some other examples of the isoholo-
morphic systems were presented in Dragović et al. (2009).

Several years after Dragović and Gajić (2004) the isoholomorphic systems were
essentially rediscoveredbyGrushevsky andKrichever (2010) and these systemsplayed
the decisive role in their remarkable solution of an important and delicate algebro-
geometric problem of characterization of the Prym varieties.
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4.6 Four-Dimensional Hess–Appel’rot Systems

The starting point for construction of generalization of the Hess–Appel’rot systemwas
Zhukovski’s geometric interpretation given in Sect. 2.5. Having it inmind, in Dragović
and Gajić (2006) the higher-dimensional Hess–Appel’rot systems are defined. First
we will consider the four-dimensional case on so(4)× so(4). We will consider metric
given with � = J M + M J .

Definition 4.1 (Dragović and Gajić 2006) The four-dimensional Hess–Appel’rot sys-
tem is described by Eq. (4.3) and satisfies the conditions:

1.

� = M J + J M, J =

⎛

⎜⎜
⎝

J1 0 J13 0
0 J1 0 J24

J13 0 J3 0
0 J24 0 J3

⎞

⎟⎟
⎠ (4.14)

2.

χ =

⎛

⎜⎜
⎝

0 χ12 0 0
−χ12 0 0 0
0 0 0 χ34
0 0 −χ34 0

⎞

⎟⎟
⎠ .

The invariant surfaces are determined in the following lemma.

Lemma 4.2 (Dragović andGajić 2006)For the four-dimensional Hess–Appel’rot sys-
tem, the following relations take place:

Ṁ12 = J13(M13M12 + M24M34) + J24(M13M34 + M12M24),

Ṁ34 = J13(−M13M34 − M12M24) + J24(−M13M12 − M24M34).

In particular, if M12 = M34 = 0 hold at the initial moment, then the same relations
are satisfied during the evolution in time.

Thus, in the four-dimensional Hess–Appel’rot case, there are two invariant relations

M12 = 0, M34 = 0. (4.15)

Let us now present another definition of the four-dimensional Hess–Appel’rot con-
ditions, starting from a basis where the matrix J is diagonal in.

Let J̃ = diag( J̃1, J̃2, J̃3, J̃4).
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Definition 4.2 (Dragović and Gajić 2006) The four-dimensional Hess–Appel’rot sys-
tem is described by the Eq. (4.3) and satisfies the conditions:

1.

� = M J̃ + J̃ M, J̃ = diag( J̃1, J̃2, J̃3, J̃4),

2.

χ̃ =

⎛

⎜⎜
⎝

0 χ̃12 0 χ̃14
−χ̃12 0 χ̃23 0
0 −χ̃23 0 χ̃34

−χ̃14 0 −χ̃34 0

⎞

⎟⎟
⎠ ,

3.

J̃3 − J̃4 = J̃2 − J̃1,

J̃3 − J̃1√
1 + t21

= J̃4 − J̃2√
1 + t22

where

t1 := 2(χ̃14χ̃34 − χ̃12χ̃23)

χ̃2
14 − χ̃2

34 + χ̃2
12 − χ̃2

23

,

t2 := 2(χ̃14χ̃12 − χ̃23χ̃34)

−χ̃2
14 − χ̃2

34 + χ̃2
12 + χ̃2

23

.

Proposition 4.3 (Dragović andGajić 2006)There exists a bi-correspondence between
sets of data from Definitions 4.1 and 4.2.

Remark 4.1 1. In the case J24 �= 0, χ34 = 0, there is an additional relation χ̃12χ̃34 +
χ̃14χ̃23 = 0. It follows from the system

χ̃12 sin ϕ + χ̃23 cosϕ = 0,

χ̃14 sin ϕ − χ̃34 cosϕ = 0,

2. In the case J24 = 0, χ34 = 0, additional relations are χ̃34 = χ̃14 = 0, and the
second relation from Definition 4.2 can be replaced by the relation

χ̃12

√
J̃2 − J̃1 + χ̃23

√
J̃3 − J̃2 = 0.

Theorem 4.1 (Dragović and Gajić 2006) The four-dimensional Hess–Appel’rot sys-
tem has the following Lax representation
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L̇(λ) = [L(λ), A(λ)],
L(λ) = λ2C + λM + �, A(λ) = λχ + �, C = 1

J1 + J3
χ.

One can calculate the spectral polynomial for the four-dimensional Hess–Appel’rot
system:

p(λ, μ) = det(L(λ) − μ · 1) = μ4 + P(λ)μ2 + Q(λ)2,

where

P(λ) = aλ4 + bλ3 + cλ2 + dλ + e

Q(λ) = f λ4 + gλ3 + hλ2 + iλ + j

a = C2
12 + C2

34,

b = 2C12M12 + 2C34M34(= 0),

c = M2
13 + M2

14 + M2
23 + M2

24 + M2
12 + M2

34 + 2C12�12 + 2C34�34,

d = 2�12M12 + 2�13M13 + 2�14M14 + 2�23M23 + 2�24M24 + 2�34M34

e = �2
12 + �2

13 + �2
14 + �2

23 + �2
24 + �2

34,

f = C12C34

g = C12M34 + C34M12(= 0),

h = �34C12 + �12C34 + M12M34 + M23M14 − M13M24,

i = M34�12 + M12�34 + M14�23 + M23�14 − �13M24 − �24M13,

j = �34�12 + �23�14 − �13�24.

In the standard Poisson structure on the semidirect product so(4)×so(4) the functions
d, e, i, j are Casimir functions, c, h are first integrals, and b = 0, g = 0 are the
invariant relations. As we already mentioned general orbits of co-adjoint action are
eight-dimensional, thus for complete integrability one needs four independent integrals
in involution.

4.7 The n-Dimensional Hess–Appel’rot Systems

In Dragović and Gajić (2006) we introduced also Hess–Appel’rot systems of arbitrary
dimension.

Definition 4.3 The n-dimensional Hess–Appel’rot system is described by the Eq.
(4.3), and satisfies the conditions:
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1.

