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Some relations between extended and unscented

Kalman filters
Fredrik Gustafsson, Senior Member IEEE and Gustaf Hendeby, Member IEEE

Abstract—The unscented Kalman filter (UKF) has become a
popular alternative to the extended Kalman filter (EKF) during
the last decade. UKF propagates the so called sigma points by
function evaluations using the unscented transformation (UT),
and this is at first glance very different from the standard EKF

algorithm which is based on a linearized model. The claimed
advantages with UKF are that it propagates the first two moments
of the posterior distribution and that it does not require gradients
of the system model. We point out several less known links
between EKF and UKF in terms of two conceptually different
implementations of the Kalman filter: the standard one based
on the discrete Riccati equation, and one based on a formula
on conditional expectations that does not involve an explicit
Riccati equation. First, it is shown that the sigma point function
evaluations can be used in the classical EKF rather than an
explicitly linearized model. Second, a less cited version of the
EKF based on a second order Taylor expansion is shown to be
quite closely related to UKF. The different algorithms and results
are illustrated with examples inspired by core observation models
in target tracking and sensor network applications.

Index Terms—extended Kalman filter, unscented Kalman filter,
transformations

I. INTRODUCTION

This contribution compares various approaches for how

to propagate a Gaussian approximate state distribution for a

nonlinear system

xk+1 = f(xk, uk) + vk, (1a)

yk = h(xk, uk) + ek. (1b)

The nonlinear filters in this study are in one way or another

related to the Taylor expansion of a nonlinear function z =
g(x) around an estimate x̂,

z = g(x) = g(x̂) + g′(x̂)(x− x̂)

+ 1
2 (x− x̂)T g′′(ξ(x))(x− x̂)
︸ ︷︷ ︸

r(x;x̂,g′′(ξ(x)))

, (2)

where x ∈ R
nx and (initially for notational convenience) z ∈

R
1. Here, g′ denotes the Jacobian and g′′ the Hessian of the

function g(x), defined in the appendix, and ξ(x) is a point

in the neighborhood of x̂. The equality holds for a ξ(x) in a
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neighborhood of x̂ if a convergent Taylor series exists for g in

the region, and is otherwise just an approximation. Basically,

as an overview, the following algorithms apply:

• The extended Kalman filter (EKF) [1], [2] is based on

the first two terms in (2). This works fine as long as

the rest term is small. Small here relates both to the

state estimation error and the degree of nonlinearity of g.

Basically, as a rule of thumb, the rest term is negligible

if either the model is almost affine, or the SNR is high,

in which case the estimation error can be considered

sufficiently small.

• The second order compensated EKF [3], [4], [5] approx-

imates the rest term r(x; x̂, g′′(ξ)) with r(x; x̂, g′′(x̂)),
and compensates for the mean and variance of this term.

• The unscented Kalman filter (UKF) [6], [7] can be inter-

preted, as will be demonstrated, as implicitly estimating

the first terms (but not the Jacobian and Hessian them-

selves) in the nonlinear transformation in (2).

The standard forms of the KF and EKF include a discrete-

time algebraic Riccati equation (DARE) for propagating the

state covariance, while the UKF in its proposed form is based

on a different principle in linear estimation and has no explicit

DARE. Further, UKF is based on function evaluations of g(x)
only, so neither the Jacobian nor the Hessian are needed. This

is a first claimed advantage of the UKF:

[7]: “. . . UT is not the same as using a central

difference scheme to calculate the Jacobian.”

This is indeed true, but, as we will point out, there is a

duality in the implementation. UKF can be implemented with

Riccati equations, and the EKF (and even the linear KF) can

be implemented without Riccati equations using only function

evaluations.

The core tool in the analytic results is the underlying trans-

form approximations of a nonlinear mapping z = g(x), pro-

viding a Gaussian approximation N (µz, Pz) of the stochastic

variable z. It is often stated that the unscented transform (UT)

gives the correct first and second order moments (µz = E(z)
and Pz = COV(z)):

[7]: “Any set of sigma points that encodes the mean

and covariance correctly, . . . , calculates the projected

mean and covariance correctly to the second order”

However, we show with a simple counter-example that this

is not the case, even for a quadratic function of Gaussian

variables. We also show analytically that the UT generally

does not give the same elements in the covariance as the

second order Taylor expansion, which should at least be

exact for quadratic functions of Gaussian variables. On the
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other hand, we show that the UT gives a good approximation

of many common sensor models in tracking and navigation

applications.

The two quotes from [7] are actually cited almost liter-

ally in a large number of papers on UKF, so this gives a

strong motivation for revisiting and clarifying the various

links described in this contribution. The outline is as follows.

The transformations, the basic relations and some numerical

illustrations are given in Section II. Section III discusses the

classical implementation of EKF, and shows how the sigma

points of the UT can be used to estimate derivatives such that

the need for Jacobians and Hessians is eliminated. Section IV

gives a general version of the Riccati-free nonlinear filter,

where the transform approximation can be chosen individually

for the time and measurement update, respectively. Section V

concludes the paper.

II. NONLINEAR TRANSFORMATIONS

This section summarizes different methods to approximate

the distribution of a nonlinear mapping z = g(x) of a Gaussian

variable x with a Gaussian distribution,

x ∼ N
(
µx, Px

)
→ z

approx∼ N
(
µz, Pz

)
. (3)

The following subsections describe different approaches to

approximate µz and Pz . The symbol
approx∼ is here used to

indicate a distribution approximation. The underlying idea is

that it is often easier to approximate a distribution than a

general nonlinear function, so the analytic distribution of g(x)
will not be considered here.

A. Taylor Transformations

Consider a general nonlinear transformation and its second

order Taylor expansion

z = g(x) = g(µx) + g′(µx)(x− µx)

+
[
1
2 (x− µx)

T g′′i (ξ)(x− µx)
]

i
︸ ︷︷ ︸

r
(
x;µx,g′′(ξ)

)

, (4)

where nx is the dimension of the vector x ∈ R
nx , and z ∈

R
nz . The Hessian of the ith component of g is denoted g′′i , with

i = 1, . . . , nz . The notation [vi]i is used to denote a vector in

which element i is vi. Analogously, the notation [mij ]ij will

be used to denote the matrix where the (i, j) element is mij .

