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Abstract We study some properties of the canonical trans-
formations in classical mechanics and quantum field theory
and give a number of practical formulas concerning their gen-
erating functions. First, we give a diagrammatic formula for
the perturbative expansion of the composition law around the
identity map. Then we propose a standard way to express the
generating function of a canonical transformation by means
of a certain “componential” map, which obeys the Baker–
Campbell–Hausdorff formula. We derive the diagrammatic
interpretation of the componential map, work out its relation
with the solution of the Hamilton–Jacobi equation and derive
its time-ordered version. Finally, we generalize the results to
the Batalin–Vilkovisky formalism, where the conjugate vari-
ables may have both bosonic and fermionic statistics, and
describe applications to quantum field theory.

1 Introduction

Canonical transformations have a variety of applications,
from classical mechanics to quantum field theory. In par-
ticular, they play an important role when quantum field the-
ory is formulated by means of the functional integral and
the Batalin–Vilkovisky (BV) formalism [1–3]. The BV for-
malism associates external sources Kα with the fields �α

and introduces a notion of antiparentheses (X, Y ) of func-
tionals X , Y of � and K . This formal setup is convenient
to treat general gauge theories and study their renormal-
ization, because it collects the Ward–Takahashi–Slavnov–
Taylor (WTST) identities [4–7] in a compact form and relates
in a simple way the identities satisfied by the classical action
S(�, K ) to the identities satisfied by the generating func-
tional � of the one-particle irreducible correlation functions.
The canonical transformations, which are the field/source
redefinitions that preserve the antiparentheses, appear in sev-
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eral contexts. For example, they provide simple ways to
gauge-fix the theory and map the WTST identities under arbi-
trary changes of field variables and gauge-fixing. Moreover,
they are a key ingredient of the subtraction of divergences.

The generating functionals of the canonical transforma-
tions used in quantum field theory are often polynomial, and
can be composed and inverted with a small effort. Neverthe-
less, there are exceptions. When the theory is nonrenormaliz-
able, for example, as the standard model coupled to quantum
gravity, the canonical transformations involved in the sub-
traction of the divergences are nonpolynomial and arbitrarily
complicated. Even when the theory is power counting renor-
malizable, the variety of fields and sources that are present
and their statistics make it useful to have some shortcuts and
practical formulas to handle the basic operations on canoni-
cal transformations in more straightforward ways.

In this paper, we collect a number of reference formulas
concerning the generating functions of canonical transforma-
tions and give diagrammatic interpretations of their perturba-
tive versions. We first work in classical mechanics and then
generalize the investigation to the BV formalism. The gener-
alization is actually straightforward, since the operations we
define preserve the statistics of the functionals.

In Sect. 2 we start from the composition law, by writing
the generating function of the composed canonical transfor-
mation as the tree-level projection of a suitable functional
integral. So doing, the perturbative expansion of the result
around the identity map can easily be expressed in a diagram-
matic form. In Sect. 3 we relate the composition law to the
Baker–Campbell–Hausdorff (BCH) formula [8–13]. We pro-
pose a standard way of expressing the generating function of
a canonical transformation by means of a componential map
C(X) such that C−1(X) = C(−X) and C−1(C(X) ◦ C(Y )) =
BCH(X,Y ). In Sect. 4 we derive the relation between the
componential map and the solution of the Hamilton–Jacobi
equation for time-independent Hamiltonians. In Sect. 5 we
work out the diagrammatic interpretation of the perturba-
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tive expansion of the componential map around the identity
map. In Sect. 6 we generalize the formulas to time-dependent
Hamiltonians, which gives the time-ordered version of the
componential map. In Sect. 7 we extend the analysis to the
BV formalism, where the fields can have arbitrary statistics.
We illustrate a number of applications to quantum field the-
ory. Section 8 contains the conclusions.

2 Composition of canonical transformations

In this section we study the composition of canonical trans-
formations. We first recall the basic formulas for the gener-
ating function of the composite canonical transformation, in
terms of the generating functions of the components. Then
we express the result as the tree-level sector of a functional
integral and provide a diagrammatic interpretation of its per-
turbative expansion around the identity map.

Consider two canonical transformations q1, p1 → q2, p2

and q2, p2 → q3, p3, with generating functions F12(q1, p2)

and F23(q2, p3), respectively. It is known that the gener-
ating function of the composite canonical transformation
q1, p1 → q3, p3 is

F13(q1, p3) = F12(q1, p2) + F23(q2, p3) − qi2 p
i
2, (2.1)

where qi2 and pi2 are the functions of q1, p3 that extremize
the right-hand side1.

The proof is straightforward. Extremizing the right-hand
side with respect to qi2 and pi2, we obtain

0 = ∂F12

∂pi2
− qi2, 0 = ∂F23

∂qi2
− pi2.

Thanks to these equations, the derivatives of F13 with respect
to qi1 and pi3 can be worked out by keeping q j

2 and p j
2 con-

stant. This gives the relations

∂F13

∂qi1
= ∂F12

∂qi1
= pi1,

∂F13

∂pi3
= ∂F23

∂pi3
= qi3,

which prove that F13(q1, p3) is indeed the generating func-
tion of the canonical transformation q1, p1 → q3, p3.

We write the composition law as

F13 = F23 ◦ F12, (2.2)

in the sense the F12 is the transformation performed first and
F23 is the one performed last. In particular, given a scalar
function S1(q1, p1) = S2(q2, p2) = S3(q3, p3), we write

1 To our knowledge, very few textbooks report this property. One is
Ref. [14], where it is ascribed to Hamilton. For a standard derivation,
see also [15]. For a derivation from the semiclassical limit of quan-
tum mechanics, see [16]. For elaborations from the point of view of
symplectic groupoids, see [17].

S2 = F12 ◦ S1, S3 = F23 ◦ S2 = F23 ◦ F12 ◦ S1 = F13 ◦ S1.

These formulas mean S2(q2, p2) = S1(q1(q2, p2), p1(q2,

p2)), etc.
If we describe the canonical transformations q1, p1 →

q2, p2 andq2, p2 → q3, p3 by means of generating functions
G12(q1, q2) and G23(q2, q3), then, following similar steps,
it is easy to prove that the composition is generated by

G13(q1, q3) = G12(q1, q2) + G23(q2, q3), (2.3)

where q2 is the function of q1, q3 that extremizes the right-
hand side.

In this paper, we are mostly interested in formulas that
may have practical uses in perturbative quantum field theory.
It is more convenient to describe the canonical transforma-
tions q, p → Q, P by means of generating functions of the
form F(q, P), rather than G(q, Q), because the former can
easily be expanded around the identity transformation and
allow us to express the composite canonical transformation
diagrammatically. It is not possible to achieve these goals in
a simple way with generating functions of the form G(q, Q).

