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Some remarks about a notion of rearrangement

GIOVANNI ALBERTI

Abstract. We consider an extension to n-dimensions of the notion of increas-
ing rearrangement for functions of one variable, and study the behaviour with
respect to this operation of some classes of integral functionals. Among other
applications, we obtain a simple direct proof of the existence and uniqueness of
n-dimensional optimal profiles for transitions in a phase-separation model with
non-local interaction energy.
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Introduction

In this note we study a notion of rearrangement, already considered [5] and
[9], which generalizes to scalar functions on n-dimensional cylinders the famil-
iar notion of increasing rearrangement for functions on the line, and is defined
via a suitable measure-preserving rearrangement of superlevel sets (Definitions
1.1 and 2.1). Our main concern is the behaviour with respect to this oper-
ation of certain classes of integral functionals. Among others, we recall the
following (more or less known) results: integrals of type

∫

g(u) are preserved
by the rearrangement of u (Theorem 2.6), while integrals of type

∫

g(|∇u|)
with g convex are decreased (Theorem 2.10), and so are double integrals of
type

∫∫

J(x′ − x) g(u(x′) − u(x)) dx′dx with g convex and J positive (Theo-
rem 2.11). Under some additional assumptions, we can also show that in the
last two cases the rearrangement inequality is strict unless u agrees with its
rearrangement.

This rearrangement has already been used in [5] and [9] to study the min-
imizers of

∫

1

2
|∇u|2 +

1

4
(1 − u2)2

on cylinders in R
n and with suitable constraints at infinity (cf. Corollary 3.1

and following remarks), also in connection with a conjecture of E. De Giorgi on
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the entire solutions of the semilinear equation ∆u = u(u2−1) in R
n. For recent

results on this conjecture, and detailed references as well, see for instance [12].
Following a somehow similar direction, in §3 we study the minimizers of

1

4

∫∫

J(x′ − x)
(

u(x′) − u(x)
)2

dx′dx +
1

4

∫

(1 − u2)2 dx,

on cylinders in R
n and with suitable constraints at infinity – here J is a (pos-

sibly anisotropic) positive interaction potential on R
n vanishing at infinity.

Functionals of this form model phase separation in systems which can be de-
scribed by one scalar parameter u, and admit two stable phases u = ±1; for
instance, they appear in equilibrium Statistical Mechanics as free energies of
continuum limits of Ising spin systems on lattices (see [2], [3], [7] and references
therein). Using rearrangement we obtain a simple direct proof of the existence
of optimal profiles for transitions for such a model in the n-dimensional case
(Corollary 3.3, cf. [1, Theorem 3.3]), and a new and rather optimal unique-
ness result (see Theorem 3.10 and Corollary 3.12). For related results about
travelling and stationary waves, we refer the reader to [3], [4], and references
therein.

Acknowledgements. I would like to thank Friedemann Brock for shar-
ing his deep knowledge of rearrangement principles: the present note is partly
the result of several conversations with him. I also gratefully acknowledge the
hospitality and support of the Max Planck Institute for Mathematics in the
Sciences in Leipzig, where an early version of this paper was written.

1. - Rearrangement of sets

Let us begin with some notation. In the following we use the words increas-

ing and positive in the weak sense, that is, to mean non-decreasing and non-
negative respectively. Given real numbers a and b, a∨b and a∧b mean max{a, b}
and min{a, b}, respectively, while a+ = max{a, 0} and a− = max{−a, 0} are
the positive and negative part of a. As usual, 1A stands for the characteristic
function of the set A. Sets and functions are always assumed Borel measurable,
and we often identify functions (and sets) which agree almost everywhere. For
every t ∈ R, the t-superlevel of a real function u is the set Et of all points x
such that t ≤ u(x). We write |B| for the Lebesgue measure of a set B in some
euclidean space; we also write “A = B a.e.” (resp. “A ⊃ B a.e.”) to mean that
A agrees with (resp. contains) B up to negligible subsets. The distributional
gradient of a function u is denoted by Du, unless it is locally summable, in
which case it agrees a.e. with the pointwise (approximate) gradient, denoted
by ∇u. For functions of one variable we simply write u̇.