Theorem 1 gives the theoretical mean and covariance of (4)

when ξ is substituted with µx. The equality holds for a ξ(x)
in a neighborhood of x̂ if a convergent Taylor series exists for

g in the region, and is otherwise just an approximation.

Theorem 1 (First moments of the Taylor transformation)

Consider the mapping

z = g(µx) + g′(µx)(x− µx) +
[
1
2 (x− µx)

T g′′i (µx)(x− µx)
]

i
,

(5a)

from R
nx to R

nz . Let E
(
x
)
= µx and COV

(
x
)
= P , then the

first moment of z is given by

µz = g(µx) +
1
2 [tr(g

′′
i (µx)P )]i. (5b)

Further, let x ∼ N
(
µx, P

)
, then the second moment of z is

given by

Pz = g′(µx)P
(
g′(µx)

)T
+ 1

2

[

tr(g′′i (µx)Pg′′j (µx)P )
]

ij
,

(5c)

with i, j = 1, . . . , nz .

The result is in for instance [5] given without proof, so

we include it here for completeness and for preparing for

Theorem 2.

Proof: Suppose without loss of generality that µx =
E[x] = 0 and COV(x) = P . Further, to simplify notation,

let G = g′′(µx). Then, one direct way to express the expected

value of the rest term is to use the trace linearity property and

tr(AB) = tr(BA),

E[xTGx] = E[tr(GxxT )] = tr(GE[xxT ]) = tr(GP ). (6)

The variance is more complicated to compute, and the Gaus-

sian assumption is needed. Below, a derivation of both mean

and variance is provided.

First, let q = G1/2x, where G = GT/2G1/2, so that

COV(q) = G1/2PGT/2. Then,

xTGx = qT q. (7)

The singular value decomposition (SVD) G1/2PGT/2 =
UΣUT , where the diagonal elements of Σ are σ2

1 , . . . , σ
2
nx

(the

variance of the noise in the direction of the respective eigen

vectors), gives a second transformation v = UT q which does

not change the eigenvalues of the covariance, and in particular

its trace is the same, since tr(UΣUT ) = tr(ΣUTU) = tr(Σ).

Thus (using E(x4) = 3
(
E(x2)

)2
= 3σ4 for scalar zero mean

σ2 variance Gaussian variables),

E[vT v] =

nx∑

i=1

σ2
i , (8a)

E[(vT v)2] =

nx∑

i=1

3σ4
i +

∑

i 6=j

2σ2
i σ

2
j , (8b)

Var[vT v] = E[(vT v)2]−
(
E[(vT v)]

)2
= 2

nx∑

i=1

σ4
i . (8c)

Now, the sum of the diagonal elements of a matrix Σ2 can be

expressed as the trace of the square of the matrix in the SVD,

so

Var[vT v] = 2 tr(G1/2PGT/2G1/2PGT/2) = 2 tr(GPGP ).
(9)

Further, if the function g is vector-valued, the covariance

between different rows can be derived in a similar way. Let

Gi = g′′i (µx) be the Hessian of the i’th row of g(x). Then the

result is

E[xTGixx
TGjx]− E[xTGix]E[x

TGjx] = 2 tr(GiPGjP ).
(10)
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In summary, the rest term for a vector valued function g(z)
has mean and covariance given by

E
(
(x− µx)

T g′′(µx)(x− µx)
)
= [tr(g′′i (µx)P )]i, (11a)

COV
(
(x− µx)

T g′′(µx)(x− µx)
)
=

[2 tr(g′′i (µx)Pg′′j (µx)P )]ij . (11b)

This concludes the proof.

The following remarks are important:

• For quadratic functions gi(x) = ai + Bix + 1
2x

TCix,

the Hessian g′′i (x) = Ci is independent of x. That

is, Theorem 1 gives the correct first and second order

moments.

• For polynomial functions g(x), the principle of moment

matching can be applied to compute µz and Pz analyti-

cally, see [8]. For a Gaussian x, all moments of z can be

expressed as polynomial functions of µx and Px.

• The mean and covariance can also be derived from a

linear regression formulation, where the sigma points

become the regressors [9].

• The moment integrals

µz =

∫

g(x)p(x) dx, (12a)

Pz =

∫

g(x)gT (x)p(x) dx, (12b)

where p(x) is the probability density function of x, can

be approximated with numerical integration techniques.

The Gauss-Hermite quadrature rule is examined in [10],

and the cubature rule is investigated in [11]. The latter

reference gives a nice link to the unscented transform

which we will come back to.

To summarize the theorem, the first order Taylor approxi-

mation (TT1) can be used to form an approximate Gaussian

distribution for z = g(x) as

TT1: x ∼ N
(
µx, P

)
→ z

approx∼ N
(
g(µx), g

′(µx)P
(
g′(µx)

)T )
.

(13)

Further, the second order Taylor approximation (TT2) leads to

a Gaussian approximation with mean and covariance provided

by the theorem as

TT2: x ∼ N
(
µx, P

)
→ z

approx∼ N
(

g(µx)+
1
2 [tr(g

′′
i (µx)P )]i,

g′(µx)P
(
g′(µx)

)T
+ 1

2

[

tr(Pg′′i (µx)Pg′′j (µx))
]

ij

)

. (14)

It is a trivial fact that the gradient and Hessian in TT1 and

TT2, respectively, can both be computed using numerical

methods. It is worth stressing that both g′i(x) and g′′i (x) are

in all illustrations computed using numerical methods. That

is, only function evaluations of the nonlinear function g(x)
are assumed to be available. However, as we will demon-

strate in Theorem 3 and the following discussion, there is a

numerical method to approximate the terms actually needed

in TT2, which is one order of magnitude more efficient than

approximating the Jacobian and Hessian explicitly.