To study the expansion around the identity map, write the
generating functions F12 and F23 as

FA(q, P) = qi Pi+A(q, P), FB(q, P) = qi Pi+B(q, P),

(2.4)

respectively, and their composition F13 as

FC (q, P) = qi Pi + C(q, P), FC = FB ◦ FA. (2.5)

Below we show that the solution C(q, P) can be written as
the tree-level sector of a zero-dimensional functional integral.
Thanks to this, the diagrams that contribute to it can easily
be built, according to the following rules. (a) The diagrams,
made of lines and vertices, are connected and contain no
loops. (b) The vertices are of two types, denoted by u and v,
and can have arbitrary numbers of legs. (c) Each line of the
diagram must connect one vertex of type u with one vertex
of type v.

By definition, we include the diagrams that have no lines,
that is to say, the vertex u and the vertex v. The number of
vertices is called order of the diagram. The absence of loops
implies that a diagram of order n contains n − 1 lines, with
n � 1. Note that there are no external legs.

Denote the diagrams of order n by Gnα , where α =
1, . . . , rn is an index that labels them. Call fnα the com-
binatorial factor of Gnα , which can be calculated with the
usual rules, by viewing Gnα as a Feynman diagram. Asso-
ciate a functionCnα(q, P) withGnα by replacing each vertex
u with the function A(q, P), each vertex v with the function
B(q, P) and each line with the operator
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←−
∂

∂qi

−→
∂

∂Pi
, (2.6)

where the P derivative acts on the function A attached to the
line and the q derivative acts on the function B attached to
the line. We call (2.6) the propagator.

Then the formula of the function C(q, P) is

C(q, P) =
∞∑

n=1

C (n)(q, P),

C (n)(q, P) =
rn∑

α=1

fnαCnα(q, P). (2.7)

To prove this result, consider the auxiliary Lagrangian

L(φ,ψ, q, P) = A(q, P + φ) + B(q + ψ, P) − ψφ

and the zero-dimensional quantum field theory described by
L, where φi are ψ i are the “fields”. We focus on the gener-
ating function W (q, P) defined by

eW (q,P) =
∫

[dφdψ]eL(φ,ψ,q,P).

The square brackets around the measure mean that we con-
sider this integral as a functional integral, rather than an ordi-
nary one. In other words, we view it as a bookkeeping for
generating diagrams and making standard operations on dia-
grams.

The propagator of this theory is determined by the last term
of L, that is to say −ψφ, so it is equal to 1. Applying the
standard Feynman rules, it is easy to check that the diagrams
defined above give the tree sector of W (q, P). Clearly, that
sector is equal to the Legendre transform of L(φ,ψ, q, P)

with respect to φ and ψ , calculated in zero. Precisely, setting

0 = ∂L
∂φi

= ∂A

∂Pi

(
q, P + φ

)
− ψ i ,

0 = ∂L
∂ψ i

= ∂B

∂qi

(
q + ψ, P

)
− φi , (2.8)

and denoting the solutions of these conditions by φ∗(q, P),
ψ∗(q, P), we find

L(φ∗, ψ∗, q, P) = A(q, P + φ∗) + B(q + ψ∗, P) − ψ∗φ∗.
(2.9)

Now, identify q with q1 and P with p3. Working out
q2 and p2 from the canonical transformations generated by
FA(q1, p2) and FB(q2, p3), given in (2.4), it is easy to check
that

pi2−pi3 = ∂B

∂qi2

(
q2, p3

)
, qi2−qi1 = ∂A

∂pi2

(
q1, p2

)
. (2.10)

On the other hand, Eqs. (2.8) give

φi∗ = ∂B

∂qi1

(
q1 + ψ∗, p3

)
, ψ i∗ = ∂A

∂pi3

(
q1, p3 + φ∗

)
.

(2.11)

Expanding (2.10) and (2.11) in powers of A and B and com-
paring the two outcomes, we get the equalities

φi∗ = pi2 − pi3, ψ i∗ = qi2 − qi1. (2.12)

Then, using (2.1), (2.4), and (2.5), Eq. (2.9) gives

L(φ∗, ψ∗, q1, p3) = A(q1, p2) + B(q2, p3)

−(qi2 − qi1)(p
i
2 − pi3) = C(q1, p3).

We conclude thatC(q, P) coincides withL(φ∗, ψ∗, q, P)

and is given by the diagrams listed above, which proves (2.7).
We can write

eC(q,P) =
∫ ′

[dφdψ]eA(q,P+φ)+B(q+ψ,P)−ψφ, (2.13)

where the prime on the integral sign means that only the tree
contributions are kept.

For example, the lowest order diagrams contributing to
formula (2.7) are

1
2

1
2

1
3!

1
3!

A

A

A A

A

B

B

B

B

A B A B

A

B

A B B

A

BAB

(2.14)

More explicitly,

C = A + B + Ai B
i + 1

2
Ai B

i j A j + 1

2
Bi Ai j B

j

+ 1

3! Ai A j Ak B
i jk + Ai B

i j A jk B
k + 1

3! B
i B j Bk Ai jk

+ 1

4! Ai A j Ak Al B
i jkl + 1

2
Ai B

i j A jk B
kl Al

+ 1

2
Ai A j Akl B

i jk Bl

+ 1

2
Bi B j Bkl Ai jk Al + 1

2
Bi Ai j B

jk Akl B
l

+ 1

4! B
i B j Bk Bl Ai jkl + · · · , (2.15)
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where

Ai1...in = ∂n A(q, P)

∂Pi1 . . . ∂Pin
, Bi1...in = ∂n B(q, P)

∂qi1 . . . ∂qin
.

A simple case is when A(q, P) = u(q) + f i (q)Pi for
some functions u(q) and f i (q). Then the diagrams give a
Taylor expansion that can easily be resummed into

C(q, P) = A(q, P) + B(qi + f i (q), P). (2.16)

Similarly, B(q, P) = v(P) + qi gi (P) gives

C(q, P) = A(q, Pi + gi (P)) + B(q, P). (2.17)

Another simple case is when B(q, P) = wB ′(q, P),
where w is a constant parameter that squares to zero, to make
the first order of the Taylor expansion exact. For example, we
can take w = �� ′, where � and � ′ are constant and anti-
commuting. We find

C(q, P) = A(q, P) + B

(
q + ∂A

∂P
, P

)
.

Similarly, if A(q, P) = wA′(q, P) we have

C(q, P) = A

(
q, P + ∂B

∂q

)
+ B(q, P).

One may wonder if there is a relation between the compo-
sition Eq. (2.7) and the Baker–Campbell–Hausdorff formula.
It turns out that Eq. (2.7) is a sort of “primitive” of the BCH
formula. The next section better clarifies this concept.

3 The componential map

The composition law of the previous section is good for a
number of purposes, but not practical in other cases. For
example, it does not provide a simple way to invert a canoni-
cal transformation. In this section, we propose a standard way
of expressing the generating function of a canonical transfor-
mation by means of a “componential” map and rephrase the
composition law in a way that makes various properties more
apparent. The componential map is written as a perturbative
expansion around the identity map and obeys the BCH for-
mula. Among other things, it makes the inverse operation
straightforward.