� = J M + M J, J =

⎛

⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎝

J1 0 J13 0 0 . . . 0

0 J1 0 J24 0 . . . 0

J13 0 J3 0 0 . . . 0

0 J24 0 J3 0 . . . 0

0 0 0 0 0 . . . 0

. . . . . . . . .

. . . . . . . . .

0 0 0 0 0 . . . J3

⎞

⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎠

,

2.

χ =

⎛

⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

0 χ12 0 . . . 0

−χ12 0 0 . . . 0

0 0 0 . . . 0

0 0 0 . . . 0

. . . . . . .

. . . . . . .

0 0 0 . . . 0

⎞

⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

.

Direct calculations give the following lemma:

Lemma 4.3 (Dragović and Gajić 2006) For the n-dimensional Hess–Appel’rot sys-
tem, the following relations are satisfied:

1.

Ṁ12 = J13

⎛

⎝M12M13 + M24M34 +
n∑

p=5

M2p M3p

⎞

⎠

+ J24

⎛

⎝M12M24 + M13M34 −
n∑

p=5

M1p M4p

⎞

⎠

Ṁ34 = −J13

⎛

⎝M13M34 + M24M12 +
n∑

p=5

M1p Mp4

⎞

⎠

− J24

⎛

⎝M13M12 + M24M34 +
n∑

p=5

M2p M3p

⎞

⎠ ,

Ṁ3p = −J13
(
M13M3p + M2p M12) − J24(M34M2p + M23M4p

)

+ M34�4p − �34M4p +
n∑

k=5

(M3k�kp − �3k M4p), p > 4,
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Ṁ4p = J13(−M14M3p + M1p M34) + J24(M12M1p − M24M4p)

− M34�3p + �34M3p +
n∑

k=5

(M4k�kp − �4k M4p), p > 4,

2. Ṁkl = 0, k, l > 4.
3. The n-dimensional Hess–Appel’rot case has the following system of invariant

relations

M12 = 0, Mlp = 0, l, p ≥ 3.

By diagonalizing the matrix J , we come to another definition

Definition 4.4 (Dragović and Gajić 2006) The n-dimensional Hess–Appel’rot system
is described by the equations (4.3), and satisfies the conditions

1. � = J̃ M + M J̃ , J̃ = diag( J̃1, J̃2, J̃3, J̃4, . . . , J̃4),
2.

χ̃ =

⎛

⎜⎜
⎜⎜⎜⎜⎜
⎜
⎝

0 χ̃12 0 χ̃14 . . . 0
−χ̃12 0 χ̃23 0 . . . 0
0 −χ̃23 0 χ̃34 . . . 0

−χ̃14 0 −χ̃34 0 . . . 0
. . . . . . . .

. . . . . . . .

0 0 0 0 . . . 0

⎞

⎟⎟
⎟⎟⎟⎟⎟
⎟
⎠

,

3.

J̃3 − J̃4 = J̃2 − J̃1,

J̃3 − J̃1√
1 + t21

= J̃4 − J̃2√
1 + t22

χ̃12χ̃34 + χ̃14χ̃23 = 0

where

t1 := 2(χ̃14χ̃34 − χ̃12χ̃23)

χ̃2
14 − χ̃2

34 + χ̃2
12 − χ̃2

23

,

t2 := 2(χ̃14χ̃12 − χ̃23χ̃34)

−χ̃2
14 − χ̃2

34 + χ̃2
12 + χ̃2

23

.

As in the dimension four, there is an equivalence of the definitions.

123



Some Recent Generalizations of the Classical. . . 559

Proposition 4.4 (Dragović andGajić 2006)There exists a bi-correspondence between
sets of data from Definitions 4.3 and 4.4.

The following theorem gives a Lax pair for the n-dimensional Hess–Appel’rot
system.

Theorem 4.2 (Dragović and Gajić 2006) The n-dimensional Hess–Appel’rot system
has the following Lax pair

L̇(λ) = [L(λ), A(λ)],
L(λ) = λ2C + λM + �, A(λ) = λχ + �, C = 1

J1 + J3
χ.

Remark 4.2 Jovanović (2007) introduced another higher-dimensional generalizations
of the Hess-Appel’rot system, one on e(n), using partial Lagrange-Routh reduction
(see also Dragović et al. 2009). These systems can be also seen as perturbation of
the Lagrange tops, this time of the Lagrange tops defined by Belyaev (4.2). These
Hess–Appel’rot systems are defined by

J = diag(J1, J1, . . . , J1, Jn) + J1n(E1 ⊗ En + En ⊗ E1), X = (0, . . . 0, xn)

The invariant relations of these n-dimensional Hess–Appel’rot systems are:

Mi j = 0, 1 ≤ i < j ≤ n − 1.

4.8 Classical Integration of the Four-Dimensional Hess–Appel’rot System

Detailed classical and algebro-geometric integration procedures for the four-dimensi-
onal Hess–Appel’rot case are presented in Dragović and Gajić (2006). Here again Eq.
(4.7) are useful for classical integration. We have:

χ1 =
(
0, 0,−1

2
(χ12 + χ34)

)
, χ2 =

(
0, 0,−1

2
(χ12 − χ34)

)
.

