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ABSTRACT
An outline is given of the phenomenological theory of fading memory recently
explored by V. J. Mizel and the author. The theory provides a general frame-
work in which one can derive the restrictions which the second law of thermo-

dynamics places on the constitutive equations of materials with memory.

1. INTRODUCTION
In theories of the dynamical behaviour of continua, there are several ways

of describing the dissipative effects which, in addition to heat conduction,
accompany deformation. The oldest way is to employ a viscous stress which
depends on the rate of strain, as is done in the theory of Navier—Stokes
fluitls. In another description of dissipation, one postulates the existence of
internal state variables which influence the stress and obey differential
equations in which the strain appears. A third approach is to assume that
the entire past history of the strain influences the stress in a manner com-
patible with a general postulate of smoothness or 'principle of fading memory'.

Experience in high-polymer physics shows that the mechanical behaviour
of many materials, including polymer melts and solutions, as well as amor-
phous, crosslinked solids and semi-crystalline plastics, is more easily de-
scribed within the theory of materials with fading memory than by theories
of the viscous-stress type, which do not account for gradual stress-relaxation,
or by theories which rest on a finite number of internal state variables and
which, therefore, give rise to discrete relaxation spectra when linearized.

Some years ago, Walter Noll and I proposed a systematic procedure for
rendering explicit the restrictions which the second law places on constitutive
relations1. The procedure was easily applied in theories of materials of the
viscous-stress type1' 2 and in theories which employ evolution equations for
internal state variables5; these applications did not yield results which a
physicist would consider surprising and were presented as attempts at
clarification, with the emphasis laid upon logical relations. Implementation
of the procedure in the theory of materials with memory was a different
matter, however, for it there led to conclusions4 which, although not antici-
pated by other arguments, have recently been shown to have important
bearing on wave propagation5 and dynamical stability6' 7• Here I should
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like to discuss the restrictions which the second law places on the response
functionals of materials with memory. Although it is possible to develop
analogous theories for materials with permanent memory't, I emphasize
materials which possess 'fading memory' in the sense that configurations
experienced in the recent past have a stronger influence on the present values
of the stress and free energy than configurations experienced in the distant
past.

2. PROCESSES, CONSTITUTIVE ASSUMPTIONS, AND THE
SECOND LAW

Let a fixed reference configuration ? be assigned for the body under con-
sideration, and identify each of the material points X of with the place
in space that X occupies when has the configuration . A thermodynamic
process of is a collection of functions of and time compatible with the
laws of balance of momentum and energy. For the materials covered by
the present theory, each process consists of eight functions: (1) the motion
x with x = x( t) called the position at time t of the material point located
at in , (2) the local absolute temperature 0, which is assumed to be positive,
(3) the symmetric stress tensor T of Cauchy, (4) the specific internal energy e,
per unit mass, (5) the specific entropy q, per unit mass, (6) the heat fluxvector q,
(7) the body force b, per unit mass (exerted on at x z(,t) by the 'external
world', i.e. by other bodies which do not intersect ),and (8) the rate of heat
supply r (i.e. the radiation energy, per unit mass and unit time, absorbed by
ilö' at x = z( t), and furnished by the 'external world'). The first six of these
functions determine the process, for once x 0, T, e, mi', and q have been specified
for all and t, the functions b and r are determined1 by the requirement that
the process shall obey the laws of balance of momentum and energy, which
state that, for each part ? of 4 and each time t,

k din = b din + Tn dadt
and

(e + kk) div = (kb + r) din + (iTn)- qn) da (2.2)

In these equations din is the element of mass in the body, is the surface
of gp in the configuration at time t, da is the element of surface area, n is the
exterior unit normal vector to and the superposed dots denote material
time-derivatives.

The specific free energy /i is defined by

(2.3)

See, for examples, Owen's discussion of the thermodynamics of materials with elastic range8,
Owen and Williams's theory of rate-independent materials9, and a recent essay1 ), in which
Owen and I generalize the present treatment.