LetA denote the space ofC∞ functions X,Y, . . . on phase
space. Let {X,Y } denote the Poisson brackets of X and Y ,
and ad(X) : A → A, Y �→ ad(X)Y = {X,Y } denote the
adjoint map. Write the BCH formula as

ead(X)ead(Y ) = ead(X+Y+X	Y ), (3.1)

where

X	Y ≡ 1

2
{X,Y } + 1

12
({X, {X,Y }} + {Y, {Y, X}}) + · · ·

The composition law (2.2) of the previous section defines
a map

◦ : A × A → A, F12, F23 �−→ F13 = F23 ◦ F12.

The componential map is a map C : A → A, X �−→ C(X),
such that C(0) = I and

C(X) ◦ C(Y ) = C(X + Y + X	Y ). (3.2)

We call it componential map, because it is determined by the
composition law, as we prove below. Note that (3.2) implies
that the inverse of C(X) is just C(−X).

Basically, we regard (3.2) as an equation for the unknown
C. To better appreciate what we are doing, consider

E(M)E(N ) = E(M + N + M × N )

as an equation for the unknown map E , where M and N
are square matrices of some order, the left-hand side is the
matrix product of E(M) and E(N ) and M × N is the same
as M	N with Poisson brackets replaced by commutators.
We know that the solution of this problem is the exponential
of the matrix, i.e. E(M) = eM . The exponential map ead(X)

can also be seen as the solution E(X) of the equation

E(X)E(Y ) = E(X + Y + X	Y ), (3.3)

where E(X) and E(Y ) are operators A → A, and the left-
hand side is their product. Similarly, the componential map
is the solution of (3.3) if E(X) and E(Y ) are viewed as the
generating functions of some canonical transformations and
the right-hand side is the generating function of their com-
position.

We expand C(X) as

C(X) = I + c(X) = I +
∞∑

n=1

cn(X), (3.4)

where I denotes the identity map, c1 = X and cn(X),
n � 2, are homogeneous functions of degree n in X and
its derivatives. When we need to make the arguments of the
various functions explicit, we denote them by q, P . Then
I (q, P) = qi Pi is the generating function of the identity
canonical transformation, while the functions X ,C(X), c(X),
cn(X) are written as X (q, P), C(X (q, P)), c(X (q, P)), and
cn(X (q, P)), respectively. Note that the Poisson brackets
involved in the 	 operation of formula (3.2) are calculated
with respect to the “ mixed” variables q, P .
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Now we prove that the functions cn(X (q, P)), n > 1, are
recursively determined by the formula

cn(X (q, P))

= 1

n!
dn−1

dξn−1 X

(
qi , P j +

n−1∑

k=1

ξ k
∂

∂q j
ck(X (q, P))

)∣∣∣∣∣
ξ=0

.

(3.5)

To achieve this goal, we apply the composition law (3.2) in
the particular case where X and Y are proportional to each
other, so that X	Y = 0. If σ and τ are arbitrary constants,
we have C(σ X) ◦ C(τ X) = C((σ + τ)X). From Eqs. (2.9)
and (3.4), we get

∞∑

n=1

(σ + τ)ncn(X (q, P)) =
∞∑

n=1

τ ncn(X (q, P + φ))

+
∞∑

n=1

σ ncn(X (q + ψ, P)) − ψ iφi ,

upon extremization with respect to φ and ψ . We differentiate
this equation with respect to τ and then set τ = 0. Because of
the extremization, we can keep φ and ψ constant. The result
is
∞∑

n=1

nσ n−1cn(X (q, P))

= X

(
q, Pi +

∞∑

n=1

σ n ∂

∂qi
cn(X (q, P))

)
, (3.6)

having noted that

φi =
∞∑

n=1

σ n ∂

∂qi
cn(X (q, P)), ψ i = 0,

at τ = 0. Differentiating Eq. (3.6) n − 1 times with respect
to σ and setting σ = 0 later on, we get (3.5).

The first orders are

C(X) = I + X + 1

2
Xi X

i

+ 1

3!
(
Xi j X

i X j + X j Xi
j Xi + Xi j Xi X j

)

+ 1

4!
(
Xi X

i
j X

j
k X

k + 3Xi X
i
j X

jk Xk

+ 3Xi Xi j X
j
k X

k + 5Xi Xi j X
jk Xk

Xi jk X
i X j Xk + Xi X

i
jk X

j Xk

+ Xi X j X
i j
k Xk + Xi X j Xk X

i jk
)

+ · · · , (3.7)

where

Xi1...in
ji ... jm

≡ ∂n+mX (q, P)

∂qi1 . . . ∂qin∂P j1 . . . ∂P jm
.

4 Relation with the solution of the Hamilton–Jacobi
equation

As promised, the componential map is uniquely determined
by the composition law. However, we still have to prove that
formula (3.2) holds for arbitrary X and Y . This goal can be
achieved by working out the relation between the componen-
tial map and the solution of the Hamilton–Jacobi equation.

Rescale X by a factor η. Recalling that the function cn is
homogeneous of degree n, Eqs. (3.4) and (3.5) give

C(ηX (q, P)) = qi Pi +
∞∑

n=1

ηncn(X (q, P)) = qi Pi

+
∞∑

n=1

ηn

n!
dn−1

dξn−1 X

(
qi ,

∂

∂q j
C(ξ X (q, P))

)∣∣∣∣∣
ξ=0

.

This is just the solution of the Hamilton–Jacobi equation

∂

∂η
C(ηX (q, P)) = X

(
qi ,

∂

∂q j
C(ηX (q, P))

)
(4.1)

with the initial condition C(0) = I . To map Eq. (4.1) into the
usual form of the Hamilton–Jacobi equation, it is sufficient
to imagine that η is minus the time t , the function X (q, p) is
a (time-independent) Hamiltonian H(q, p) and the compo-
nential map C is the action S:

∂S

∂t
+ H

(
q,

∂S

∂q

)
= 0.

Conversely, given a mechanical system described by the
time-independent Hamiltonian H(q, p), the function

C(−t H(q, P)) = qi Pi +
∞∑

n=1

(−t)ncn(H(q, P)) (4.2)

is the generating function of the canonical transformation
that performs the time evolution from time t to time zero.

The corresponding Hamilton equations

dpi

dt
= −{H(q, p), pi } = −ad(H(q, p))pi ,

dqi

dt
= −{H(q, p), qi } = −ad(H(q, p))qi , (4.3)

are solved by the exponential map

Qi = etad(H(q,p))qi , Pi = etad(H(q,p)) pi . (4.4)

Indeed, the solution (4.2) of the Hamilton–Jacobi equation is
the generating function of the canonical transformation that
maps qi (t), pi (t) to the initial conditions Qi , Pi , because
it makes the transformed Hamiltonian vanish. Clearly, (4.3)
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and (4.4) imply dQi/dt = dPi/dt = 0. For future reference,
we recall that the Hamilton equations imply

f (Q, P) = etad(H(q,p)) f (q, p), (4.5)

for an arbitrary function f ∈ A. Indeed, (4.5) solves
d f (Q, P)/dt = 0 and is obviously correct at t = 0.