Integrals of the motion are

〈Mi , Mi 〉 + 2
1

J1 + J3
〈χi , �i 〉 = hi ,

〈�i , �i 〉 = 1, i = 1, 2,

〈Mi , �i 〉 = ci ,

〈χi , Mi 〉 = 0. (4.16)

Here the metric that gives connections between M and � is different from that for
Lagrange bitop. We have
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�1 = ((J1 + J3)M(1)1 − (J13 − J24)M(2)3, (J1 + J3)M(1)2,

(J1 + J3)M(1)3 + (J1 − J3)M(2)3 − (J13 + J24)M(2)1),

�2 = ((J1 + J3)M(2)1 − (J13 + J24)M(1)3, (J1 + J3)M(2)2,

(J1 + J3)M(2)3 + (J1 − J3)M(1)3 − (J13 − J24)M(1)1),

where again M(i) j is the j-th component of the vector Mi . Using these expressions,
Eq. (4.7) can be rewritten in the following form:

Ṁ(1)1 = 2[(J1 − J3)M(1)2M(2)3 − (J13 + J24)M(1)2M(2)1 + �(1)2χ(1)3],
Ṁ(1)2 = 2[−(J1 − J3)M(2)3M(1)1 − (J13 − J24)M(1)3M(2)3

+ (J13 + J24)M(1)1M(2)1 − �(1)1χ(1)3],
Ṁ(1)3 = 2(J13 − J24)M(1)2M(2)3,

�̇(1)1 = 2[�(1)2((J1 + J3)M(1)3 + (J1 − J3)M(2)3 − (J13 + J24)M(2)1)

−�(1)3(J1 + J3)M(1)2],
�̇(1)2 = 2[�(1)3((J1 + J3)M(1)1 − (J13 − J24)M(2)3)

−�(1)1((J1 + J3)M(1)3 + (J1 − J3)M(2)3 − (J13 + J24)M(2)1)],
�̇(1)3 = 2[�(1)1(J1 + J3)M(1)2 − �(1)2((J1 + J3)M(1)1 − (J13 − J24)M(2)3)],

(4.17)

and

Ṁ(2)1 = 2[(J1 − J3)M(2)2M(1)3 − (J13 − J24)M(2)2M(1)1 + �(2)2χ(2)3],
Ṁ(2)2 = 2[−(J1 − J3)M(1)3M(2)1 − (J13 + J24)M(2)3M(1)3 +

(J13 − J24)M(2)1M(1)1 − �(2)1χ(2)3],
Ṁ(2)3 = 2(J13 + J24)M(2)2M(1)3,

�̇(2)1 = 2[�(2)2((J1 + J3)M(2)3 + (J1 − J3)M(1)3 − (J13 − J24)M(1)1) −
�(2)3(J1 + J3)M(2)2],

�̇(2)2 = 2[�(2)3((J1 + J3)M(2)1 − (J13 + J24)M(1)3) −
�(2)1((J1 + J3)M(2)3 + (J1 − J3)M(1)3 − (J13 − J24)M(1)1)],

�̇(2)3 = 2[�(2)1(J1 + J3)M(2)2 − �(2)2((J1 + J3)M(2)1 − (J13 + J24)M(1)3)].
(4.18)

One can see here that M(1)3 = M(2)3 = 0, giving two invariant relations introduced
before.

Let us introduce coordinates Ki and li as follows:

M(i)1 = Ki sin li , M(i)2 = Ki cos li , i = 1, 2.

123



Some Recent Generalizations of the Classical. . . 561

From Eqs. (4.17), (4.18), using integrals (4.16), we have

�̇2
(1)3 = 4(J1 + J3)

2
[
(1 − �2

(1)3)(h1 − 2

J1 + J3
χ(1)3�(1)3) − c21

]
= P3(�(1)3).

Thus �(1)3 can be solved by an elliptic quadrature. Also from the energy integral we
have that

K 2
1 = h1 − 2

J1 + J3
χ(1)3�(1)3.

Since tan l1 = M(1)1
M(1)2

, we have:

l̇1 = −2(J13 + J24)K2 sin l2 + 2χ(1)3c1
K 2
1

.

and

K 2
1�2

(1)2 − 2c1M(1)2�(1)2 + c21 − M2
(1)1(1 − �2

(1)3) = 0.

Similarly, one gets:

�̇2
(2)3 = 4(J1 + J3)

2
[
(1 − �2

(2)3)(h2 − 2

J1 + J3
χ(2)3�(2)3) − c22

]
= P3(�(2)3),

K 2
2 = h2 − 2

J1 + J3
χ(2)3�(2)3,

l̇2 = −2(J13 − J24)K1 sin l1 + 2χ(2)3c2
K 2
2

,

K 2
2�2

(2)2 − 2c2M(2)2�(2)2 + c22 − M2
(2)1(1 − �2

(2)3) = 0.

From the previous considerations one concludes that integration of the four-
dimensional Hess–Appel’rot system leads to a system of two differential equations
(for l1 and l2) of the first order and two elliptic integrals, associated with elliptic curves
E1 and E2 defined by

Ei : y2 = Pi (x) = 8Ai x3 − 4Bi x2 − 8Ai x − 4Ci , i = 1, 2

where

Ai = (J1 + J3)χ(i)3, Bi = (J1 + J3)
2hi , Ci = (J1 + J3)

2(c2i − hi ).

This is a typical situation for the Hess–Appel’rot systems that additional integrations
are required.

In Dragović and Gajić (2006) the algebro-geometric integration procedure is pre-
sented. It is closely related to the integration of the Lagrange bitop.
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5 Four-Dimensional Grioli-Type Precessions

In this Section we review recent results on higher-dimensional precessions, from
Dragović and Gajić (2014).

A regular precession of a motion of a heavy rigid body fixed at a point is charac-
terized by the existence of two distinguished axes, one fixed in the body, and another
one fixed in the space, forming the angle constant in time. This condition has an
equivalent formulation in terms of the existence of a decomposition of the angular
velocity vector into two components: the first component is fixed in the body and
the second component is fixed in the space. A famous example is provided by the
Lagrange top admitting such a motion as the rotation about the vertical axis, which is
the direction of the gravitational force. However, the Lagrange top is symmetric and
the question was whether such a motion can be realized by a nonsymmetric body. In
1947, Grioli presented the conditions on the moments of inertia and the radius vector
of the center of masses, such that an asymmetric rigid body admits nonvertical regular
precessions (Grioli 1947). These conditions imposed the center of masses to lie on
the line through the fixed point perpendicular to the circular section of the ellipsoid
of inertia. Zhukovskii formulated a similar condition in his characterization of the
classical Hess–Appel’rot case, presented in Sect. 2.5. Thus, the Grioli case is dual to
the Hess–Appel’rot case.