B. Monte Carlo Transformation

The Monte Carlo Transformation (MCT) provides a general

framework to compute an accurate approximation, which

asymptotically should be the best possible one. The method is

straightforward. First, generate a number N of random points

x(i), let these pass the nonlinear function, and then estimate

the mean and covariance as follows:

x(i) ∼ N
(
µx, P

)
, i = 1, . . . , N,

z(i) = g(x(i)),

µz =
1

N

N∑

i=1

z(i),

Pz =
1

N − 1

N∑

i=1

(
z(i) − µz

)(
z(i) − µz

)T
.

The law of large numbers assures that these estimates converge

to the true values, which makes the MCT well suited for

validation purposes.

C. Unscented Transformation

The unscented transform (UT) is in a sense similar to the

MCT approach in that it selects a number of points x(i), maps

these to z(i) = g(x(i)), and then estimates the mean and

covariance in the standard way. The difference lies in how

the points x(i) are selected.

First define, ui and σi from the SVD of the covariance matrix

P ,

P = UDUT =

nx∑

i=1

σ2
i uiu

T
i ,

where ui = U:,i is the i’th column of U and σ2
i = Σi,i is the

i’th diagonal element of Σ. Then, let

x(0) = µx, x(±i) = µx ±
√

nx + λσiui, (15a)

ω(0) =
λ

nx + λ
, ω(±i) =

1

2(nx + λ)
, (15b)

where i = 1, . . . , nx. Let z(i) = g(x(i)), and apply

µz =

nx∑

i=−nx

ω(i)z(i), (16a)

Pz =

nx∑

i=−nx

ω(i)(z(i) − µz)(z
(i) − µz)

T

+ (1− α2 + β)(z(0) − µz)(z
(0) − µz)

T , (16b)

where ω(0) + (1 − α2 + β) is often denoted ω
(0)
c and used

to make the notation more compact for the covariance matrix

expression.

The design parameters of UT have here the same notation

as in UKF literature (e.g., [12]):

• λ is defined by λ = α2(nx + κ)− nx.

• α controls the spread of the sigma points and is suggested

to be approximately 10−3.

• β compensates for the distribution, and should be chosen

to β = 2 for Gaussian distributions.

• κ is usually chosen to zero.
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Tab I: Different versions of the UT (counting the CT as a UT

version given appropriate parameter choice) in (15) using the

definition λ = α2(nx + κ)− nx.

Parameter UT1 [6] UT2 [12] CT [11] DFT [13]

α
√

3/nx 10−3 1 –
β 3/nx − 1 2 0 –
κ 0 0 0 –

λ 3− nx 10−6nx − nx 0 0√
nx + λ

√
3 10−3√nx

√
nx

1
a

√
nx

ω(0) 1− nx/3 −106 0 0

Note that nx+λ = α2nx when κ = 0, and that for nx+λ →
0+ the central weight ω(0) → −∞. Furthermore,

∑

i ω
(i) = 1.

We will consider the following two versions of UT summarized

in Table I, corresponding to the original one in [6] and an

improved one in [12].

The cubature transform (CT), that is used in the cubature

Kalman filter (CKF, [11]), is derived using different principles

than the UT. However, it still fits the UT framework for a

particular parameter tuning. The CT parameters are given in

Table I for comparison.

The derivative-free EKF (DF-EKF) in [13] avoids the center

sigma points just as the CT, but includes also an arbitrary

scaling factor a to the other sigma points. For the case a = 1,

the method coincides with CKF. Here the transformation used

is denoted derivative-free transform (DFT).

In summary, TT1 is a computationally cheap approximation,

TT2 aims at computing the correct mean and covariance by

taking care of the second order term in the Taylor expansion

(for functions g(x) quadratic in x, TT2 is completely correct,

otherwise it is often a good approximation), the MC approach

is always asymptotically correct (if the moment exists), and

that the UT is a fairly good compromise between TT2 and MC,

that improves computational complexity to MC while being

simpler to implement than TT2.

The unscented transform may have a negative weight for the

center point z(0). This might cause problems when implement-

ing the UKF, for instance using the square root form. On the

other hand, the cubature filter described in [11] has a similar

set of sigma points. The points all have positive weights, and

the central point is left out.

D. Analytical Comparison of TT2 and UT

In the following theorem, the relation between TT2 and UT

will be analyzed, and expressions for the resulting mean and

covariance are given and interpreted in the limit as the sigma

points in the UT approach the center point.

Theorem 2 (Asymptotic property of UT) Consider the

mapping z = g(x) from R
nx to R

nz of the stochastic variable

x with mean µx and covariance Px. The UT yields the

following mean µUT
z and covariance P UT

z asymptotically as√
nx + λ → 0+ in UT2.

µUT

z = g(µx) +
1
2

[
tr(g′′i P )

]

i
, (17a)

P UT

z = g′(µx)P
(
g′(µx)

)T
+

(β−α2)
4

[
tr
(
Pg′′i (µx)

)
tr
(
Pg′′j (µx)

)]

ij
(17b)

For nx = 1, equality P TT2
z = P UT

z holds if β − α2 = 2.

Proof: Reorganizing the terms in (16) gives

µUT

z = z(0) +
1− ω(0)

2nx

nx∑

i=1

(z(i) − 2z(0) + z(−i)) (18a)

P UT

z =
(
ω(0) + (1− α2 + β)

)
(z(0) − µz)(·)T

+
∑

i 6=0

1−ω(0)

2nx

(z(i) − µz)(·)T

= (1− α2 + β) (1−ω(0))2

4n2
x

( nx∑

i=1

(z(i) − 2z(0) + z(−i))
)(

·
)T

− (1−ω(0))2

4n2
x

( nx∑

i=1

(z(i) − 2z(0) + z(−i))
)(

·
)T

+ 1−ω(0)

2nx

nx∑

i=−nx

(z(i) − z(0))(·)T . (18b)

With the sigma points in (15), differences can be constructed

that, in the limit as nx + λ → 0+ (i.e., α → 0+ with κ = 0),

yield the derivatives:

z(i) − z(0)

σi

√
nx + λ

→ g′(µx)ui (19)

z(i) − 2z(0) + z(−i)