Also called the 'Helmholtz free energy per unit mass'.
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The deformation gradient F is the gradient of x( t) with respect to :

F F(, t) = V(ç, t) (2.4)

It is assumed that F is non-singular; hence

detF 0 (2.5)

The Piola--Kirchhoff tensor, S = S(, t), is defined by

S (1/p)TF' , pSFT = T (2.6)

with p the mass density. I denote by g the spatial gradient of the temperature,
i.e. the gradient of 0 considered as a function of the present position x =
x( t):

g = VO(x 1(x, t), t) or FTg = V6(, t) (2.7)

Now, let F('r) and 9(r) be the deformation gradient and temperature at
time r at a fixed material point X. The functions Ft and 91, defined by

Ft(s) F(t — s), Ot(s) = O(t — s), 0 s < cc (2.8)

are called the history up to t of the deformation gradient at X and the history
up to t of the temperature at X; Ft maps [0, cc) into the set of non-singular
tensors, while 91 maps [0, cc) into the set of positive numbers.

Each material is characterized by constitutive relations which limit the
class of processes possible in a body comprised of the material. In the thermo-
dynamics of materials with memory, a simple material is one for which the
free energy, the stress, the entropy, and the heat flux are determined when
the history of the deformation gradient, the history of the temperature, and
the present value of the temperature gradient are specified. Thus, at each
material point of a simple material there hold equations of the form:

= p(Ft, Ot;g(t))

t)(Ft, g(t))
S(t) = s(Ft, Ot; g(t))

(2.9)

q(t) = q(Ft, 9t; g(t))

It is assumed that the four functions p, I, and q are given at each material
point; these functions, called response functionals' or constitutive func-
tionals' depend, of course, on the choice of the reference configuration. A
process is said to be admissible in the simple material if, in addition to obeying
the balance laws 2.1 and 2.2, it obeys the constitutive relations 2.9.

If one regards q/O to be a vectorial flux of entropy and r110 to be a scalar
supply of entropy, then it is natural to define the rate of production of entropy
in a part of to be

F(, t) = ii din — [j' din —

JTn da]
(2.10)

Cf. Ref. 4.

§ Cf. NolI'1
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The Clausius—Duhern 2 is the assertion that

(2.11)

In our paper' of 1963, Noll and I pointed out that in many branches of
continuum physics the second law of thermodynamics can be given a
precise mathematical meaning if it is interpreted to be the following principle.

Dissipation Principle. For every admissible thermodynamic process in a body, the Clausius—Duhem inequality 2.11 must hold at all times t and in all
parts of.4.

It is clear that this principle implies that response functionals cannot be
chosen arbitrarily. In Section 4 I shall list the restrictions which the principle
places on p, b and q in 2.9 when these functions obey the postulate of
regularity called the principle of fading memory'. First, however, I should
like to outline a recently developed axiomatic approach'3 to the theory of
fading memory.

3. ON THE THEORY OF FADING MEMORY
Let us follow a procedure employed in ref. 4, and use Greek majuscules,

such as A, to denote ordered pairs (L, X), with L a tensor and X a scalar. The
definitions

csA, + f3A2 = + f3(L2,X2) = (ol, + /3L2, cô, + fl?2),
(3 1)A1A2 = tr(L,L) + Xi2 S

make the set of all such ordered pairs a 10-dimensional vector space
with norm

A = jAA = \/tr(LL) + 2 (3.2)

The elements of of the type

r = (F,O) (3.3)

with F a non-singular tensor and 0 a positive number, form a cone ' in
At a given material point in a process, the total history up to t, i.e.

the history up to t of the deformation gradient and temperature, is the func-
tion I' = (Ft, Ot), mapping [0, ) into %':

F'(s) = (F'(s), Ot(s)) for 0 s < co. (3.4)

The ordered pair , defined by

= (S, — i) =
(TFT-! ) e (3.5)

For earlier studies of the principle of fading memory, see refs. 14—18. Ref. 19 surveys work
done up to 1965.