In this Section, following Dragović and Gajić (2014), we discuss the existence of
non-vertical precessions of non-symmetric rigid bodies in four-dimensional case.

The classical Grioli case can be considered as a certain perturbation of the Lagrange
top. TheGrioli solution can be obtained starting fromaparticular solution of themotion
of the Lagrange top, the one that presents the vertical regular precession. Using that
as a staring point, we consider the four-dimensional Lagrange top on so(4) defined
by Belyaev (1981). We construct its particular solution, which is the four-dimensional
analogue of the vertical precession. Starting from this solution, we construct a four
dimensional analogue of the Grioli case—the case of a four-dimensional nonvertical
regular precession by a nonsymmetric body. In order to justify the use of the notion of
precession in this four dimensional case, we show that the angular velocity is decom-
posed into two components: one which represents a rotation of a three-dimensional
subspace inR4 that is fixed in the space, and another one which represents a rotation of
a three-dimensional subspace fixed in the body. The angle between the corresponding
vectors orthogonal to these two three-dimensional spaces is constant in time. In this
way, an analogy between the four-dimensional precessions and the three-dimensional
ones is established.

5.1 The Classical Grioli Case

By the above definition, a regular precession of three-dimensional rigid body motion
assumes the existence of two vectors: a vector u fixed in the space and a vectorU fixed
in the body, such that the angle between them remains constant during the motion.
Suppose the moving frame O E1E2E3 and the fixed frame Oe1e2e3 are chosen in a
way that U = E3 and u = e3. Then the nutation angle θ is constant. Grioli proved in
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Grioli (1947) that a regular precession is possible if θ = π/2 and ψ̇ = ϕ̇ = c = const.
Expressed through the Euler angles ψ, ϕ, θ , the angular velocity � and the vector u
in the moving coordinate system are:

� = (c sin(ct), c cos(ct), c),

u = (sin(ct), cos(ct), 0)

The unit vertical vector � is given by

� = (
cos σ sin(ct) + sin σ cos2(ct),

cos σ cos(ct) − sin σ cos(ct) sin(ct), sin σ sin(ct)
)

where σ is constant (see Rubanovskii 1985; Grioli 1947; Borisov and Mamaev 2001).
Grioli obtained the conditions for a nonvertical regular precession by plugging the

last expressions into the Euler–Poisson equations (2.2):

I =
⎛

⎝
I1 0 I13
0 I1 0

I13 0 I3

⎞

⎠ , χ = (0, 0, Z0), (5.1)

where I3c2 = Z0 cos σ , I13c2 = −Z0 sin σ .
If � = u then I13 = 0, presenting the case of the regular vertical precession of the

Lagrange top. Here � and � are:

� = (c sin(ct), c cos(ct), c),

� = (sin(ct), cos(ct), 0). (5.2)

Thus, we see the Grioli case as a certain perturbation of the Lagrange top.
On the other hand, the Grioli precession can be obtained starting from the partic-

ular solutions (5.2) of the Lagrange top. By plugging the solutions for � from (5.2)
into the Euler–Poisson Eq. (2.2) and using the conditions (5.1), from the first two
equations, one determines �1 and �2. Then, one gets the expression for �3 from the
differential equation for �1. Quite miraculously, the remaining differential equations
are identically satisfied then.

In the next Section we will construct a particular solution of the four-dimensional
Lagrange top first. Then, by using the pattern described above, we will construct a
four-dimensional analogue of the Grioli precession.

Remark 5.1 In a basis in which the matrix I has a diagonal form I = diag(I1, I2, I3),
the Grioli conditions can be rewritten as:

χ = (X0, 0, Z0),
√

I2 − I3X0 ±√
I1 − I2Z0 = 0.

As we have already mentioned, the geometric interpretation of these conditions is
that the center of masses lies on the line through the fixed point perpendicular to the
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circular section of the ellipsoid of inertia. If instead of Ii one takes their inverses, the
same conditions define the classical Hess–Appel’rot case of motion of a heavy rigid
body. The ellipsoid of inertia is replaced by the gyroscopic ellipsoid, and one comes
to the Zhukovski geometric interpretation of the Hess–Appel’rot case. In that sense
we may observe that the Grioli and the Hess–Appel’rot cases are dual to each other.

An analogue of the Grioli precession for a motion of a rigid body in an ideal
incompressible fluid is given by Rubanovskii (1985).

5.2 Four-Dimensional Grioli Case

For n = 4 the Lagrange top on e(4) defined by Belyaev (4.2) is given by: I =
diag(I1, I1, I1, I4) and X = (0, 0, 0, x4). Thus, the Eq. (4.1) become:

�̇12 = 0, �̇13 = 0, �̇23 = 0,

(I1 + I4)�̇14 = (I1 − I4)(�12�24 + �13�34) + x4�1,

(I1 + I4)�̇24 = (I1 − I4)(−�12�14 + �23�34) + x4�2,

(I1 + I4)�̇34 = −(I1 − I4)(�13�14 + �23�24) + x4�3,

�̇1 = −�12�2 − �13�3 − �14�4,

�̇2 = −�21�1 − �23�3 − �24�4,

�̇3 = −�31�1 − �32�2 − �34�4,

�̇4 = −�41�1 − �42�2 − �43�3.

(5.3)

To construct a particular solution of Eq. (5.3), let us start with the case when x4 = 0.
This is the symmetric Euler case. Let us fix the values of the first three linear integrals
�12 = −a, �13 = −b, �23 = −c. Then the second three equations of (5.3) are of
the form:

⎛

⎝
ẋ
ẏ
ż

⎞

⎠ =
⎛

⎝
0 −a −b
a 0 −c
b c 0

⎞

⎠

⎛

⎝
x
y
z

⎞

⎠ .