σ2
i (nx + λ)

→
[
uT
i g

′′
k (µx)ui

]

k
. (20)

Note that nx + λ = nx/(1− ω(0)).
Using this, the limit case of (18) can be evaluated,

µUT

z → g(µx) +
1
2

[
tr(g′′i (µx)P )

]

i
(21a)

and

P UT

z → g′(µx)P
(
g′(µx)

)T

+ (β−α2)
4

[
tr
(
Pg′′i (µx)

)
tr
(
Pg′′j (µx)

)]

ij
. (21b)

By comparing (21) and (5) for a scalar z = g(x), both TT2

and UT asymptotically gives the same result. In general, the

covariances of TT2 and UT differ since

P TT2
z − P UT

z = 1
2

[

tr(Pg′′i (µx)Pg′′j (µx))
]

ij

− (β−α2)
4

[
tr
(
Pg′′i (µx)

)
tr
(
Pg′′j (µx)

)]

ij
(22)

Note that tr(AB) = tr(A) tr(B) if A and B are scalar, but

this is in general not the case. Even with diagonal matrices,

the result may differ. Consider for instance the example

tr(I2) tr(I2) = 4 6= 2 = tr(I2I2). One explanation for

this discrepancy is that the UT cannot express the mixed

second order derivatives needed for the TT2 compensation

term without increasing the number of sigma points. The

quality of this approximation depends on the transformation

and must be analyzed for the case at hand.

E. Numerical Comparisons

We here provide some examples where the following meth-

ods are compared:
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TT1 First order Taylor expansion leading to Gauss’ ap-

proximation formula.

TT2 Second order Taylor expansion, which compensates

the mean and covariance with the quadratic second

order term.

UT The unscented transformations UT1 and UT2. UT2

will be the default one in the sequel if the number

is not indicated.

MCT The Monte Carlo transformation approach, which in

the limit should compute correct moments.

Tables II and III summarize the results.

Example 1 (Sum of squares) The following mapping has a

well-known distribution

z = g(x) = xTx, x ∼ N (0, In) ⇒ z ∼ χ2(n). (23)

This distribution has mean n and variance 2n. For the Taylor

expansion, we have

g′(µ) = 0, g′′(µ) = 2In.

It follows that

µTT1
z = 0, P TT1

z = 0,

µTT2
z = n, P TT2

z =
1

2
· 4n = 2n,

µUT1
z = n, P UT1

z = (3− n)n,

µUT2
z = n, P UT2

z =
1

2
· 2n · 2n = 2n2,

µCT

z = n, P CT

z = 2n · 1

2n
· (1− 1)2 = 0.

That is, TT1 fails completely and TT2 works perfectly. UT

gives correct mean. The standard version of UT gives negative

variance, while the modified one overestimates the variance,

and CT gives zero variance, as seen in Tab II.

Tab II: Nonlinear approximations of xTx for x ∼ N (0, In).
Theoretical distribution is χ2(n) with mean n and variance 2n.

The mean and variance are below summarized as a Gaussian

distribution.

n 1 2 3 4 5 n

TT1 N (0, 0) N (0, 0) N (0, 0) N (0, 0) N (0, 0) N (0, 0)

TT2 N (1, 2) N (2, 4) N (3, 6) N (4, 8) N (5, 10) N (n, 2n)

UT1 N (1, 2) N (2, 2) N (3, 0) N (4,−4) N (5,−10) N (n, (3− n)n)

UT2 N (1, 2) N (2, 8) N (3, 18) N (4, 32) N (5, 50) N (n, 2n2)

CT N (1, 0) N (2, 0) N (3, 0) N (4, 0) N (5, 0) N (n, 0)

Example 2 (Radar measurements) Consider the mapping

of range and bearing to Cartesian coordinates

z = g(x) =

(
x1 cosx2

x1 sinx2

)

. (24)

For the first case in Table III, µx = (3, 0)T , we have the

Taylor expansion

g′(µ) =

(
1 0
0 3

)

, g′′1 (µ) =

(
0 0
0 0

)

, g′′2 (µ) =

(
0 1
1 0

)

Note that all higher order derivatives have the unit norm,

‖g(n)(x)‖ = 1 for all n ≥ 2, so the second order Taylor

expansion cannot be regarded as an accurate approximation.

This is particularly the case when the angular error is large,

as it is designed to be here.

It follows from (14) and Theorem 2 that

µUT

z = µTT2
z =

(
0
0

)

,

and that the covariance approximations differ. The results are

available in Tab III.

Tab III: Nonlinear approximations of the radar observations

(range and bearing) to Cartesian position mapping z =
(x1 cosx2, x1 sinx2)

T for three different distributions of x.

The mean and variance are below summarized as a Gaussian

distribution. The number of Monte Carlo simulations is 10 000.

Method
x

N
(

( 3.0
0.0 ), (

1.0 0.0
0.0 1.0 )

)

N
(

( 3.0
0.5 ), (

1.0 0.0
0.0 1.0 )

)

N
(

( 3.0
0.8 ), ( 1.0 0.0

0.0 1.0 )
)

TT1 N
(

( 3.0
0.0 ), (

1.0 0.0
0.0 9.0 )

)

N
(

( 2.6
1.5 ), (

3.0 −3.5
−3.5 7.0 )

)

N
(

( 2.1
2.1 ), (

5.0 −4.0
−4.0 5.0 )

)

TT2 N
(

( 2.0
−0.0 ), (

3.0 0.0
0.0 10.0 )

)

N
(

(−1.4
0.5

), ( 27.0 2.5
2.5 9.0 )

)

N
(

( 2.1
2.1 ), (

9.0 0.0
0.0 13.0 )

)

UT1 N
(

( 1.8
0.0 ), (

3.7 0.0
0.0 2.9 )

)

N
(

( 1.6
0.9 ), (

3.5 0.3
0.3 3.1 )

)

N
(

( 1.3
1.3 ), (

3.3 0.4
0.4 3.3 )

)

UT2 N
(

( 1.5
0.0 ), (

5.5 0.0
0.0 9.0 )