Throughout this paper we identify R
n and the product R × R

n−1, and

write x1 for the first coordinate of x ∈ R
n. We fix a non-empty bounded open

subset Ω in R
n−1, and set D+ := [0,+∞) × Ω, D− := (−∞, 0) × Ω.

Definition 1.1. Let
�

be the class of all sets A included in the cylinder
R × Ω such that the symmetric difference A4D+ = (D+ \ A) ∪ (A \ D+) has
finite measure. The rearrangement of A ∈ � is the half-cylinder

(1.1) A∗ := [a,+∞) × Ω with a := |D+\A|−|A\D+|
|Ω| .

Remark 1.2. For n = 1 there is no Ω, D+ and D− become the positive and
negative half-line, respectively;

�
is the class of all A ⊂ R such that |A4D+|

is finite, and A∗ is the half-line [a,+∞) with a := |D+ \ A| − |A \ D+|. All
results mentioned below hold for n = 1 too, with some obvious modifications
in the statements.

Remark 1.3. The rearrangement of sets in
�

is the unique map which
takes sets A into half-cylinders A∗ of the form [a,+∞) × Ω and is measure-
preserving, in the sense that |A \ A∗| = |A∗ \ A|, or, equivalently,

(1.2) |D+ \ A| − |A \ D+| = |D+ \ A∗| − |A∗ \ D+|.

Notice that A = A∗ a.e. if and only if A agrees a.e. with a (right) half-cylinder.

Lemma 1.4. For every couple of sets A, B ∈ � we have

(1.3) |A \ B| ≥ |A∗ \ B∗|,

and equality holds if and only if either |A \ B| = 0 or |B \ A| = 0.

Proof. We can assume that A∗ includes B∗, otherwise |A∗ \B∗| = 0 and
there is nothing to prove. We write A \B as disjoint union of (A \B) ∩D+ =
(D+ \ B) \ (D+ \ A) and (A \ B) ∩ D− = (A \ D+) \ (B \ D+), and then

(1.4)
|A \ B| =

∣

∣(D+ \ B) \ (D+ \ A)
∣

∣ +
∣

∣(A \ D+) \ (B \ D+)
∣

∣

≥ |D+ \ B| − |D+ \ A| + |A \ D+| − |B \ D+|.

One readily checks that the last term in (1.4) is the measure of A∗ \ B∗ (cf.
(1.1)), and (1.3) is proved. The verification of the rest of the claim is straight-
forward.

The rearrangement of sets decreases perimeter. More precisely, let P (A)
denote the perimeter in the sense of Caccioppoli of A, relative to the open set
R × Ω (namely the total variation ‖D1A‖ of the distributional gradient of 1A

on R × Ω if it is a bounded Radon measure and +∞ otherwise – see, e.g., [8,
chapter 5]). Thus we have the following.

Lemma 1.5. For every A ∈ � there holds P (A) ≥ P (A∗) = |Ω|, and we
have equality if and only if A = A∗ a.e.
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Proof. It is obvious that P (A∗) = |Ω|. Assuming that P (A) is finite, we
have

(1.5) P (A) = ‖D1A‖ ≥ ‖D11A‖,

where D1 denote the (distributional) partial derivative in the direction x1. For
every y ∈ Ω we take the one-dimensional slice Ay := {t : (t, y) ∈ A}; then Ay

has finite perimeter P (Ay) in R for a.e. y ∈ Ω, and

(1.6) ‖D11A‖ =

∫

Ω

P (Ay) dy.

Since A belongs to
�

, Ay must belong to the one-dimensional equivalent of
�

for a.e. y, and then P (Ay) ≥ 1. Hence (1.5) and (1.6) yield the desired
inequality P (A) ≥ |Ω|. Moreover P (A) = |Ω| would imply that all partial
derivatives of 1A except D11A vanish, and that Ay is a right half-line for a.e.
y. Combining these two pieces of information we obtain that A is equal to a
half-cylinder a.e., and then A = A∗ a.e.