The general solution of this system is given by:

x = −cC1 + (− ac cos(λt) − bλ sin(λt)
)
C2

+ (− ac sin(λt) + bλ cos(λt)
)
C3,

y = bC1 + (
ab cos(λt) − cλ sin(λt)

)
C2

+ (ab sin(λt) + cλ cos(λt)
)
C3,

z = −aC1 + (b2 + c2) cos(λt)C2 + (b2 + c2) sin(λt)C3, (5.4)

where λ = √
a2 + b2 + c2. Let us assume that �i are proportional to �̇i4 for i =

1, 2, 3. Then using (5.4), and choosing C1 = C3 = 0, C2 = 1, one gets a particular
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solution for �14,�24,�34 and �1, �2, �3 for the four-dimensional Lagrange case.
Thus, we have proved the following statement:

Proposition 5.1 (Dragović and Gajić 2014) When x4 = −2λ3 I1 the Eq. (5.3) of
motion of the four-dimensional Lagrange top have a particular solution:

�12 = −a, �13 = −b, �23 = −c,

�14 = ac cos(λt) − bλ sin(λt),

�24 = −ab cos(λt) − cλ sin(λt),

�34 = −(b2 + c2) cos(λt),

�1 = 1

λ2

(
ac sin(λt) + bλ cos(λt)

)

�2 = 1

λ2

(− ab sin(λt) + cλ cos(λt)
)

�3 = − 1

λ2
(b2 + c2) sin(λt)

�4 = 0. (5.5)

It is important to observe that the angular velocity is decomposed into two com-
ponents: � = �1 + �2. The first component �1 = �12E1 ∧ E2 + �13E1 ∧ E3 +
�23E2 ∧ E3 represents a rotation in the three-dimensional space generated by the unit
vectors E1, E2 and E3 and it is constant in the body.

The remaining component, �2 = �14E1 ∧ E4 + �24E2 ∧ E4 + �34E3 ∧ E4 can
be written more explicitly as:

�2 =

⎛

⎜⎜⎜⎜
⎝

0 0 0 ac cos(λt) − bλ sin(λt)
0 0 0 −ab cos(λt) − cλ sin(λt)
0 0 0 −(b2 + c2) cos(λt)

−ac cos(λt)
+bλ sin(λt)

ab cos(λt)
+cλ sin(λt)

(b2 + c2) cos(λt) 0

⎞

⎟⎟⎟⎟
⎠

Thus, �2 satisfies the Poisson equations

�̇2 = [�2,�].

Consequently, �2 represents a rotation of three-dimensional subspace fixed in the
space. One can check that� is orthogonal to it. Note also that the vector� is orthogonal
to the vector E4, so, as in three-dimensional case, we have here a case of the vertical
precession.

Proposition 5.2 The particular solution (5.5) of the four-dimensional Lagrange top
represents a four-dimensional vertical precession.

In the previous subsection,we explained the procedure how to construct the classical
Grioli precession in three-dimensional case, starting from the vertical precession of the
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Lagrange top. Let us apply here the same pattern to get a four-dimensional analogue
of the Grioli case.

Denote by u a non-vertical vector fixed in the space. We are looking for a motion
such that there exists a vector U fixed in the body, with the property that the angle
between u and U is constant in time. Let us, by analogy with the three-dimensional
case, fix a moving frame such with E4 = U and a fixed frame having e4 = u. Then,
the matrix I is not necessary diagonal any more.

Definition 5.1 (Dragović and Gajić 2014) The four-dimensional Grioli case of rigid
body motion is described by the Eq. (4.1) with

I =

⎛

⎜⎜
⎝

I1 0 0 I14
0 I1 0 0
0 0 I1 0

I14 0 0 I4

⎞

⎟⎟
⎠

and X = (0, 0, 0, x4).

More explicitly, the equations of motion (4.1) are:

2I1�̇12 − I14�̇24 = I14(�23�34 − �12�14),

2I1�̇13 − I14�̇34 = −I14(�23�24 + �13�14),

�̇23 = 0,

(I1 + I4)�̇14 = (I1 − I4)(�12�24 + �13�34)

+ I14(�
2
12 + �2

13 − �2
24 − �2

34) + x4�1,

(I1 + I4)�̇24 − I14�̇12 = (I1 − I4)(−�12�14 + �23�34)

+ I14(�24�14 + �13�23) + x4�2,

(I1 + I4)�̇34 − I14�̇13 = −(I1 − I4)(�13�14 + �23�24)

+ I14(�14�34 − �12�23) + x4�3,

�̇1 = −�12�2 − �13�3 − �14�4,

�̇2 = −�21�1 − �23�3 − �24�4,

�̇3 = −�31�1 − �32�2 − �34�4,

�̇4 = −�41�1 − �42�2 − �43�3. (5.6)

Our next goal is to construct a particular solution of the four-dimensional Grioli
case. We start from the particular solution (5.5) of the four-dimensional Lagrange
top. Our specific choice of the moving frame with the axis E4 coinciding with the
direction of the vector U , motivates us to assume the particular solution for the �-s
for the four-dimensional Grioli case to be the same as for the above particular solution
of the four-dimensional Lagrange top. By plugging these expressions for �-s into
the differential equations for �’s from (5.6), one gets the expressions for the �1, �2,
and �3. Then, from one of the three differential equations, say the one for �1, one
gets the expression for �4. Finally, one needs to check if the remaining differential
equations are identically satisfied. These compatibility conditions are satisfied again
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miraculously, under a verymild constraint on the parameters: if and only if b2+c2 = 1,
or equivalently if and only if λ = √

1 + a2. Summarizing, we get the following
theorem:

Theorem 5.1 (Dragović and Gajić 2014) Assume

b2 + c2 = 1, x4 = −2λ3 I1(1 + I 214
I 21

).