§ A subset t of a vector space is called a cone ifu E1I and b >0 imply b 9t
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is called the stress-entropy vector4. If one writes simply k/Ifor k/i(t), g for g(t),
and I for 1(t), the constitutive equations 2.9 become, in the present notation,

=p(rtg)
I =(F•g) (3.6)

q=q(It;g)J
where the response functional has the components'

= (' — (3.7)

It is frequently possible to prove theorems in a branch of continuum
physics without specifying the form of response functionals, but usually
one must assume something about their smoothness. For this reason several
topologies have been proposed as appropriate for sets of his-
tories'4 18,4, 8,9,10

Let us suppose that the histories At of interest form a cone t1 in a Banach
function-space 8. Certain basic, but usually tacit, assumptions of physical
theories place limitations on the choice of the function space !3 and its
norm . I list below three of these requirements.

(1) Given an arbitrary history P in the domain D of a constitutive func-
tional and a positive number a, one expects to find in D the history f÷
for processes in which 1' = (F, 0) (at some fixed material point) has the
history P up to time t and is constant throughout the interval [t, t + a].
The history 1t in such a process is called the 'static continuation of Ft
by the amount a'. The static continuation of a history should be well defined
even if, one identifies the history with the set of functions at zero distance
from it in R

(2) If the history Ft of F up to time t is in the domain D, then one expects to
find in D the histories Ft of F up to previous times t — a, a 0. These
earlier histories are called o--sections of 1°.

(3) Since it should be possible to evaluate response functionals at equilib-
rium states', one expects D to contain constant histories of the form Ft(s)
(2, 0 ( S < cc.

Victor Mizel and I have found some apparently useful implications of these
elementary physical requirements, and I summarize below some of our
results1 3

Let'a be an influence measure; that is, a non-trivial, sigma-finite, positive,
regular Borel measure on [0, cc) and let be the set of all si-measurable
functions mapping [0, cc) into [0, cc). Let v be a function on such that for
all (or 4) in

(i) 0 v(4) cc, and v(4) = 0 if and only if 4(s) = 0 -a.e.T;
(ii) v( + t2) v(41) + v(42), and v(a4) = av() for all numbers a -0;

Cf. Coleman and Mizel'8 13

§ D is here the domain for a fixed value of g.

i.e. not identically zero.

¶ i.e. for all s in [0, cx) except for a set Z with i(Z) = 0.
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(iii) if 4(s) z çb2(s) p-a.e., then v(4.1) v(42);
(iv) there is at least one function /, in with 0 <v(/i) < cc;
(v) if t/i4, q52,... are in ô and if 4(s)1/4s) i-a.e., then v(4.))v(qI).

Such a function v is called a non-trivial function norm, relative to ,with
the sequential Fatou property.

Let V be the set of it-measurable functions mapping [0, cc) into "(1O)'
and let be the function on V defined by

= v( li ) (3.8)

for each cli in V I write Vfor the set of all cli in 17 with < cc. Each func-
tion cli in V is called a history, and its independent variable (usually denoted
by s) is called the elapsed time. The value cli(0) of cli at s = 0 is called the
present value of cli, and the past values are those for which 0 <s < cc. The
function space obtained by calling two functions cb1 andk2 in Vthe same
whenever — = 0 is easily shown to be a Banach space; it is called
a history space or, at length, a Banach function space formed from histories
with values in '(1O)

Let C be the class of functions 1i in V such that (s) is in for all s 0, and
let be the set of equivalence classes obtained by calling the same those
elements cl 1' 4j2 of C for which — = 0. Clearly, C is a cone in I
and is a cone contained in the Banach function-space 3. Let be the domain
D of definition of the response functionals in (3.6)20.

If !P is a function on [0, cc) and a a positive number, then the static con-
tinuation of W by the amount a is the function 1' on [0, cc) defined 16

?(s) =10), 0 5 < a
(3.9)

a <s < cc
and the a-section of !t' is the function !I' on [0, cc) given by18

!P)(S) = !t'(s + a), 0 s < cc
If !Pis the history up to t of F = (F, 0) (at a fixed material point X in some
particular process), then !P is the history off up to t — a, while !P gives the
history of F up to t + a assuming that F is held constant from t to t + a.
The physical requirements (1) and (2) stated above are made precise by
laying down the following two postulates18' 13,

Postulate 1. If a given function 'Ii is in C, then all its static continuationsli,
a > 0, are also in C. Furthermore, f li and !t' in C are such that 4) — = 0,
then — = Ofor all a 0.