Thus, the transformations generated by C(X (q, P)) are
(
Qi

Pi

)
= e−ad(X (q,p))

(
qi

pi

)
. (4.6)

Since the exponential map satisfies Eq. (3.1), we can eas-
ily prove that the componential map satisfies Eq. (3.2), for
arbitrary functions X and Y .

To see this, let us write the transformations generated by
C(Y (q1, p2)) and C(X (q2, p3)):
(
qi3
pi3

)
= e−ad(X (q2,p2))

(
qi2
pi2

)
,

(
qi2
pi2

)
= e−ad(Y (q1,p1))

(
qi1
pi1

)
. (4.7)

Because of (2.2), the transformations due to (C(X) ◦
C(Y ))(q1, p3) are then

(
qi3
pi3

)
= e−ad(X (q2,p2))e−ad(Y (q1,p1))

(
qi1
pi1

)
. (4.8)

Note that the functions X and Y have different arguments in
this formula. To finalize the composition, we must convert
q2, p2 into q1, p1 inside X (q2, p2). Obviously, the variables
used to calculate the Poisson brackets do not need to be speci-
fied, because the transformations are canonical. In particular,
we do not need to specify the variables in the brackets of the
adjoint maps. However, the arguments of X and Y are cru-
cial, which is why we have written them explicitly starting
from Eq. (4.6).

We have

X (q2, p2) = e−ad(Y (q1,p1))X (q1, p1),

e−ad(X (q2,p2)) = e−ad(Y (q1,p1))e−ad(X (q1,p1))ead(Y (q1,p1)).

The first relation is a particular case of (4.5), while the second
relation follows from the first one and

e−ad(Y ){ f, g} = {e−ad(Y ) f, e−ad(Y )g},

which is another consequence of (4.5). Then the transforma-
tions (4.8) become
(
qi3
pi3

)
= e−ad(Y (q1,p1))e−ad(X (q1,p1))

(
qi1
pi1

)
.

Since an equivalent version of (3.1) is e−ad(Y )e−ad(X) =
e−ad(X+Y+X	Y ), Eq. (3.2) follows by comparison with (4.6)
again.

Setting C(Y ) = FA, C(X) = FB , and FC = C(X) ◦C(Y ),
we can easily check the first few orders of (3.2) by comparing
the formulas (2.15) and (3.7).

Summarizing, the componential map is a sort of generat-
ing function for the exponential map. Indeed, the transfor-
mations of the coordinates and the momenta are given by the
exponential map and generated by the componential map.

5 Diagrammatics of the componential map

We write the diagrammatic expansion of the componential
map in the form

C(X) = I + X +
∞∑

n=2

∑

Gnj∈Dn

enjGnj (X), (5.1)

where enj are certain coefficients, worked out below, and Dn

denotes the set of connected tree diagrams Gnj (X) built with
n vertices X and the propagator (2.6). Differently from the
diagrams of the previous section, the propagator must carry
an arrow, to distinguish where the q and the P derivatives
act. For definiteness, we assume that the q derivative acts on
the X toward which the arrow points and the P derivative
acts on the X placed at the other endpoint of the line.

For example, the diagrams of Eq. (3.7) are

3

3

5

(5.2)

where we have included the coefficients enj n! different from
one. Each empty disk denotes an X .
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We work out the rules to calculate the coefficients enj .
It is evident that some of them are simple, others are less
straightforward, such as the factor 5 appearing in the second
line of Eq. (3.7). It is convenient to refer to formula (3.5),
which gives for n > 1,

cn(X (q, P)) = 1

n

n−1∑

m=1

∑

{ jk }, jk�1
j1+...+ jm=n−1

σ{ jk }Xi1...im (q, P)

×
m∏

k=1

∂c jk (X (q, P))

∂qik
, (5.3)

where the symmetry factor σ{ jk } is equal to one divided by the
product of

∏
m vm !, vm being the number of times the integer

m appears in the list { jk}. We recall that c1(X (q, P)) =
X (q, P).

The diagrammatic version of Eq. (5.3) is straightforward,
because the coefficients are just the symmetry factors of the
diagrams. Denote the function c j by means of a disk num-
bered by j . Now the arrows can only exit X and enter c j . For
example, we have

5c5 :
2

1

1

1
2

1

1

1

1

1
4!

2

2

1
2

3

1

4

(5.4)

These diagrammatics generate the diagrammatics of (5.1)
by iteration and allow us to find the rules to compute the
coefficients enj . To formulate these rules, it is useful to define
a suitable cutting procedure.

Given a diagram Gnj (X), detect the disks to which only
exiting lines are attached. Consider one of such disks at a
time. Mark the disk with a symbol × at its center and cut
the lines attached to the disk in two. This operation gives a
disconnected diagram. For example,

(5.5)

The so-obtained cut diagrams are made of two types of sub-
diagrams. One is the subdiagram made of the marked disk
and its lines. The rest is a set of various subdiagramsG ′

mi (X),
each of which is equal to a diagram of type Gmi (X), m < n,
with one extra incoming line.

To avoid overcounting, coinciding cut diagrams must be
counted only once. For example, the cutting

(5.6)

can be performed in two equivalent ways, by detaching the
left disk or the right one. However, the results are the same,
so we must count only one of them.

Denote the inequivalent cut diagrams by Gcut
njk(X), where

k is an extra label. Then the coefficient enj of Gnj is given
by the formula

enj = 1

n

∑

k

enjk, (5.7)

where enjk are coefficients of the cut diagramsGcut
njk . To deter-

mine enjk ,

(i) divide by the number of permutations of the identical
subdiagrams G ′

mi , m < n;
(ii) multiply by the number of ways to obtain each subdia-

gram G ′
mi , m < n, by attaching the extra incoming line

to Gmi ;
(iii) multiply by the coefficients emi of the subdiagramsGmi ,

m < n.
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We illustrate these rules by means of a few examples. First,
we see how to derive the coefficient 5 of Eq. (5.2), which
corresponds to e4 j = 5/24. The diagram G4 j and its cuts are

5
24

2 1
6

1
2

(5.8)

so we find

e4 j = 1

4

(
2

1

6
+ 1

2

)
= 5

24
.

The reason why the first cut diagram G ′
3i has a factor 2,

besides e3i = 1/6, is that there are two ways of obtaining
G ′

3i by attaching the extra incoming line to G3i . This is the
meaning of rule (ii).

Next, consider the case

1
6

1
2

(5.9)

The factor 1/2 in front of the cut diagram is due to the
permutations of identical subdiagrams G ′

1i . Thus, we have
e3i = 1/3(1/2) = 1/6. This is the meaning of rule (i).

Formula (5.7) and the rules just listed are straightforward
consequences of (5.3). We have decomposed the diagram
Gnj into its contributions as they appear on the right-hand
side of (5.3), which are the cut diagrams Gcut

njk . Each of them
has a simple combinatorial factor enjk . The sum of those
combinatorial factors, divided by n, gives enj .

