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Abstract

This paper refines the work on Geřsgorin Discs in the article “Geo-
metric Multiplicities and Geřsgorin Discs”, The American Mathematical
Monthly, 120(2013), 452-455 by R. Marsli and F. Hall. Some conse-
quences of this refinement and examples are provided.
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1 Introduction

One of the most attractive and useful results to locate the eigenvalues of a
matrix is Geršgorin’s theorem, which goes back to 1931. The main part of this
theorem is the following.
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Geršgorin Theorem. Let A = [aij ] be an n × n real or complex matrix and
let

R′
i =

n∑
j=1, j �=i

|aij |, 1 ≤ i ≤ n

denote the deleted absolute row sums of A. Then every eigenvalue of A is
located in the union of its n Geršgorin discs (G-discs)

∪n
i=1 Di

where

Di = {z ∈ C : |z − aii| ≤ R′
i}.

The usual proof of the theorem involves a clever idea. Let λ be an eigenvalue
A, and suppose that

Ax = λx, x = [xi] �= 0.

Some entry of x has largest modulus, say |xp| ≥ |xi| for all i = 1, 2, . . . , n, and
xp �= 0. Then

xp(λ − app) =

n∑
j=1, j �=p

apjxj

and hence

|xp||λ − app| ≤ |xp|
n∑

j=1, j �=p

|apj| = |xp|R′
p

so that |λ − app| ≤ R′
p; that is, λ lies in the pth Geršgorin disc.

An n × n complex matrix A has n Geršgorin discs Di, some of which may
degenerate into points and some of which may be duplicates, as in the trivial
example of an identity matrix. Recently, the authors extended the Geršgorin
theory in the articles [1], [3], and [4]. In particular, the following result was
proved in [3].

Theorem 1.1. Let λ be an eigenvalue of A with geometric multiplicity k.
Then λ is in at least k of the Geršgorin discs Di of A.

In the proof, a key preliminary result was employed: Each subspace S of Cn

has a basis whose vectors have largest modulus entries in different positions.
The argument for this uses a deflation process that has the same flavor as
the proof in [2] of Schur’s triangularization theorem. The preliminary result
then insures that there is a basis {x1, x2, . . . , xk} of the eigenspace S of λ and
distinct integers p1, . . . , pk ∈ {1, . . . , n} such that each each vector xi has a
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largest modulus entry in position pi. This construction in the proof of the
Geršgorin theorem shows that λ lies in Geršgorin discs Dp1, . . . , Dpk

.
From Theorem 1.1, it follows [3] that an eigenvalue with geometric multi-

plicity at least k ≥ 1 is contained in any union of n− k +1 different Geršgorin
discs of A. That is a generalization of Geršgorin’s general theorem, which is
the case k = 1.

Corollary 1.2. Let λ be an eigenvalue of A with geometric multiplicity at
least k ≥ 1. Then

λ ∈ ∪n−k+1
j=1 {z ∈ C : |z − aij ij | ≤ R′

ij
}

for any choices of indices 1 ≤ i1 < . . . < in−k+1 ≤ n. There are
(

n
k−1

)
possibil-

ities for such a union, so that λ is contained in their intersection.

The purpose of this paper is to give a refinement of Theorem 1.1. Some
consequences and examples are also provided.

2 A Refinement of Theorem 1.1

We will employ the following key result, which is contained in Theorem 1.4.10
in [2].

Lemma 2.1. Let λ be an eigenvalue of the n × n matrix A with geometric
multiplicity at least k. If Â is an m × m principal submatrix of A and if
m > n − k, then λ is an eigenvalue of Â.

By taking m to be n−k+1 and applying Lemma 2.1 we obtain the following
improvement of Theorem 1.1.

Theorem 2.2. Let λ be an eigenvalue of the n × n matrix A with geometric
multiplicity at least k. Construct the n × n matrix Ck in the following way:
in every row of A, replace the smallest k − 1 off-diagonal entries in absolute
value by zeros. Then λ is in at least k of the Geršgorin discs of Ck.

Proof. We choose an arbitrary principal submatrix B1 of A of order n− k +1.
By Lemma 2.1, λ is an eigenvalue of B1, and hence in one of it’s G-discs.
In the corresponding row (say row r) of the matrix A, we can replace the
smallest k − 1 off-diagonal entries in absolute value by zeros, so that λ is in
the associated G-disc of the new matrix.