Postulate '2. if cli is in C, then so also are all its a-sections, cli, a >0.
Employing Postulate 1, one can easily prove the following theorem which

shows that the present value cli(0) of a history cli has a special status, in the

Cf. Luxemburg and Zaanen2' and the literature quoted by them.

§ .When the dependence on g is under discussion, the domain is taken to be the set x
which forms a cone in B
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sense that the norm = v( ) places greater emphasis on i(O) than on
any individual past value.

Theorem 1 :J:. The influence measure p must have an atom at s = 0 and be
absolute/v continuous on (0, ) with respect to Lehesgue measure.

Postulates 1 and 2, together, yield

Theorem 2. Either p((0, cc)) = 0, or Lehesgue measure is absolutely continuous
on (0, cc) with respect to p.

Thus the si-measure of the sing'eton {0} is not zero, and if t((0, cc)) is not
zero, then an arbitrary subset of (0, cc) has zero p-measure if and only if it
has zero Lcbesgue measure. So as to have a non-trivial theory, let us assume
that p((O, cc)) is not zero. Since the measure p is employed here only to render
precise the expression 'p-ac.' in the axioms (i), (iii), (iv) and (v) for v, Theorems
I and 2 imply that one can here replace p with the Borel measure on [0, cc)
that assigns the value 1 to the singleton {0} and equals Lebesgue measure
when restricted to Borel subsets of (0, cic).

IfP is a function in V, the restriction ofP to (0, cc) is called the past history
ofF and is denoted by Let i' be the set of all functions r obtained by
restricting members of Vto (0, cc), and define HT Ofl Vr by

= 7(o ) (3.11)

with z the characteristic function of (0, cc). The space of past histories
is the function space obtained by calling the same those elements 'r
of 1' for which 1r 'r r = 0. It is easily verified that r is a norm on
and that 13r is a Banach space. I write Cr for the set of functions in i' with
values in and r for the corresponding cone in r

An immediate consequence of Theorems 1 and 2 is

Theorem 3 ¶. ¶13= 10) 3r' and the norm on ¶13 is equivalent to the
norm ' defined by

= '(0) + r (3.12)

Here is the original norm 3.2 on "J)' is the norm on ¶13 defined in
3.8, and is the norm on defined in 3.11. The equivalence of 'and

means that there exist two positive numbers c1 and c2 such that

c1P c2l
for allP in ¶13. It follows from Theorem 3 that, even after the functions in Vare
grouped together to form the equivalence classes comprising ¶13, each
history has a well-defined present valuek(0).

if is a vector, denotes the constant function on [0, cc) with value Q:

14(s) = Q, 0 s < cc (3.13)

Ref. 13, Thm 2.1.

§ Ref. 13, Thm 2.2.

i.e. /0 has domain [0. x) and is such that x (s) = I for sa (0, ic), while/. (0) = 0.

¶ Ref. 13, Thm 3.1.
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The following postulate embodies the third of the physical requirements
listed above.

Postulate 3. The space 3 contains non-trivial constant functions. That is,
for each vector Q in , the function Qt is in C.

It follows from this assumption that givefl ny Tunctional fon , one can
define a function r on ' by the formula

f°(Q) = f(Q) for all Q E? (3.14)

f° is called the equilibrium response function corresponding to f If f is a
continuous functional on , then r° is continuous on 'l?.

The norm on ?3 is said to have the relaxation property, if, for each
function in V,

lim cb(O)t = 0 (3.15)

where, in accord with 3.13,(O)t is the constant function on [0, cc) with value
'1(0). Clearly, has the relaxation property if and only if 3.15 holds for
each iIi in C. Hence the assumption of the relaxation property is equivalent
to the assertion that every continuous functional fon obeys the relation

lim f()= f(O)t) = f0(()) (3,16)

for each P in that is, in the limit of large r, the response f(i1i) to the static
continuation 'Ii of an arbitrary history P depends only on the present value
ofD and is given by the equilibrium response function defined in 3.14.

Postulate 4. The norm has the relaxation property.