Then, the four-dimensional Grioli case has the following particular solution:

�12 = −a, �13 = −b, �23 = −c,

�14 = ac cos(λt) − bλ sin(λt),

�24 = −ab cos(λt) − cλ sin(λt),

�34 = −(b2 + c2) cos(λt),

�1 = I 21
λ2(I 21 + I 214)

(
ac sin(λt) + bλ cos(λt) + I14

2λI1

(
a2c2(cos2(λt) − sin2(λt))

− 2c2 + c2 cos2(λt) + λ2 sin2(λt) − 2abc sin(λt) cos(λt)
))

�2 = I 21
λ2(I 21 + I 214)

(
− ab sin(λt) + cλ cos(λt) + I14

2λI1

(
λ2bc + bc sin2(λt)

− 2a2bc cos2(λt) + aλ sin(λt) cos(λt)(1 − 2c2)
))

�3 = I 21
λ2(I 21 + I 214)

(
− (b2 + c2) sin(λt)

+ I14
2λI1

(− ac − ac cos2(λt) + λb sin(λt) cos(λt)
))

�4 = I1 I14
2λ2(I 21 + I 214)

×
(abcλ(cos2(λt) − sin2(λt)) + (a2c2 + (c2 + 1)λ2) sin(λt) cos(λt)

ac cos(λt) − a sin(λt)

)
.

(5.7)

This solution represents a four-dimensional precession.

6 Motion of a Rigid Body in an Ideal Fluid: The Kirchhoff Equations

A mechanical system similar to the motion of a heavy rigid body fixed at a point is a
motion of a rigid body in an ideal incompressible fluid that is at rest at infinity. The
equations of motion were derived by Kirchhoff in 1870 (see Kirchhoff 1874). They
can be written in the form

�̇M = �M × ∂ H

∂ �M + �� × ∂ H

∂ �� ,
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�̇� = �� × ∂ H

∂ �M (6.1)

where the Hamiltonian H is a homogeneous quadratic function in �M and �� given by:

H = 1

2
〈A �M, �M〉 + 〈B �M, ��〉 + 1

2
〈C ��, ��〉.

Here �M is the impulsive moment and �� is the impulsive force. Thematrix A is positive-
definite, the matrices B and C are symmetric. Equation (6.1) are Hamiltonian in the
standard Lie–Poisson structure given by (2.4). Hence for complete integrability in the
Liouville sense one needs one additional independent integral.

The equations of motion of a heavy rigid body fixed at a point (2.2) can be written
in the form (6.1) with H from (2.3) as the Hamiltonian function.

6.1 Integrable Cases

Wewill list the known completely integrable cases (for details see for example Borisov
and Mamaev 2001).

The first nontrivial integrable case of equations (6.1) was discovered by Kirchhoff
in 1870 (see Kirchhoff 1874). It is defined by the conditions:

• Kirchhoff’s case (1870):

A = diag(a1, a1, a3), B = diag(b1, b1, b3), C = diag(c1, c1, c3).

An additional integral is F4 = M3. It is analogous to the Lagrange case of motion
of a heavy rigid body fixed at a point.

• The first Clebsch case (1871):

A = diag(a, a, a), B = 0,

The additional integral is:

F4 = a〈C �M, �M〉 − det(C)〈C−1 ��, ��〉.

• The second Clebsch case (1871):

A = diag(a1, a2, a3), B = 0, C = diag(c1, c2, c3)
c2 − c3

a1
+ c3 − c1

a2
+ c1 − c2

a3
= 0. (6.2)

The conditions (6.2) are equivalent to:

c2 − c3
a1(a2 − a3)

= c3 − c1
a2(a3 − a1)

= c1 − c2
a3(a1 − a2)

= θ,
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where a1, a2, a3 are pairwise distinct. The additional integral is:

F4 = θ〈 �M, �M〉 − 〈A��, ��〉.

• The Steklov case (1893):

A = diag(a1, a2, a3), B = diag(μa2a3, μa3a1, μa1a2),

C = diag(μ2a1(a2 − a3)
2, μ2a2(a3 − a1)

2, μ2a3(a1 − a2)
2)

where μ is a constant. The additional integral is:

F4 =
∑

j

(M2
j − 2μa j M j� j ) + μ2((a2 − a3)

2�2
1

+(a3 − a1)
2�2

2 + (a1 − a2)
2�2

3

)
.

• The Lyapunov case (1893):

A = diag(1, 1, 1), B = diag(−2μd1,−2μd2,−2μd3),

C = diag(μ2(d2 − d3)
2, μ2(d3 − d1)

2, μ2(d1 − d2)
2)

The additional integral is:

F4 =
∑

j

d j M2
j + 2μ(d2d3M1�1 + d3d1M2�2 + d1d2M3�3)

+μ2(d1(d2 − d3)
2�2

1 + d2(d3 − d1)
2�2

2 + d3(d1 − d2)
2�2

3)

• The Sokolov case (Sokolov 2001):

a1 = a2 = 1, a3 = 2, b13 = α, b23 = β,

c12 = −4αβ, c11 = 4β2, c22 = 4α2, c33 = −4(α2 + β2),

and additional integral is

F4 = (M3 − α�1 − β�2)
2P + Q2,

where

P = (α2 + β2)(M3 + 2α�1 + 2β�2)
2 + (βM1 − αM2)

2

Q = [
αM1 + βM2 + (α2 + β2)�3

]
(M3 + 2α�1 + 2β�2)

+ 3(βM1 − αM2)(β�1 − α�2).

Among completely integrable cases, let us mention twomore cases: the Chaplygin
first case that admits the additional integral when 〈 �M, ��〉 = 0, and the Chaplygin
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second case that, instead of an additional first integral, possesses an invariant
relation and it is analogous to the Hess–Appel’rot case.

• The Chaplygin first case (1902):

A = diag(a, a, 2a), B = 0, C = diag(c,−c, 0),

On the symplectic leaf given by 〈 �M, ��〉 = 0, the equations admit an additional
first integral:

F4 =
(

M2
1 − M2

2 + c�2
3

)2 + 4M2
1 M2

2 .