)

N
(

( 1.3
0.8 ), (

6.4 −1.5
−1.5 8.1 )

)

N
(

1.1
1.1 ), (

7.2 −1.7
−1.7 7.2 )

)

CT N
(

( 1.73
0.0 ), ( 2.6 0.0

0.0 4.39 )
)

N
(

( 1.52
0.83 ), (

3.01 −0.75
−0.75 3.98 )

)

N
(

1.21
1.24 ), (

3.52 −0.893
−0.893 3.47 )

)

MCT N
(

( 1.8
0.0 ), (

2.5 0.0
0.0 4.4 )

)

N
(

( 1.6
0.9 ), (

2.9 −0.8
−0.8 3.9 )

)

N
(

( 1.3
1.3 ), (

3.4 −1.0
−1.0 3.4 )

)

Example 3 (TOA, DOA and RSS measurements) The ba-

sic measurements in sensor networks [14] are time of arrival

(TOA), direction of arrival (DOA) and received signal strength

(RSS). These all relate to the position in a nonlinear way.

Range measurements in two (n = 2) and three (n = 3)

dimensions, respectively, are given by

gTOA(x) = ‖x‖ =

√
√
√
√

n∑

i=1

x2
i .

Received signal strength in two dimensions in dB scale (where

the measurement noise can be seen as additive and Gaussian

[14]) is given by

gRSS(x) = c0 − c2 · 10 log10(‖x‖2).
Finally, direction of arrival is expressed as

gDOA(x) = arctan2(x1, x2),

where arctan2 is the four quadrant arc-tangent function. The

resulting approximation depends a lot on the assumed Gaus-

sian distribution of position. We choose a distribution which

is typical in single sensor tracking applications, where the

prior distribution before the measurement update is uncertain

in the direction tangential to the measurement information.

The results are summarized in Table IV.

The conclusion from the example, and many similar tests with

other prior distributions of the position, is that TT1 is inferior
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Tab IV: Numerical comparison of approximate transformations

for nonlinear measurement models in sensor network applica-

tions. The mean and covariance are in each case summarized

as an approximate Gaussian distribution.

TOA 2D g(x) = ‖x‖ x ∼ N ([3; 0], [1, 0; 0, 10])

TT1 N (3, 1)
TT2 N (4.67, 6.56)
UT1 N (4.08, 3.34)
UT2 N (4.67, 6.56)
CT N (4.19, 2, 42)
MCT N (4.25, 2.4)

TOA 3D g(x) = ‖x‖ x ∼ N ([3; 0; 0], [1, 0, 0; 0, 10, 0; 0, 0, 10])

TT1 N (3, 1)
TT2 N (6.33, 12.1)
UT1 N (5.16, 3.34)
UT2 N (6.33, 23.2)
CT N (5.16, 3.34)
MCT N (5.17, 2.95)

DOA g(x) = arctan(x2, x1) x ∼ N ([3; 0], [10, 0; 0, 1])

TT1 N (0, 0.111)
TT2 N (0, 0.235)
UT1 N (0.524, 1.46)
UT2 N (0, 0.111)
CT N (0.785, 1.95)
MCT N (−0.004, 1.38)

RSS g(x) = 10− 20 log10(‖x‖2) x ∼ N ([3; 0], [10, 0; 0, 1])

TT1 N (−18, 12.1)
TT2 N (−21.1, 36.5)
UT1 N (−19.9, 25.5)
UT2 N (−21.1, 31.6)
CT N (−20.1, 21.3)
MCT N (−20.1, 16.4)

and that the UT, and in particular the tuning provided by the

CT, is to be preferred to TT2. However, all of TT1, TT2, and

UT can be arbitrarily bad compared to the MCT.

It should be remarked, though, that all the cases in Ex-

amples 2 and 3 are deliberately designed to excite higher

order terms in the Taylor expansion. As the range to the target

increases, the higher order terms will decrease with a rate that

for the higher order terms is higher than that for the lower

order terms. Based on the preceding analysis, one may expect

that the TT2 will converge faster than TT1 and UT.

III. DARE-BASED EXTENDED KALMAN FILTER

Here, detailed recursions are given for the extended Kalman

filter (EKF) without and with second order compensation,

respectively. The function f(x, u) is here more compactly

written f(x), and similarly h(x) = h(x, u).

A. EKF Algorithms

Using the transformation approximation TT1 and TT2, re-

spectively, immediately gives the two Riccati-based EKF filters

in Algorithm 1.

The common EKF should work well when the bias and

variance contribution of the second order Taylor term is

Algorithm 1 DARE-based EKF and EKF2

The EKF2, using the TT2 transformation, for the model (1)

is given by the following recursions initialized with x̂1|0 and

P1|0:

Sk = Rk + h′(x̂k|k−1)Pk|k−1(h
′(x̂k|k−1))

T

+ 1
2

[
tr(h′′

i (x̂k|k−1)Pk|k−1h
′′
j (x̂k|k−1)Pk|k−1)

]

ij

Kk = Pk|k−1(h
′(x̂k|k−1))

TS−1
k (25a)

εk = yk − h(x̂k|k−1)− 1
2

[
tr(h′′

i Pk|k−1)
]

i
(25b)

x̂k|k = x̂k|k−1 +Kkεk (25c)

Pk|k = Pk|k−1 (25d)

− Pk|k−1(h
′(x̂k|k−1))

TS−1
k h′(x̂k|k−1)Pk|k−1

x̂k+1|k = f(x̂k|k) +
1
2

[
tr(f ′′

i Pk|k)
]

i
(25e)

Pk+1|k = Qk + f ′(x̂k|k)Pk|k(f
′(x̂k|k))

T

+ 1
2

[
tr(f ′′

i (x̂k|k)Pk|kf
′′
j (x̂k|k)Pk|k)

]

ij
. (25f)

The EKF, using the TT1 transformation, is obtained by letting

both Hessians f ′′ and h′′ be zero.

negligible to the noise,

1
4

[

tr
(
f ′′
i (x̂k|k)Pk|k

)T
tr
(
f ′′
j (x̂k|k)Pk|k

)]

ij

+ 1
2

[
tr(f ′′

i (x̂k|k)Pk|kf
′′
j (x̂k|k)Pk|k)

]

ij
≪ Qk,

(26a)

1
4

[

tr
(
h′′
i (x̂k|k−1)Pk|k−1

)T
tr
(
h′′
j (x̂k|k−1)Pk|k−1

)]

ij

+ 1
2

[
tr(h′′

i (x̂k|k−1)Pk|k−1h
′′
j (x̂k|k−1)Pk|k−1)

]

ij
≪ Rk.