Postulates 1 to 4 yield

Theorem 4. Let A1() and A2() be functions mapping (—cc, cc) into '">
such that, for each t, the histories A and are in V. If 1imA 1(t) — A2(t) = 0,

then urn IIA —Al =0.
A function qi in C is called a tame history if:
() is differentiable in the classical sense at s = 0; that is

1(0) — --t(s) = lim —qi(5)
(3.17)ds s0 sO+ S

exists.
the past history of'J, is an absolutely continuous function on (0, cc).

(y) B contains an element , called the time-derivative of 4i, which obeys
the equation

(s) = — --cI(s), p-ac. (3.18)ds

For technical reasons, one assumes

1 Ref. 18; see also refs. 16, 17, 4, 13 and 20.
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Postulate 5. Tame histories iyith time-derivatives of compact support are
dense in 4E. That is, given any !Pin & and any ö > 0, there exists a tame history

in such that — <ö and 4(s) = 0 for all s outside a closed bounded
set in [0, cc).

It follows from Postulate 5 that B is separable, that continuous functions
of compact support are dense in 3, and that l3 has the following dominated-
convergence pro perty familiar in the theory of Lebesgue spaces: If W belongs
to 3 and if fIi is a sequence of elements of 3 with !P(s), 11-a.e.,
such that 'Ps(s) -÷ 0, it-a.e., then -+ 0.

Let f be a continuous function mapping into a metric space. It follows
from Theorem 3 that fcan be regarded equally well as a function of ordered
pairs ((O), r) withP(O) in % and t'rin r' i.e.

f(Ji) = f((O);1r) (3.19)

and the continuity off over implies that f(li(0) ;r) is jointly continuous in
the two variables, (0) in , andr 11 r Now, f can be used to define a
functional transformation mapping functions A() on (— cc, cc) into functions
4)() on (— cc, cc), by setting

f(At) (3.20)

for each t e (— cc, cc), where At(s) = A(t — s), s 0. Employing Postulates
1, 2, 3 and 5, one can prove that the functional transformation, A() —*
preserves regularity in the following sense.

Theorem 6. Let f be a continuous function on with values in a metric space,
and suppose that A() is a function on (—cc, cc) with At in for each t. If
A(S) is a regulated function, i.e. a function for which the limits limA(-r) and

urn A(x) exist for each t, then 4), given by 3.20, is also a regulated function.

Furthermore, q) can suffer discontinuities at only those times t at which A()
is discontinuous; at all other times 4*) is continuous.

(To obtain this result one first shows that the mapping t —* A e
continuous, for all t, even for those at which A(.) experiences a discontinuity.)

Let U be a cone in a Banach space 3, and let be the subspace of l3
spanned by U. A real-valued function g defined on U is said to be continuously
Fréchet-dfferentiable on U if, for each 4) in U and every in 3 with 4) +
in U,

g(4) + ) = g(4) + dg(4)) + o(J) (3.21)

where dg (.) is defined and continuous on U x t' and is such that dg(4) )
is a linear function of for each 4). The linear functional d(4) is called the
Fréchet derivative of at 4).

An argument given in ref. 20 here yields

For theorems of this type, see Luxemburg and Zaanen, Thm 2.2, and Luxemburg22, Thm
46.2. See also ref. 13, Remarks 3.1 and 3.2.

§ Ref. 13, Remark 3.3; see also ref. 18, Remark 5.1.

Of course the definition can be employed for other types of subsets of , such as open subsets.
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Theorem 7.(Chain Rule.) If is a real-valued continuously Fréchet-differenti-
able function on , then, for each tame history in , the derivative

tim
—

(3.22)

exists and is given by

= dç(4i4i) (3.23)

withdi the time derivative defined in 3.18.
Suppose is continuously Fréchet-differentiable on , and recall that

ti) can be written

g(li) = g(7(0)r) (3.24)

where(O), in '6, is the present value of, and r' in, is the restriction of
çb to (0, co). The assumed differentiability of g on implies the existence, for
each , of the instantaneous derivative4 D9(Ii) and the past-history derivative

), which are determined by the equations

çi(O) + Q; l) = cI5(O) ;ckr) + Dcj1i)Q + o( Q ) (3.25)

and

1(0);lr + 'r) = b(O);r) + öct(P!Pr) + O(I!Pr r); (3.26)