Next, delete row and column r from A to obtain a principal submatrix A2 of
A (which can be considered as A1) of order n−1. Choose an arbitrary principal
submatrix B2 of A2 of order n − k + 1 and continue as above. We continue
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this process until we reach a principal submatrix Ak of order n − (k − 1), ie
n−k+1, and repeat the procedure on Ak. This completes k steps in which we
have replaced in k rows of A the smallest k− 1 off-diagonal entries in absolute
value by zeros, and λ is in each of the corresponding G-discs.

Finally, in each of the remaining n−k rows, also replace the smallest k−1
off-diagonal entries in absolute value by zeros.

Example 2.3. Let

A =

⎡
⎢⎢⎢⎢⎣

0 1 0 0 0
−1 2 0 0 0
−1 1 0 1 0
−1 1 −1 2 0
−1 1 −1 1 1

⎤
⎥⎥⎥⎥⎦

.

Now, 1 is an eigenvalue of A with algebraic multiplicity 5 and geometric mul-
tiplicity k = 3. Notice that in this case the eigenvalue is in all five G-discs.
(We recall that for an n×n matrix A, an eigenvalue λ could be in any number
t of G-discs where (geom mult λ) ≤ t ≤ n, see [1], [4].) We can go through the
process in the proof of Theorem 2.2, or just see that the eigenvalue 1 is in all
five (the last three of which are smaller) G-discs of the matrix

C3 =

⎡
⎢⎢⎢⎢⎣

0 1 0 0 0
−1 2 0 0 0
−1 1 0 0 0
−1 1 0 2 0

0 1 0 1 1

⎤
⎥⎥⎥⎥⎦

.

Of course, other choices for the matrix C3 are possible, such as

⎡
⎢⎢⎢⎢⎣

0 1 0 0 0
−1 2 0 0 0

0 1 0 1 0
−1 1 0 2 0
−1 1 0 0 1

⎤
⎥⎥⎥⎥⎦

.

Remark 2.4. Clearly, the G-discs of the matrix Ck have radii less than or
equal to the the radii of the G-discs of the original matrix A, which in general
gives a better inclusion region for the eigenvalues of A with geometric multi-
plicity ≥ k. Furthermore, as in Example 2.3, it should be clear that the matrix
Ck is not unique, since many off-diagonal entries in the same row may have
the same absolute value. We also point out that the eigenvalues of A and Ck

are in general not the same.
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For the purposes in the sequel, we denote matrices Ci constructed from the
n×n matrix A in the same way as in Theorem 2.2: in every row of A, replace
the smallest i − 1 off-diagonal entries in absolute value by zeros.

We can now give a refinement of Corollary 1.2.

Corollary 2.5. Let λ be an eigenvalue of A with geometric multiplicity at
least k ≥ 1. Then

λ ∈ ∪n−k+1
j=1 {z ∈ C : |z − aij ij | ≤ R′

ij
(Ck)}

for any choices of indices 1 ≤ i1 < . . . < in−k+1 ≤ n. There are
(

n
k−1

)
possibil-

ities for such a union, so that λ is contained in their intersection.

The following is another interesting, immediate corollary of Theorem 1.1,
based again on the matrix Ck.

Corollary 2.6. Let A be an n × n matrix. If each collection of G-discs of
the matrix Ck that is separated from the remaining G-discs of Ck consists of
at most k − 1 discs, then each eigenvalue of A has geometric multiplicity less
than k. In particular, if this is the case for k = 2, then each eigenvalue has
geometric multiplicity 1.

Example 2.7. Only observing that the three G-discs of the matrix

A =

⎡
⎣

0 1 1
1 −3 1
1 1 3

⎤
⎦

form a connected region, we cannot determine the multiplicities of its eigen-
values. However, consider the matrix

C2 =

⎡
⎣

0 1 0
0 −3 1
0 1 3

⎤
⎦

which has three mutually disjoint G-discs. By Corollary 2.6, each eigenvalue
of A has geometric multiplicity 1.

3 Applications

The following result is a direct consequence of Theorem 2.2.

Theorem 3.1. Let λ be an eigenvalue of A with geometric multiplicity k and
suppose that |aij| = α for all i �= j. Then the inequality

|λ − aii| ≤ (n − k)α

holds for at least k values of i.
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Corollary 3.2. Let λ be an eigenvalue of A with geometric multiplicity k.
Suppose that |aij| = α for all i �= j and that |aii| = β for all i. Then

|λ| ≤ β + (n − k)α.