(26b)

Here, 0 ≪ A means that the eigenvalues of A are all much

greater than zero. These are conditions that can be monitored

on-line, but with a large computational overhead, or analyzed

off-line based on only the model and typical operating points.

B. Numerical Approximations of Gradients and Taylor Terms

The standard form of the EKF involves symbolic deriva-

tives. However, numeric derivatives may be preferred in the

following cases:

• The nonlinear function is too complex to be differen-

tiated. For instance, it may involve a computer vision

algorithm or a database look-up.

• The derivatives are too complex functions, requiring too

much computer code, memory or computations to be

evaluated.

• A user-friendly algorithm is desired, with as few user

inputs as possible.

The derivatives can then be approximated numerically, for

instance by

∂g(x)

∂xi
≈ g(x+∆ei)− g(x)

∆
, (27a)

∂2g(x)

∂xi∂xj
≈ 1

∆2

(
g(x+∆ei +∆ej)− g(x+∆ei)

− g(x+∆ej) + g(x)
)
. (27b)
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The number of function evaluations is nx+1 for the difference

in (27a) (2nx for a central difference) and n2
x + nx + 1 for

difference in (27b) (4n2
x for a central difference). This should

be compared to the total complexity of EKF2, which is of order

n3
x. These numerical approximations of the Jacobian and the

Hessian can be used in (25).

However, we next derive an alternative implementation

using the sigma points, where these matrices never need to be

formed. This algorithm is fundamentally different from other

approaches in literature for derivative free (derivative free

here means that neither analytical derivatives nor numerical

approximations of the Jacobian or the Hessian are required)

implementation of the EKF, such as DF-EKF in [13].

Theorem 3 (Sigma-point based DARE EKF) Consider the

mapping z = g(x) for x ∼ N (x̂, P ). Given the transformed

sigma-points z(i) = g(x(i)) in (15) , the terms in Algorithm 1

involving Jacobians and Hessians can be approximated

arbitrarily well as α → 0 with

lim
α→0+

nx∑

i=1

σi
z
(i)
k − z

(−i)
k

2α
√
nxσi

uT
i = g′k(x̂)P,

lim
α→0+

nx∑

i=1

σi

(

z
(i)
k − z

(−i)
k

2α
√
nxσi

)

(
·
)T

= g′k(x̂)P (g′k(x̂))
T ,

lim
α→0+

nx∑

i=1

σi
z
(i)
k − 2z

(0)
k + z

(−i)
k

α2σinx
= tr(g′′k (x̂)P ).

Further, for a scalar x,

lim
α→0+

nx∑

i=1

nx∑

j=1

z
(i)
k − 2z

(0)
k + z

(−i)
k

α2σ

z
(j)
l − 2z

(0)
l + z

(−j)
l

α2σ

= tr(g′′k (x̂)Pg′′l (x̂)P ).

Proof: Using the SVD

P = UDUT =

nx∑

i=1

σ2
i uiu

T
i , (28)

the sigma points in (15) can be written, using nx+λ = α2nx

when κ = 0,

x0 = x̂, (29a)

x(±i) = x̂± α
√
nxσiui, i = 1, 2, . . . , nx. (29b)

The Taylor expansion (2) for the transformed sigma points can

then be written

z
(±i)
k = gk(x

(±i))

= gk(x̂)± α
√
nxσig

′
k(x̂)ui +

α2nxσi

2
uT
i g

′′
k (x̂)ui. (30)

Note that the second order rest term is accurate only in a small

neighborhood of x̂, so the sigma points should be chosen close

to x̂, which means that α should be small.

The first and second order terms in the Taylor expansion

can now be resolved using the following linear combinations,

z
(i)
k − z

(−i)
k

2α
√
nxσi

→ g′k(x̂)ui, (31a)

z
(i)
k − 2z

(0)
k + z

(−i)
k

α2σinx
→ uT

i g
′′
k (x̂)ui, (31b)

as α → 0+. Taking the weighted sum of the term in (31), we

get

nx∑

i=1

σi
z
(i)
k − z

(−i)
k

2α
√
nxσi

uT
i →

nx∑

i=1

g′k(x̂)σiuiu
T
i g

′
k(x̂)P. (32a)

Similarly, summing quadratic forms of (31) gives

nx∑

i=1

σi

(

z
(i)
k − z

(−i)
k

2α
√
nxσi

)(

z
(i)
k − z

(−i)
k

2α
√
nxσi

)T

→
nx∑

i=1

σig
′
k(x̂)ui

(
g′k(x̂)ui

)T
= g′k(x̂)

nx∑

i=1

σiuiu
T
i (g

′
k(x̂))

T

= g′k(x̂)P (g′k(x̂))
T (32b)

Further,

nx∑

i=1

σi
z
(i)
k − 2z

(0)
k + z

(−i)
k

α2σinx
→

nx∑

i=1

σiu
T
i g

′′
k (x̂)ui,

= tr

(

g′′k (x̂)

nx∑

i=1

σiuiu
T
i

)

= tr(g′′k (x̂)P ) (32c)

For the final statement in the theorem, note that

tr(g′′k (x̂)Pg′′l (x̂)P ) = tr



g′′k (x̂)

nx∑

i=1

σiuiu
T
i g

′′
l (x̂)

nx∑

j=1

σjuju
T
j





=

nx∑

i=1

nx∑

j=1

σiσj

(
uT
j g

′′
k (x̂)ui

)(
uT
i g

′′
l (x̂)uj

)
.