An alternative, actually simpler, way to work out the dia-
grammatic expansion of the componential map is given in
the next section. It follows from the expansion of the time-
ordered componential map, which has straightforward coef-
ficients. The coefficients of C(X) are the values of simple
integrals that appear when the time-ordered formula is spe-
cialized to the case of a time-independent function X .

Finally, let us mention that we can define the componen-
tial logarithm of a canonical transformation, briefly called c-
logarithm, by means of the inverse componential map. Writ-
ing C = I +c we can invert (3.7) recursively. The first orders
of the c-logarithm are

X = c − 1

2
ci c

i + 1

12

(
ci j c

i c j + 4c j cij ci + ci j ci c j
)

− 1

12

(
3ci c

i
j c

j
k c

k + ci c
i
j c

jkck + ci ci j c
j
k c

k

+ ci ci j c
jkck + ci c

i
jkc

j ck + ci c j c
i j
k c

k
)

+ · · ·

6 Time-ordered componential map

A canonical transformation continuously connected to the
identity can be viewed as a fictitious “time” evolution asso-
ciated with a suitable “Hamiltonian”. This allows us to relate
the componential map to the solution of the Hamilton–Jacobi
equation. In Sect. 4 we have taken advantage of this corre-
spondence in the case of time-independent Hamiltonians, or,
equivalently, η-independent functions X (q, P). Generaliz-
ing the formulas of Sect. 4 to time-dependent Hamiltoni-
ans H(q, p, t), we can obtain the time-ordered (precisely,
η-ordered) componential map.

Start from a function X (q, P, η) and consider the Hamil-
ton-Jacobi equation

∂

∂η
C(q, P, η) = X

(
qi ,

∂

∂q j
C(q, P, η), η

)
. (6.1)

Writing C(q, P, η) = qi Pi + c(q, P, η), we find

c(q, P, η) =
∫ η

0
dη′X

(
qi , P j + ∂

∂q j
c(q, P, η′), η′

)

=
∫ η

0
dη′X (q, P, η′)

+
∞∑

n=1

1

n!
∫ η

0
dη′Xi1...in (q, P, η′)

n∏

k=1

∂c(q, P, η′)
∂qik

,

which can be solved recursively with the help of the following
diagrammatics.

Instead of considering the diagrams Gnj of the previous
section, consider theirη-ordered versions G̃nj , determined by
applying the following rules. Given a diagram Gnj , assign
coordinates ηk to each disk. We say that

– the disk with coordinate ηk is anterior (posterior) to the
disk with coordinate ηk′ if ηk < ηk′ (ηk > ηk′);

– a pair of disks is η-ordered if one of them is anterior to
the other;

– two disks D1 and D2 are separated if the path connecting
them (drawn by covering each line only once) contains a
third disk D3 that is posterior to both;

– the latest disk is the one with coordinate ηk such that
ηk > ηk′ for every k′ �= k;

– given a disk D, the disk D′ following D is the most
anterior disk among the disks that are posterior to D and
not separated from D.
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Assume that the η coordinate is the horizontal one and it is
oriented from the right to the left. Displace the disks of Gnj

so that all the nonseparated pairs of disks become η-ordered
and each arrow points from the posterior disk to the anterior
one. Two diagrams are said to be equivalent if every pair of
nonseparated disks has the same η ordering.

Then, construct all the inequivalent diagrams. Call them
G̃nj , where n is the number of disks and j is an extra label.
Denote the set of diagrams with n disks by D̃n .

For example, the η-ordered versions of the diagrams of
formula (5.2) are

(6.2)

Given a diagram G̃nj , associate a cut diagram G̃cut
nj with

it by marking the latest disk with × and detaching it from
the rest as explained before. The operation generates sub-
diagrams G̃ ′

mj , each of which is built by adding an extra

incoming line to a diagram of type G̃mj , with m < n. The
symmetry factor of G̃nj is equal to the product of the symme-
try factors of the subdiagrams G̃ ′

mj , divided by the number of

permutations of the equivalent G̃ ′
mj s. The symmetry factor

of a subdiagram G̃ ′
mj is equal to the number of ways to obtain

it by adding the extra line to G̃mj , times the symmetry factor
of G̃mj .

Finally, evaluate the diagram G̃nj as follows. A disk with
coordinate ηk corresponds to X (q, P, ηk). As before, an ori-
ented line is the propagator (2.6), the q derivative acting on
the anterior disk and the P derivative acting on the posterior
disk. Multiply by the symmetry factor of the diagram and
integrate the coordinate ηk of each disk from 0 to the coor-
dinate ηk′ of the following disk. Finally integrate the coor-

dinate of the latest disk from 0 to η. This gives a function
G̃nj (q, P, η). The sum of these functions plus the identity
map gives the η-ordered componential map, which reads

C(q, P, η) = qi Pi +
∫ η

0
dη′X (q, P, η′)

+
∞∑

n=2

∑

G̃nj∈D̃n

G̃nj (q, P, η). (6.3)

To order three we have

C(q, P, η) = qi Pi +
∫ η

0
dη′X (q, P, η′)

+
∫ η

0
dη′Xi (q, P, η′)

∫ η′

0
dη′′Xi (q, P, η′′)

+
∫ η

0
dη′Xi (q, P, η′)

∫ η′

0
dη′′Xi

j (q, P, η′′)

×
∫ η′′

0
dη′′′X j (q, P, η′′′)

+
∫ η

0
dη′Xi (q, P, η′)

∫ η′

0
dη′′X j (q, P, η′′)

×
∫ η′′

0
dη′′′Xi j (q, P, η′′′)

+ 1

2

∫ η

0
dη′Xi j (q, P, η′)

∫ η′

0
dη′′Xi (q, P, η′′)

×
∫ η′

0
dη′′′X j (q, P, η′′′) + · · · (6.4)

As anticipated before, an alternative way to compute the
coefficients enj and enjk of Eqs. (5.1) and (5.7) is to use Eq.
(6.3), assume that X is η independent, integrate the various
coordinates ηk and finally set η = 1. Diagrams that are iden-
tical for the purposes of the previous section have different
η orderings, which is why the coefficients of the η-ordered
componential map are much simpler than enj and enjk .

When we have a one-parameter family of generating func-
tions C(q, P, η) such that C(q, P, 0) = I (q, P), we can
give a more practical definition of logarithm. Viewing ficti-
tiously the η dependence as a time evolution, we define the
h-logarithm (h standing for “ Hamiltonian”) as the Hamilto-
nian X (q, p, η) associated with it. By the Hamilton–Jacobi
equation (6.1), we have

X (q, p, η) = ∂̃C
∂η

, (6.5)

where the tilde means that the argument P must be solved
in terms of q, p, η by means of the canonical transforma-
tion C itself. For future use we remark that, in particular, if
f (q, p, η) is a function that behaves as a scalar under C, i.e.
such that f ′(Q, P, η) = f (q, p, η), we have
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∂ f ′

∂η
= ∂ f

∂η
−

{
f,

∂̃C
∂η

}
. (6.6)

If there is no parameter η to apply (6.5), the h-logarithm is
not defined. If C(q, P, η, ζ, . . .) depends on more parame-
ters η, ζ, . . . and C(q, P, 0, 0, . . .) coincides with the iden-
tity map, we have one h-logarithm for each parameter. In
the time-independent case C(ηX (q, P)), the h-logarithm
X (q, p, η) coincides with X (q, p). Note that the c-logarithm
always exists and is unique.