• The Chaplygin second case (1897).
Chaplygin’s second case has an invariant relation, instead of a fourth first integral.
It was defined by Chaplygin in 1897 (see Chaplygin 1976). This system was also
considered by Kozlov and Onischenko in Kozlov and Onischenko (1982). It is
defined by:

A = diag(a1, a2, a3)

b13
√

a2 − a1 ∓ (b2 − b1)
√

a3 − a2 = 0, b12 = 0

b13
√

a3 − a2 ± (b3 − b2)
√

a2 − a1 = 0, b23 = 0

c13
√

a2 − a1 ∓ (c2 − c1)
√

a3 − a2 = 0, c12 = 0

c13
√

a3 − a2 ± (c3 − c2)
√

a2 − a1 = 0, c23 = 0. (6.3)

An invariant relation is: F4 = M1
√

a2 − a1 ∓ M3
√

a3 − a2 = 0.
One can easily observe a lot of similarities between the Kirchhoff and the Euler–

Poisson equations and a parallelism between corresponding integrable cases.
However, the problem of integrability for the Kirchhoff equations appeared to
be much complicated. Some partial results of the nonexistence of an additional
integral were given by Kozlov and Onischenko (1982), Borisov (1996), Barkin
and Borisov (1989), Sadetov (2000). The problem of classification of completely
integrable cases is still open for the Kirchhoff equations.

6.2 Three-Dimensional Chaplygin’s Second Case

Conditions (6.3) may be regarded as analogy of the Hess–Appel’rot conditions in the
case of motion of a heavy rigid body fixed at a point. We have shown that Hess–
Appel’rot case can be considered as a perturbation of the Lagrange top.

Similarly, the Chaplygin case is a perturbation of the Kirchhoff case. If one chooses
the basis where a1 = a2, the Chaplygin conditions become (see for example Dragović
and Gajić 2012; Borisov and Mamaev 2001):

a1 = a2, a13 �= 0, B = diag(b1, b1, b3), C = diag(c1, c1, c3).
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The Hamiltonian becomes:

2H = a1(M2
1 + M2

2 ) + a3M3 + 2a13M1M3

+ 2b1(M1 p1 + M2 p2) + 2b3M3 p3 + c1(p21 + p22) + c3 p23
= HK + 2a13M1M3.

Here HK is theHamiltonian for theKirchhoff case. In the new coordinates the invariant
relation is M3 = 0.

6.2.1 Classical Integration Procedure

The coordinate expressions of equations of motion are:

Ṁ1 = (a3 − a1)M2M3 + a13M1M2 + (b3 − b1)(M2 p3 + M3 p2) + (c3 − c1)p2 p3
Ṁ2 = (a1−a3)M3M1+a13(M2

3 −M2
1 )+(b1−b3)(M3 p1 + M1 p3) + (c1 − c3)p3 p1

Ṁ3 = −a13M2M3

ṗ1 = a3 p2M3 − a1 p3M2 + a13 p2M1 + (b3 − b1)p2 p3
ṗ2 = a1 p3M1 − a3 p1M3 + a13 p3M3 − a13 p1M1 + (b1 − b3)p3 p1
ṗ3 = a1(p1M2 − p2M1) − a13 p2M3. (6.4)

First integrals and invariant relation are:

H = F1, F2 = M1 p1 + M2 p2 + M3 p3, F3 = p21 + p22 + p23, M3 = 0.

Similarly as in the case of integration of Kirchhoff case, let us introduce new
coordinates ϕ,ψ according to the formulae:

M1 = σ cos(ϕ + ψ), M2 = σ sin(ϕ + ψ), p1 = s cosϕ, p2 = s sin ϕ.

Using that

M2
1 + M2

2 = σ 2, p21 + p22 = s2, M2 p1 − M1 p2 = σ s sinψ,

M1 p1 + M2 p2 = σ s cosψ,

and having in mind that M3 = 0 the first integrals become:

2F1 = a1σ 2 + 2b1σ s cosψ + c1s2 + c3 p23
F2 = σ s cosψ, F3 = s2 + p23, F4 = 0. (6.5)

By squaring the last equation of (6.4) one gets

( ṗ3)
2 = a2

1(σ
2s2 − σ 2s2 cos2 ψ).
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Using the expression of integrals (6.5) one gets

ṗ23 = a1
{
(c1 − c3)p43 + p23

(
2(c1 − c3)F3 + 2b1F2 − 2F1

)

+ 2F1F3 − 2b1F2F3 − c1F2
3 − a1F2

2

}
, (6.6)

So p3 is elliptic function of time. From (6.5) one can also find σ(t), s(t) and ψ(t).
For complete integration one needs to find ϕ as a function of time. By differentiation
of tan ϕ = p2

p1
using s2 = p21/ cos

2 ϕ one gets the additional differential equation

ϕ̇ = a1 p3(t)σ (t)

s(t)
+ (b1 − b3)p3(t) − a13σ(t) cos(ϕ + ψ(t))

Introducing u = tan ϕ+ψ(t)
2 the last differential equation leads to the Riccati equation

u̇ = [ f (t) + g(t)]u2 + [ f (t) − g(t)]. (6.7)

Here f (t) and g(t) are known function of time given by:

f (t) = 1

2

[
ψ̇(t) + a1σ(t)

s(t)
p3(t) + (b1 − b3)p3(t) − a13σ(t)

]
, g(t) = a13σ(t)

2

So, the integration procedure of the Chaplygin case leads to an elliptic integral (6.6)
and an additional Riccati equation (6.7).

In the limit when a13 goes to zero, the Chaplygin case becomes Kirchhoff case.
Since in that case g(t) = 0, the differential equation (6.7) can be solved by quadratures.