(32d)

Now, (32d) can be simplified if nx = 1 so only symmetric

factors uT
i g

′′
l (x̂)uj = g′′l (x̂) remain. This concludes the proof.

That is, the standard EKF can be implemented without

forming the Jacobians f ′(x) and h′(x), neither analytically

nor numerically. This holds also for the second order EKF,

where neither the Jacobians nor Hessians need to be formed.

It is interesting to compare the computational complexity

of the three alternatives of using analytical Jacobian (and

Hessian), numerical approximation of these and finally the

numerical approximation of the terms needed in the EKF.

For the standard EKF, the matrix times matrix multiplication

FPFT is of complexity O(n3
x), which is also the case for the

first two terms in Theorem 3. This fact is well known. Next,

consider the second order EKF. The complexity of computing

g′′kP is of complexity O(n3
x)

The last statement in Theorem 3 holds only for a scalar

state, which is a rather limited result. There is no apparent

way to generalize this using only the sigma points in the UT.

However, by also including the “corner” sigma points, this

issue can be resolved.
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To motivate this statement, define an extended set of sigma

points where the points

x(ij) = x̂+ α
√
nxσiui + α

√
nxσjuj , (33a)

x(−ij) = x̂− α
√
nxσiui − α

√
nxσjuj , (33b)

are added to the set in (15), and z(ij) = g
(
x(ij)

)
is defined

for each new sigma point. The derivation is based on the

observation that

z
(ij)
k = gk(x̂) + α

√
nxg

′
k(x̂)

(
σiui + σjuj

)

+
α2nx

2

(
σiui + σjuj

)T
g′′k (x̂)

(
σiui + σjuj

)
(34a)

z
(−ij)
k = gk(x̂)− α

√
nxg

′
k(x̂)

(
σiui + σjuj

)

+
α2nx

2

(
σiui + σjuj

)T
g′′k (x̂)

(
σiui + σjuj

)
(34b)

One can then show that

z
(ij)
k + z

(−ij)
k − 2z

(0)
k

α2nx

= σ2
i u

T
i g

′′
k (x̂)ui + σ2

ju
T
j g

′′
k (x̂)uj + 2σiσju

T
i g

′′
k (x̂)uj . (35)

Here, the first two terms can be computed with the standard

sigma points using (32c), while the last term is what is needed

to evaluate (32d) in the multivariable case. The details are

outside the scope of this contribution. There are actually two

advantages of implementing the second order EKF in this way,

even compared to the case where the analytical Hessian G is

available. First, the terms tr(GkP ) and tr(GkPGlP ) are here

numerically approximated in a basis that automatically incor-

porates P , so the product GlP is not needed to form explicitly.

The direct computation of tr(GkP ) for all k = 1, . . . , nx is of

complexity n3
x (only the diagonal terms need to be computed

for the trace), while the numerical approximation in (32c) is

only O(n2
x). Further, direct evaluation of tr(GkPGlP ) for

all k and l is of complexity O(n5
x), while the numerical

approximation in (32d) is O(n4
x).

In summary, the transformed sigma points can be used to ap-

proximate the linear term and rest term in the Taylor expansion

(2), without explicitly computing the Jacobian and Hessian

of f and h. This is one sound motivation for propagating the

sigma points through the nonlinearity. From Theorem 3 and

the following discussion, we make the following remarks on

the EKF, assuming for simplicity additive noise processes:

• Equations (32a,b) give the gradient needed in the standard

EKF (25). That is, h′
x can be substituted with one of these

approximations on all occasions.

• Equation (32c) provides the mean corrections in the

second order EKF (25a,e).

• Equation (32d) provides the covariance corrections in

the second order EKF (25f,h) for a scalar x, but as

we have argued this can be resolved by using more

sigma points (33), leading to a computationally efficient

implementation.

IV. RICCATI-FREE EKF AND UKF

The Kalman filter equations are often obscured by the

complexity of the Riccati equation. However, one key idea

in the UKF is based on a result from optimal filtering, where

UT but also TT1, TT2 and MCT can be used.

As a brief review, the basic idea is to consider the nonlinear

transformation

z =

(
x

g(x,w)

)

(36)

of the state x and a stochastic variable w, both assumed

Gaussian distributed, using the prior

x̄ =

(
x
w

)

∼ N
((

x̂
0

)

,

(
P x 0
0 Pw

))

. (37)

The transformed variables can then be approximated with the

following Gaussian distribution, using TT1, TT2, UT, or MCT,

z ∼ N
((

zx

zg

)

,

(
P xx P xg

P gx P gg

))

. (38)

The quality of the approximation depends on the nonlinear-

ity and the method used. Assuming an observation gobs of

the nonlinear relation g(x,w), a well-known result (see for

instance Lemma 7.1 in [15]) states that

K = P xg
(
P gg

)−1
, (39)

x̂ = zx +K(gobs − zg). (40)

The basic idea is thus to approximate the covariance matrix

for (xT , gT )T numerically and compute the Kalman gain K
from its block matrix decomposition. Algorithm 2 gives the

general algorithm. Note that the process noise does not need

to be additive in this approach. These transformations provide

a framework for nonlinear filtering from which the following

different combinations of transforms can be done:

• The EKF obtained using TT1 above is equivalent to the

EKF in (25).

• The EKF version obtained using TT2 above is equivalent

to the second order compensated EKF in (25).

• The Monte Carlo approach should potentially be the most

accurate, given that a sufficient number of samples are

used, since it asymptotically computes the correct first

and second order moments.

• The UKF is obtained by using the UT (1, 2 or other

variants) in both time and measurement updates above.

• One should be aware of that it is not advisable to start

with a large initial covariance P0 when using UKF, since

the sigma points are then located far from the true state,

in contrast to the EKF variants.

• There is a freedom to mix transform approximations in

the time and measurement update.

• If the observation model is linear, the usual Kalman

filter measurement update should be performed. The same

holds for a linear dynamic model.