7 Canonical transformations and Batalin–Vilkovisky
formalism

In this section we generalize the results found so far to the
Batalin–Vilkovisky formalism, where the generating func-
tion(al)s are fermionic and the fields may be both bosonic
and fermionic. Then we give some examples that have appli-
cations to both renormalizable and nonrenormalizable theo-
ries. We compose the canonical transformations that perform
the gauge-fixing with those that switch to the background
field method. Then we use the componential map to interpo-
late between the background field approach and the standard
nonbackground approach.

The Batalin–Vilkovisky formalism is convenient to study
general gauge theories. The conjugate variables are the fields
�α and certain external sources Kα coupled to the � sym-
metry transformations. A notion of antiparentheses

(X,Y ) ≡
∫ (

δr X

δ�α

δlY

δKα

− δr X

δKα

δlY

δ�α

)
(7.1)

is introduced, where X and Y are functionals of � and K ,
the integral is over spacetime points associated with repeated
indices and the subscripts l and r in δl and δr denote the left
and right functional derivatives, respectively. The fields �α

and the sources Kα have statistics εα and εα +1, respectively,
which are equal to 0 mod 2 for bosons and 1 mod 2 for
fermions.

The fields �α include the classical fields φi , the Fadeev–
Popov ghosts C I , the antighosts C̄ I and the Lagrange multi-
pliers BI for the gauge-fixing. The action S(�, K ) is a local
functional that satisfies the master equation (S, S) = 0 and
coincides with the classical action Sc(φ) at C = C̄ = B =
K = 0.

The canonical transformations are the transformations
�, K → �′, K ′ that preserve the antiparentheses (7.1). They
can be derived from a generating functional F(�, K ′) of
fermionic statistics, by means of the formulas

�α′ = δF

δK ′
α

, Kα = δF

δ�α
.

The identity transformation is generated by F(�, K ′) =∫
�αK ′

α .
The formulas derived in the previous sections for the com-

ponential map and the composition of canonical transforma-
tions can be immediately generalized to fermionic function-
als of fields and sources of various statistics. Indeed, the basic
operator, that is to say, the propagator (2.6), is turned into

∫ ←−
δ r

δ�α(x)

−→
δ l

δK ′
α(x)

, (7.2)

which has fermionic statistics. The functionals F(�, K ′),
C(X) and X also have fermionic statistics. Thus, each time
we add a propagator and a new disk X , the statistics are
correctly preserved. As a consequence, the formulas found
so far can be straightforwardly applied to the BV formalism.

Canonical transformations are used for various purposes
in quantum field theory. They encode the most general
(changes of) gauge-fixing and changes of field variables.
Moreover, they are an important ingredient of the perturba-
tive subtraction of divergences. Precisely, they subtract the
divergences that are proportional to the field equations. The
composition and the inversion of canonical transformations
are operations that are met frequently. Often, it is enough
to study them at the infinitesimal level, but sometimes it
is necessary to handle them exactly or to all orders of the
expansion. The literature on these topics is wide, both at
the mathematical/formal level [1,2,18,19] and at the level of
renormalization and gauge dependence [20–29].

We recall that the BV formalism is quite versatile and
can be used to formulate all kinds of general gauge theories,
including those where the symmetry transformations close
only on shell and those that have reducible gauge algebras
(where the ghosts have local gauge symmetries of their own
and it is necessary to introduce “ghosts of ghosts”). Our for-
mulas hold in those cases also.

Nevertheless, we concentrate the applications of this sec-
tion to the irreducible gauge symmetries that close off shell,
which have the most important applications to physics. In
those cases, there exists a solution S(�, K ) of the master
equation that is linear in K :

S(�, K ) = Sc(φ) −
∫

Rα(�)Kα . (7.3)

The functions Rα(�) are the symmetry transformations of
the fields �α . See for example the appendix of Ref. [29]
for explicit formulas in the case of general covariance,
local Lorentz symmetry, Abelian gauge symmetries and non-
Abelian Yang–Mills symmetries.

We give some examples of applications in the context
of the background field method [30–32]. Two different
approaches to formulate the background field method in the
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context of the BV formalism can be found in the literature,
the one of refs. [23,24,33] by Binosi and Quadri2 and the
one of the present author [36]. The two have properties that
are good for different purposes. Here we follow the approach
of [36]. One starts from the action

S(�, K ,�, K ) = Sc(φ) −
∫

Rα(�)Kα −
∫

Rα(�)K α,

(7.4)

which is obtained from (7.3) by adding a background copy
with vanishing classical action. It is not necessary to have
background copies of the antighosts and the Lagrange mul-
tipliers, so we take �α = {φi ,C I } and K α = {Ki

φ, K I
C },

where φi andC I are background copies of the physical fields

and the ghosts, respectively, and Ki
φ , K I

C are the sources
associated with them.

Then we perform the background shift, by means of the
canonical transformation generated by3

Fb(�,�, K ′, K ′) =
∫

(�α − �α)K ′
α +

∫
�αK ′

α.

Taking advantage of the componential map, we can write

Fb = C
(

−
∫

�αK ′
α

)
.

Indeed, the argument of C does not depend on any pair of
conjugate variables, so all the nontrivial diagrams of formula
(5.1) vanish.

After the shift, the action is FbS. The new fields �α are
called quantum fields. The symmetry transformations Ri (�)

ofφi are turned into the transformations Ri (�+�)ofφi+φi .
These can be decomposed as the sum of the background
transformations Ri (�) of φi plus the transformations Ri (�+
�) − Ri (�) of φi . In turn, the transformations of φi split
into the sum of the quantum transformations of φi [made of
the C-independent part of Ri (� + �) − Ri (�)], plus the
background transformations of φi (the C-dependent part).
Something similar happens to the symmetry transformations
of the ghosts C .

The background transformations of the antighosts and the
Lagrange multipliers remain trivial after Fb, and need to
be adjusted by means of a further canonical transformation,
generated by

2 See also [34,35] for a similar approach in the language of WTST
identities and the Zinn-Justin equation.
3 Differently from Ref. [36], we understand that the fields and the
sources with primes are the transformed ones. This originates some
sign differences with respect to the formulas of [36].