Example 3.3. The above corollary is illustrated by the adjacency matrix A of
the complete graph of order n, which has zeros on the diagonal and one in each
off-diagonal position. The eigenvalues of A are n − 1 and −1 with (algebraic
and geometric) multiplicities 1 and n−1, respectively. For the eigenvalue n−1,
Corollary 3.2 says that n − 1 ≤ n − 1 and for the eigenvalue −1 that 1 ≤ 1,
both of which are trivially true.

The corollary is also illustrated by the all ones matrix Jn of order n, which
has eigenvalues n and 0 with (algebraic and geometric) multiplicities 1 and
n − 1, respectively.

Another application of Theorem 2.2 is the following.

Theorem 3.4. Let A be an n×n matrix with all off-diagonal entries nonzero
and let λ be an eigenvalue of A such that every G-circle of A passes through
λ. Then the geometric multiplicity of λ is 1.

Proof. We are given that all off-diagonal entries of A are nonzero and that λ is
an eigenvalue of A such that every G-circle of A passes through λ. Suppose that
the geometric multiplicity k of λ is greater than 1. By Theorem 2.2, λ is in at
least k G-discs of Ck. However, by the construction of Ck, λ then cannot be on
any of those k G-circles of A, since the G-discs of Ck are respectively properly
contained in the G-discs of the original matrix A. We have a contradiction.
Thus, k = 1.

Remark 3.5. If the n× n matrix B is irreducible and the eigenvalue λ of B
satisfies

|λ − bii| ≥ R′
i(B),

for all i = 1, · · · , n, then according to Theorem 6.2.8 in [2], every G-circle of B
passes through λ. By what we have proved, if also all the off-diagonal entries
of B are nonzero, then in fact the geometric multiplicity of λ is 1.

Example 3.6. We use the all ones matrix Jn. Now, the eigenvalue n is on
every G-circle of Jn and the geometric multiplicity of n is 1.

We can relax the condition on the off-diagonal entries in Theorem 3.4 in
the following way. The proof is similar to the proof of Theorem 3.4.
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Corollary 3.7. Let A be an n×n matrix and let λ be an eigenvalue of A such
that every G-circle of A passes through λ. Suppose k > 1 and that there are
n−k +1 or more rows of A with the following property: in each of these rows,
the number of zero off-diagonal entries is less than k − 1. Then the geometric
multiplicity of λ is less than k.

When k = 2 we have the following.

Corollary 3.8. Let A be an n×n matrix with all off-diagonal entries nonzero
in at least n − 1 rows of A and let λ be an eigenvalue of A such that every
G-circle of A passes through λ. Then the geometric multiplicity of λ is 1.

This allows the matrix A to be reducible.

We present a last result which makes use of Theorem 2.2. Recall that ‖A‖∞
is the maximum of the absolute row sums of A and that ‖A‖1 is the maximum
of the absolute column sums of A.

Theorem 3.9. Let A be an n×n matrix with all off-diagonal entries nonzero
in at least n − 1 rows (n − 1 columns) and let λ be an eigenvalue of A such
that |λ| = ‖A‖∞ (|λ| = ‖A‖1). Then the geometric multiplicity of λ is 1.

Proof. Without loss of generality, suppose that all the off-diagonal entries in
the first n − 1 rows are nonzero, and assume that |λ| = ‖A‖∞. Suppose that
the geometric multiplicity k of λ is greater than 1. By Theorem 2.2, λ is in at
least k G-discs of Ck. Letting one of these k G-discs be disc i, i �= n, we then
have

|λ − cii| ≤ R′
i(Ck)

so that
|λ| ≤ |cii| + R′

i(Ck) < |aii| + R′
i(A) ≤ ‖A‖∞

and hence
|λ| < ‖A‖∞ ,

which is a contradiction. Thus, the geometric multiplicity of λ is 1.
For the proof involving |λ| = ‖A‖1, we can use the transpose of A.

Remark 3.10. We can relax the condition on the off-diagonal entries in
Theorem 3.9 in a similar way as in Corollary 3.7.

Example 3.11. Theorem 3.9 is illustrated by any doubly stochastic matrix
with all off-diagonal entries nonzero and its eigenvalue of 1. Such a matrix is
actually a nonnegative irreducible matrix.
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Remark 3.12. There has been so much written on Geršgorin, his work, and
follow-up results. We simply refer to Chapter 6 in the very valuable book [2]
and also to the important book [5].
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