3.25 holds for all Q in with i(O) + Q in '6, while 3.26 holds for all 1JJ
111 with r + !Pr illr For each 4i in , the value Dg(P) of Dg is a vector in

and cg(d) is a linear function on . The functionals D9 and c5g
determine dg through the relation

d( W) = D )W(O) + !t'r) (3.27)

and one can write the chain rule 3.23 in the form
= Dg()4i(O) + 5ç1(cli &) (3.28)

with di(O) the present value, and 4r the past history, of 4.
There is now assembled here apparatus sufficient for a precise statement

of the principle of fading memory as used in the thermodynamics of simple
materials.

Postulate of Smoothness for Response Functionals. For each simple material
there exists a history space 3, formed as described above, such that

(1) t3, the cone in t3 corresponding to functions mapping [0, ac) into'6,
obeys Postulates 1—5;

(2)thefunctibnals p, and qin 3.6 are defined and continuous on & x r3)§;
(3) the functional p is continuously Fréchet-dfferentiable on x

Ref. 20, Remark 1 and Appendix II; see also refs. 4 and 23. The proof given in ref. 20 does not
require Postulate 4.

§ In 3.6, Ft ,while g C

x P'3 is here considered a cone in
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4. CONSEQUENCES OF THE SECOND LAW
It is easily shown that under appropriate assumptions of regularity for the

dependence of and 0 upon and t, it follows from the balance laws 2.1 and
2.2 that the Clausius—Duhem inequality 2.11 can be written in the form4

(4.1)
p0

Working with this local form of the inequality one can prove the following
theorem which gives the restrictions which the second law places on the
response functionals p. 1), e and q in 2.9 [or, equivalently, p, and q in 3.6].

Theorem 8. It follows from the Dissipation Principle and the Postulate of
Smoothness for Response Functionals that

(i) the functionals p and are independent of g; i.e..

i(t) = p(Ft), 1(t) = 3(Ft) (4.2)
whenever Ft is in

(ii) the functional is determined by the functional p through the 'general-
ized stress relation'

(4.3)

1(t) = Dp(Ft), (4.4)
whenever Ft is in
(iii) for each tame history ft in I

5p(ftj't) 0 (4.5)

and

q(Ft;g)•g —pth5p(Ft;g) (4.6)

Furthermore. (i), (ii) and (iii), when taken together, give not only a necessary,
but also a sufficient condition on p, and q for (4.1) to hold for all g in "K(lo)
and all tame histories ft in .

When I gave this theorem in my essay4 of 1964, I proved it using a form of
the principle of fading memory less general than that described here. In the
present terminology one can say that I employed the Postulate of Smoothness
stated at the end of Section 3, but used for L a special type of history space,
namely a Hubert space formed from functions 1i, mapping [0, co) in "(1 0)'
for which

2 t(0) 2 + (s) 2 k(s) ds (4.7)

Ref. 4, Thm 1, p 19; see also ref. 20, Thm 1.
§ The form of the principle used in ref. 4 was drawn from earlier work done in collaboration
with Walter Noll'4' 15, 16
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is finite; k(s) was a fixed, positive, monotone-decreasing function, assumed to
be summable on (0, cio), and called the 'influence function'. Later, Victor
Mizel and 120 observed that Theorem 8 remains valid in the present more
general theory.

The conclusions (i), (ii) and (iii) of Theorem 8 have some interesting con-
sequences which I list below.

Theorem 9. Of all total histories ending with a given value of F = (F, 0),
that corresponding to constant values off for all times has the least free energy;
i.e. for each ft in S

p°(Ft(0)) p(Ft) (4.8)I

Theorem 1OTJf F is a vector in , and f F is the constant function defined by
ft(s) F, then for all functions'br in

5p(Ft r) 0 (4.9)

Theorem 11The equilibrium response functions corresponding to p and
obey the classical relation

= Vp°(f) for all F in ' (4.10)

where Vp0 is the ordinary gradient of p°.
Although the proof of Theorem 8 does not employ PostUlate 4, the proofs

of Theorems 9, 10 and 11 do**.
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