Fnm(�,�, K ′, K ′) =
∫

�αK ′
α +

∫
�αK ′

α

−
∫

RI
C̄
(C̄,C)K I ′

B = C
(

−
∫

RI
C̄
(C̄,C)K ′

B

)
,

where RI
C̄
(C̄,C) denotes the background transformation of

the antighosts. Explicitly, the argument of the componential
map C is
∫

(g f abcCbC̄c + Cρ∂ρC̄
a)Ka′

B +
∫

(2Câĉηĉd̂ C̄
d̂b̂

+Cρ∂ρC̄
âb̂)K ′

âb̂B
+

∫ (
Cρ∂ρC̄μ − C̄ρ∂μC

ρ
)
Kμ′

B , (7.5)

for Yang–Mills symmetries, local Lorentz symmetry, and dif-
feomorphisms, where the hats on a, b, . . . are used to distin-
guish the local Lorentz indices from the Yang–Mills ones.

Finally, the theory can be gauge-fixed in a background
invariant way by means of the canonical transformation gen-
erated by

Fgf(�,�, K ′, K ′) =
∫

�αK ′
α +

∫
�αK ′

α − �(�, φ)

= C(−�), (7.6)

where �(�, φ) is a background invariant functional of
fermionic statistics, known as gauge fermion. Typically, we
choose it of the form

�(�, φ) =
∫

C̄ I
(
GIi (φ, ∂)φi + ζI J (φ, ∂)BJ

)
,

where GIi (φ, ∂)φi are the gauge-fixing functions. It is com-
mon to choose such functions to be linear in the quantum
fields φi , to simplify various properties of renormalization.
The operator matrix ζI J (φ, ∂) is symmetric, nonsingular
at φ = 0 and proportional to the identity in every sim-
ple subgroup of the gauge symmetry group. The relation
Fgf = C(−�) of (7.6) follows from the fact that the gauge
fermion does not depend on the sources K .

Invariance under background transformations is easy to
achieve, by combining the plain derivative ∂ with the back-
ground field φ to build the background covariant derivative.
For example, we can take

� =
∫ √

|g|C̄a
(
gμνDμ(A, g)Aa

ν + ζ1B
a
)

,

� =
∫ √

|g|C̄âb̂

(
eρâ gμνDμ(e)Dν(e) f

b̂
ρ + ζ2

2
Bâb̂

+ ζ3

2
gμνDμ(e)Dν(e)B

âb̂
)

,

� =
∫ √

|g|C̄μ

[
gμνgρσ

(
Dρ(g)hσν + ζ4Dν(g)hρσ

)

+ ζ5

2
gμνBν

]
,
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in the case of Yang–Mills symmetry (with a simple group, for
simplicity), local Lorentz symmetry and diffeomorphisms,
respectively, where ζi are constants, Aa

μ, eâμ, and g
μν

are the

background gauge field, vielbein, and metric, Aa
μ, f âμ , and

hμν are the respective quantum fluctuations and D(A, g),
D(g), D(e) denote the covariant derivatives in the back-
ground fields.

The three canonical transformations Fb, Fnm and Fgf can
be composed as follows. The first two commute and have a
vanishing propagator, because the fields (sources) that appear
nontrivially in Fnm have no source (field) counterpart in the
nontrivial sector of Fb. Thus, the composition gives the gen-
erating functional

(Fb ◦ Fnm)(�,�, K ′, K ′) =
∫

(�α − �α)K ′
α +

∫
�αK ′

α

−
∫

RI
C̄
(C̄,C)K I ′

B ,

and Fb ◦ Fnm = Fnm ◦ Fb.
Now we compose Fnm with Fgf. We can consider either

Fnm ◦Fgf or Fgf ◦Fnm. Applying Eq. (2.13), we see that in the
first case there is no nontrivial diagram, since the nontrivial
part of Fgf does not contain sources. Then Eq. (2.15) reduces
to C = A + B and we obtain

(Fnm ◦ Fgf)(�,�, K ′, K ′)

=
∫

�αK ′
α +

∫
�αK ′

α −
∫

RI
C̄
(C̄,C)K I ′

B − �(�, φ).

Instead, when we consider Fgf ◦ Fnm, we have one non-
trivial diagram and Eq. (2.15) effectively reduces to C =
A + B + Ai Bi . Note that the only nontrivial propagator is
(
←−
δ /δK ′

B)(
−→
δ /δB). The composed transformation is

(Fgf ◦ Fnm)(�,�, K ′, K ′) = (Fnm ◦ Fgf)(�,�, K ′, K ′)

+
∫

C̄ I ζI J (φ, ∂)RJ
C̄
(C̄,C).

(7.7)

This result can also be found by applying the BCH formula
(3.2) for the composition of the componential maps, with the
Poisson brackets replaced by the antiparentheses (7.1). We
find

(Fgf ◦ Fnm)(�,�, K ′, K ′) = C
(
−�(�, φ)

−
∫

RI
C̄
(C̄,C)K I ′

B + 1

2

∫
C̄ I ζI J (φ, ∂)RJ

C̄
(C̄,C)

)
.

It is easy to check that only the first two diagrams of (5.2) con-
tribute, so Eq. (3.7) reduces to C(X) = I + X + (1/2)Xi Xi ,
which gives (7.7).

In Ref. [36] the tensor operator ζI J was set to zero, to make
Fgf and Fnm commute. However, in some applications, such
as the chiral dimensional regularization of Ref. [37], which

is useful to treat nonrenormalizable general chiral gauge the-
ories, it is necessary to keep ζI J nonvanishing, to have well-
behaved regularized propagators.

The gauge-fixing is the last step of the construction of the
action. Indeed, only after properly organizing the background
transformations, it makes sense to talk about a background
invariant gauge fermion. Thus, we must take Fgf◦Fnm, rather
than Fnm ◦ F gf.

The composition Fgf ◦ Fnm ◦ Fb can easily be worked out
by means of Eq. (2.16) and gives

Fgf ◦ Fnm ◦ Fb =
∫

(�α − �α)K ′
α +

∫
�αK ′

α

−
∫

RI
C̄
(C̄,C)K I ′

B − �(� − �,φ)

+
∫

C̄ I ζI J (φ, ∂)RJ
C̄
(C̄,C).

Applying the composed transformation to the action (7.4),
we obtain the background field gauge-fixed action

Sb = (Fgf ◦ Fnm ◦ Fb)S.

For various applications, it is useful to compare the results
of the background field method with those of the standard,
nonbackground approach. The nonbackground gauge-fixed
action is S̄nb = F ′

gfS, where

F ′
gf(�,�, K ′, K ′) =

∫
�αK ′

α +
∫

�αK ′
α − � ′(�)

= C(−� ′(�))

is the generating functional of the canonical transformation
that performs the gauge-fixing. The background fields and
sources are inert here. As usual, to simplify the renormaliza-
tion, it is convenient to take a quadratic gauge fermion � ′.
We choose

� ′(�) =
∫

C̄ I
(
GIi (0, ∂)φi + ζI J (0, ∂)BJ

)
.

For convenience, we further make an irrelevant back-
ground shift by applying Fb, that is to say, redefine the non-
background action as S nb = (Fb ◦ F ′

gf)S. Then the relation
between the background and nonbackground actions reads

Sb = (Fgf ◦ Fnm ◦ Fb ◦ F ′−1
gf ◦ F−1

b )Snb.