6.2.2 Lax Representation for the Chaplygin Case

The Kirchhoff case with an additional assumption B = 0 can be regarded as a special
case of the Clebsch case. In Perelomov (1981) Perelomov constructed a Lax repre-
sentation for the Clebsch case as well as its higher-dimensional generalizations. As
we have already mentioned, the Chaplygin case is a perturbation of the Clebsh case.
Using that fact and using Perelomov’s Lax representation from Perelomov (1981), a
Lax representation for the Chaplygin’s second case is constructed in Dragović and
Gajić (2012):

Theorem 6.1 (Dragović and Gajić 2012) When B = 0, on the invariant manifold
given by the invariant relation, the equations of motion of the Chaplygin second case
are equivalent to the matrix equation:

L̇(λ) = [L(λ), Q(λ)]

where L(λ) = λ2L2 + λL1 − L0, Q(λ) = λQ1 + Q0, and

L2 = diag(c1/a1, c1/a1, c3/a1), Q1 = diag(a1, a1, a3)
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L1 =
⎡

⎣
0 −M3 M2

M3 0 −M1
−M2 M1 0

⎤

⎦ L0 = ��T

Q0 =
⎡

⎣
0 −a3M3 − a13M1 a1M2

a3M3 + a13M1 0 −a1M1 − a13M3
−a1M2 a1M1 + a13M3 0

⎤

⎦

The spectral curve det (L(λ) − μ · 1) = 0 is

C : μ3 + μ2F3 − λ21μ
2(c3 + 2c1)

+ λ21μ[2F1 − (2c1 + c3)F3] + λ41μc1(c1 + 2c3)

− λ61c21c3 − λ41(2c1F1 − c1(c1 + c3)F3) + λ21a1F2
2 = 0,

where λ1 = λ√
a1
. It is singular and has an involution σ : (λ1, μ) → (−λ1, μ). The

curve C1 = C/σ is a nonsingular genus one curve.

6.3 Four-Dimensional Kirchhoff and Chaplygin Cases

In Dragović and Gajić (2012) the four-dimensional generalizations of the Kirchhoff
and Chaplygin cases are constructed on e(4).

Let us consider the Hamiltonian equations with the Hamiltonian function:

2H =
∑

Ai jkl Mi j Mkl + 2
∑

Bi jk Mi j�k +
∑

Ckl�k�l

in the standard Lie-Poisson structure on e(4) given by:

{Mi j , Mkl} = δik M jl + δ jl Mik − δil M jk − δ jk Mil

{Mi j , �k} = δik� j − δ jk�i

A four-dimensionalKirchhoff case should have two linear first integrals: M12 and M34.
It is interesting that under such an assumption, the “mixed” term in the Hamiltonian
is missing.

Proposition 6.1 (Dragović and Gajić 2012) If M12 and M34 are the first integrals,
then Bi jk = 0.

The proof follows through direct calculations.

Definition 6.1 The four-dimensional Kirchhoff case is defined by

2HK = A1212M2
12 + A1313(M2

13 + M2
14 + M2

23 + M2
24) + A3434M2

34 +
A1234M12M34 + C11(�

2
1 + �2

2) + C33(�
2
3 + �2

4)
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On e(4) the standard Lie - Poisson structure has two Casimir functions:

F1 = �2
1 + �2

2 + �2
3 + �2

4,

F2 = (M13�4 − M14�3 + M34�1)
2 + (M23�1 + M12�3 − M13�2)

2

+ (M24�1 − M14�2 + M12�4)
2 + (M23�4 + M34�2 − M24�3)

2

consequently, the general symplectic leaves are 8-dimensional. For complete integra-
bility one needs four first integrals in involution. In Dragović and Gajić (2012) it is
proved that except Hamiltonian, the four-dimensional Kirchhoff case has two linear
first integrals F3 = M12, F4 = M34 and one additional quadratic first integral:

F5 = a1(M12M34 + M14M23 − M13M24)
2

− c1((M13�4 − M14�3 + M34�1)
2 + (M23�4 + M34�2 − M24�3)

2)

− c3((M23�1 + M12�3 − M13�2)
2 + (M24�1 − M14�2 + M12�4)

2)

So, we have

Theorem 6.2 (Dragović andGajić 2012) The four dimensional Kirchhoff case is com-
pletely integrable in the Liouville sense.

The final step in our program is construction of the four-dimensional analogue of
the Chaplygin case. One may naturally expect that M12 and M34 would appear as the
invariant relations. Starting from this assumption, we propose:

Definition 6.2 (Dragović and Gajić 2012) The four-dimensional Chaplygin case of
the Kirchhoff equations on e(4) is defined by the Hamiltonian:

2HCh = A1212M2
12 + A1313(M2

13 + M2
14 + M2

23 + M2
24) + A3434M2

34

+ A1234M12M34 + A1213M12M13 + A1214M12M14

+ A1223M12M23 + A1224M12M24 + A1334M13M34

+ A1434M14M34 + A2334M23M34 + A2434M24M34

+ B121M12�1 + B122M12�2 + B123M12�3 + B124M12�4

+ B341M34�1 + B342M34�2 + B343M34�3 + B344M34�4

+ C11(�
2
1 + �2

2) + C33(�
2
3 + �2

4).

One can easily check that in this case M12 and M34 are indeed the invariant relations.
Thus, we have constructed a system which is a four-dimensional analogue of the
Chaplygin case. At the same time, the obtained system plays the role for the case of
the Kirchhoff equations on e(4) analogue to the role of the four-dimensional Hess-
Appel’rot system for the Euler–Poisson equations on so(4) × so(4).

The rigid body dynamics is one of the very basic classical problems with enormous
range of applications. The connections with several other areas of mathematics and
mechanics such as the theory of Lie groups and algebras, differential and algebraic
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geometry, fluid mechanics etc. reflect its importance. There are still many important
unsolved problems. Among those concerning integrability, we can mention in partic-
ular the question of classification of integrable cases of the Kirchhoff equations. As it
was presented above, there is an amazing parallelism between the known integrable
cases of the Euler–Poisson equations and the Kirchhoff equations. Nevertheless, the
theory related to the Kirchhoff equations is far from being finalized as it is the case
for the Euler–Poisson equations.
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Dragović, V., Gajić, B.: Elliptic curves and a new construction of integrable systems. Reg. Chaotic Dyn.

14(4–5), 466–478 (2009)
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Dragović, V., Kukić, K.: New examples of systems of the Kowalevski type. Reg. Chaotic Dyn. 16(5),

484–495 (2011)
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