The actual performance for the 16 different combinations

depends of course on the degree of nonlinearity in the system

model. As a rule of thumb, the choice can be guided by

studying the nonlinear mappings in the dynamic model and

sensor model individually. For target tracking and navigation

applications, it is often the nonlinear sensor model that gives

the greatest filtering challenge as pointed out in [16].
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Algorithm 2 Nonlinear Transformation-Based Filtering

The nonlinear transform-based filter for the model (1) is given

by the following recursions initialized with x̂1|0 and P1|0:

1) Measurement update: Let

x̄ =

(
xk

ek

)

∼ N
((

x̂k|k−1

0

)

,

(
Pk|k−1 0

0 Rk

))

(41a)

z =

(
xk

yk

)

=

(
xk

h(xk) + ek

)

(41b)

The transformation approximation (UT, MC, TT1, TT2)

gives

z ∼ N
((

x̂k|k−1

ŷk|k−1

)

,

(

P xx
k|k−1 P xy

k|k−1

P yx
k|k−1 P yy

k|k−1

))

(41c)

The measurement update is then

Kk = P xy
k|k−1

(
P yy
k|k−1

)−1
, (41d)

x̂k|k = x̂k|k−1 +Kk

(
yk − ŷk|k−1

)
, (41e)

P xx
k|k = P xx

k|k−1 −KkP
yy
k|k−1K

T
k . (41f)

2) Time update: Let

x̄ =

(
xk

vk

)

∼ N
((

x̂k|k

0

)

,

(
Pk|k 0
0 Qk

))

(41g)

z = xk+1 = f(xk) + vk. (41h)

The transformation approximation (UT, MC, TT1, TT2)

gives

z ∼ N
(
x̂k+1|k, Pk+1|k

)
. (41i)

Example 4 (Bearings-Only Tracking) The next example ex-

emplifies the common bearings only problem depicted in

Figure 1. Here a situation where a target, known to be in

an approximate location quantified by x̂0|0 and P0|0, is being

triangulated using bearings-only measurements θ. This can be

x

y

x

x̂0|0 P0|0

M1

θ1

M2

θ2

Fig 1: Bearings-only problem. Two measurements are used,

one from M1 and one from M2.

mathematically described as

xk+1 = f(xk) + vk = xk + vk

yk = h(xk) + ek = arctan2
(
xk − x

0
k, yk − y

0
k

)
+ ek,

where the state x =
(
x y

)T
is the Cartesian position of

the target, vk ≡ 0 for clarity, and COV(ek) = R. For this

situation, the gradients needed to perform filtering using an

EKF are

F = I, H =
1

(x− x0)2 + (y − y0)2

(
−(y − y

0)
x− x

0

)

.

Note, the first order approximation of arctan2 is best for
∣
∣ y
x

∣
∣≫ 0.

Now, assume

x0 =

(
1.5
1.5

)

, x̂0|0 =

(
2
2

)

, P0|0 =

(
1 0
0 1

)

,

and that the bearing to the target is measured first from the

position M1 = (0, 0) and then from M2 = (2, 0), as depicted

in Figure 1. Figure 2 depicts the estimates based on this new

x̂0 and noise-free measurements for the different filters.

1 1.5 2 2.5 3
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

 

 

EKF
EKF2
UKF2
CKF
PF
True

(a) Measurements from: M1 (EKF and UKF

almost coincide, as do PF and true.)

1 1.5 2 2.5 3
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

 

 

EKF
EKF2
UKF2
CKF
PF
True

(b) Measurements from: M1 +M2

Fig 2: Estimate with x̂0 = (0, 0)T , based on one and two

measurements. (Estimates are denoted with x in the center of

each covariance ellipse, and the true target position is denoted

with ◦.)
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Tab V: Mean square error filter performance for 1 000 Monte

Carlo simulations. True posterior is computed by a point-mass

filter (PMF) with a dense grid, and the particle filter (PF)

performance is given for comparison.

Filter
Measurements

None M1 M1 +M2

True 2.01 0.95 0.06
EKF 2.01 1.33 1.23
EKFII 2.01 1.38 0.79
UKF 2.01 1.33 1.00
CKF 2.01 1.45 1.12
PF 2.01 0.95 0.06

The variance of the estimation error based on Monte Carlo

simulations of the problem specified above, using the described

filters, yield the result in Table V. The table somewhat contra-

dicts the previous results. One thing to observe is that the UKF

outperforms the EKF. Hence, it seems that the conservative P
matrix actually pays off.

Finally, note that the PF and the inferred distribution is

almost identical. Worth noticing, though, is the substantially

better estimates achieved with the PF compared to the other

used filters. Hence, this is a situation when the PF pays off.

V. CONCLUSIONS

For nonlinear filtering problems where the nonlinearity is

severe compared to the prior state information, the classical

extended Kalman filter (EKF) “stinks” compared to the un-

scented Kalman filter (UKF), which has been concluded in a

large number of applications. We have shown that the less cited

EKF2 based on a second order KF is closely related to the UKF.

Indeed, in a way EKF2 approximates the first two moments

in a more accurate way for multi-variable transformations.

The comparison is performed in terms of the corresponding

transformations of a nonlinear mapping z = g(x) for x being

Gaussian. The unscented transform (UT) does not give the

correct second order moments even for quadratic functions, an

often stated property. This was demonstrated with the simple

counter-example g(x) = xTx which has an analytical solution.

On the other hand, for many standard sensor models, the UT

performs very well.

APPENDIX

The Jacobian g′(x) and Hessian g′′(x) for a scalar function

g(x) are defined as

g′(x) =
(

∂g(x)
∂x1

∂g(x)
∂x2

· · · ∂g(x)
∂xn

)

, (43a)

g′′(x) =










∂2g(x)
∂x1∂x1

∂2g(x)
∂x1∂x2

· · · ∂2g(x)
∂x1∂xn

∂2g(x)
∂x2∂x1

∂2g(x)
∂x2∂x2

· · · ∂2g(x)
∂x2∂xn

...
. . .

...
∂2g(x)
∂xn∂x1

∂2g(x)
∂xn∂x2

· · · ∂2g(x)
∂xn∂xn










. (43b)
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