Formulas (2.16) and (2.17) give

Fb ◦ F ′−1
gf ◦ F−1

b =
∫

�αK ′
α +

∫
�αK ′

α + � ′(� + �).
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Using (7.7) and (2.16) again, we easily find

Fgf ◦ Fnm ◦ Fb ◦ F ′−1
gf ◦ F−1

b =
∫

�αK ′
α +

∫
�αK ′

α

−��(�,�) −
∫

RI
C̄
(C̄,C)K I ′

B

+
∫

C̄ I ζI J (φ, ∂)RJ
C̄
(C̄,C),

where

��(�,�) =
∫

C̄ I
(
GIi (φ, ∂)φi − GIi (0, ∂)(φi + φi )

+ (ζI J (φ, ∂) − ζI J (0, ∂))BJ
)

(7.8)

is the difference between the background field gauge fermion
and the nonbackground one.

Using the componential map, we find

Fgf ◦ Fnm ◦ Fb ◦ F ′−1
gf ◦ F−1

b = C(X),

where

X = −��(�,�) −
∫

RI
C̄
(C̄,C)K I ′

B

+ 1

2

∫
C̄ I

(
ζI J (φ, ∂) + ζI J (0, ∂)

)
RJ

C̄
(C̄,C).

Again, Eq. (3.7) reduces to C(X) = I + X + (1/2)Xi Xi ,
because the only nontrivial propagator is (

←−
δ /δK ′

B)(
−→
δ /δB)

and X is linear in B, K ′
B .

We can continuously interpolate between the background
and nonbackground approaches by introducing a parameter
ξ that varies from 0 to 1 and considering the canonical trans-
formation generated by

Fξ = C(ξ X). (7.9)

Explicitly, we find

Fξ (�,�, K ′, K ′, ξ)

=
∫

�αK ′
α +

∫
�αK ′

α − ξ�� − ξ

∫
RI

C̄
(C̄,C)K I ′

B

+ ξ

2

∫
C̄ I

[
(1 + ξ)ζI J (φ, ∂)

+ (1 − ξ)ζI J (0, ∂)

]
RJ

C̄
(C̄,C). (7.10)

Note that the h-logarithm of (7.9) is equal to X with K I ′
B

replaced by K I
B and plays the role of the ξ -independent

Hamiltonian.

A different interpolation amounts to taking, for example,

F ′
ξ =

∫
�αK ′

α +
∫

�αK ′
α − ξ��(�,�)

− ξ

∫
RI

C̄
(C̄,C)K I ′

B + ξ

∫
C̄ I ζI J (φ, ∂)RJ

C̄
(C̄,C).

(7.11)

The h-logarithm of this expression gives a ξ -dependent
Hamiltonian, which we now calculate.

Assume that U (�, K , ξ) is a function that behaves as a
scalar under canonical transformations �, K → �′, K ′, i.e.
such that U ′(�′, K ′, ξ) = U (�, K , ξ). Then Eq. (6.6) turns
into [21,22] (see also the appendix of [36])

∂U ′

∂ξ
= ∂U

∂ξ
− (U,Y ), Y (�, K , ξ) = ∂̃F

∂ξ
, (7.12)

where F(�, K ′, ξ) is the generating functional of the canon-
ical transformation and the tilde means that, after taking the
ξ derivative, the source K ′ must be expressed in terms of
�, K , and ξ . Choosing F = F ′

ξ and enlarging the sets of
fields and sources to include the background ones, we find
the h-logarithm

Y (�, K ,�, K , ξ)

= −��(�,�) −
∫

RI
C̄
(C̄,C)K I

B

+
∫

C̄ J
[
(1 − ξ)ζJ I (φ, ∂) + ξζJ I (0, ∂)

]
RI

C̄
(C̄,C).

It may be more convenient to work with the interpola-
tion (7.10), whose h-logarithm is ξ independent, rather than
(7.11).

The dependence of the correlation functions on the param-
eters introduced by a canonical transformation is encoded
into the equations of gauge dependence [20–22,25–28,38–
41], sometimes known as Nielsen identities. The componen-
tial map and the other tools of this paper may be convenient
to manipulate those equations more efficiently. In particu-
lar, the interpolation (7.9) allows us to take advantage of the
background field method and prove key properties of renor-
malization in simpler, more powerful ways. An illustration
of this fact can be found in Ref. [42], where an important the-
orem about the cohomology of renormalization was proved.
That theorem allows us to classify the structures of the coun-
terterms and the local contributions to anomalies.

In turn, the classification of counterterms and anomalies is
important to show, to all orders of the perturbative expansion,
that the gauge symmetries are not affected by the subtrac-
tion of divergences (up to canonical transformations). The
background field method and the interpolation (7.11) have
been used [36] to achieve this goal in manifestly nonanoma-
lous theories, renormalizable or not. In potentially anoma-
lous nonrenormalizable theories, such as the standard model
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coupled to quantum gravity, which require a more involved
regularization [37], the goal must be achieved together with
the proof of the Adler–Bardeen theorem [43–54] for the can-
celation of anomalies to all orders (when they vanish at one
loop). Within the standard, nonbackground approach, this
was done for the first time in Ref. [54]. The techniques of
this paper and the results of [42] may be useful to upgrade
the derivation of [54] to the background field approach and
prepare the ground to make further progress.

8 Conclusions

Canonical transformations play an important role not only
in classical mechanics, but also in quantum field theory. In
several situations, it is useful to have practical formulas for
the perturbative expansion of the generating functions around
the identity map. In this paper we have given a number of
such formulas, starting from the composition law, which we
have expressed as the tree sector of a functional integral and
later rephrased by means of the componential map.

The componential map is a standard way to express the
generating function of a canonical transformation. It makes
the inverse operation straightforward and obeys the Baker–
Campbell–Hausdorff formula. It also admits a simple dia-
grammatic interpretation and a time-ordered generalization.
It can be related to the solution of the Hamilton–Jacobi equa-
tion, expressed as a perturbative expansion in powers of a
suitable Hamiltonian, its derivatives and its integrals over
time.

The formulas we have found can be straightforwardly gen-
eralized from classical mechanics to quantum field theory,
where the functionals and the conjugate variables may have
both bosonic and fermionic statistics. Particularly interest-
ing are the applications to the Batalin–Vilkovisky formalism.
Canonical transformations are commonly used to implement
the gauge-fixing, make arbitrary changes of field variables
and changes of the gauge-fixing itself, switch to the back-
ground field method and subtract the counterterms propor-
tional to the field equations. Various times these operations
must be composed and inverted. Practical formulas, such as
the ones given in this paper, allow us to handle these oper-
ations quickly. In particular, they can be convenient in non-
renormalizable theories, where the cohomology of countert-
erms and anomalies involves nonpolynomial functionals and
the renormalization of divergences involves nonpolynomial
canonical transformations.
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