2. – Rearrangement of functions

The following definition can be found in [5, §2] and [9, §2] (cf. also [10,
§II.3] for a related one-dimensional concept).

Definition 2.1. Let � be the class of all functions u : R × Ω → [−1, 1]
whose t-superlevels belong to

�
for every t ∈ (−1, 1). The increasing rear-

rangement of u ∈ � is the function u∗ : R × Ω → [−1, 1] whose t-superlevels
are the rearrangements of the t-superlevels of u for every t ∈ (−1, 1).

Remark 2.2. By (1.1) the t-superlevel of u∗ is the cylinder [au(t), +∞)×
Ω, where

(2.1) au(t) :=
|D+ \ Et| − |Et \ D+|

|Ω| for −1 < t < 1,

and Et is the t-superlevel of u. We call au the distribution function of u, in
analogy with a similar notion introduced by Hardy, Littlewood and Polya.

If we define the distance between two sets as the measure of their symmetric
difference, the map t 7→ Et is left-continuous for every u ∈ � , and then the
distribution function au is increasing and left-continuous. Using this fact one
can show that the function u∗ is well-defined and can be written as u∗(x) :=
w(x1) with w : R → [−1, 1] increasing and right-continuous; in fact w is the
(left) inverse of au where au is strictly increasing.

Notice that u = u∗ a.e. if and only if u agrees a.e. with an increasing
function of the first variable.

Remark 2.3. Lemma 1.4 implies that the measure of pre-images of in-
tervals of type B = [t1, t2) with −1 < t1 < t2 < 1 is preserved by increasing
rearrangement, that is

∣

∣{x : u(x) ∈ B}
∣

∣ =
∣

∣{x : u∗(x) ∈ B}
∣

∣.

Since the class of all sets B relatively compact in (−1, 1) which satisfy this iden-
tity is closed by finite disjoint union, countable increasing union and countable
decreasing intersection, it contains all Borel sets relatively compact in (−1, 1).

Remark 2.4. Since u∗ is a bounded increasing function of the first vari-
able, Du∗ is a bounded Radon measure. If in addition u is of class W 1,1

loc , then
Du∗ also belongs to L1(R × Ω).

Let us prove the latter claim. Since u∗(x) can be written as v(x1) with
v increasing, all its partial derivatives but D1u

∗ vanish, while D1u
∗ agrees

with the product measure v̇ × µ, where v̇ is the measure derivative of v and
µ is the (n − 1)-dimensional Lebesgue measure on Ω. Therefore, proving that
Du∗ belongs to L1 reduces to show that v̇(A) = 0 for every A ⊂ R such that
|A| = 0. Consider now the maximal increasing multifunction ṽ corresponding
to v (1) and set B := ṽ(A). Then v̇(A) = |B|, and, taking into account Lemma
1.5,

v̇(A) = |B| =

∫

B

P (E∗
t )

|Ω| dt ≤
∫

B

P (Et)

|Ω| dt =
1

|Ω|

∫

u−1(B)

|∇u| dx,

where E∗
t and Et denote the t-superlevels of u∗ and u respectively, and the last

equality follows from the coarea formula (see [8, §5.5]). Now we notice that
A = ṽ−1(B) = v−1(B), and then A × Ω = (u∗)−1(B). If A is negligible in
R, then (u∗)−1(B) is negligible in R × Ω, and so is u−1(B) (by Remark 2.3).
Hence v̇(A) = 0 by the previous formula.

Remark 2.5. The class � contains all functions u : R×Ω → [−1, 1] such
that u(x) tends uniformly to ±1 as x1 → ±∞. If we set ū := +1 on D+ and
ū := −1 on D−, then � also includes the class �p of all u : R × Ω → [−1, 1]
such that u − ū belongs to Lp(R × Ω), with 1 ≤ p < +∞ (notice that each
�p can be endowed with the complete distance d(u, v) := ‖u − v‖p). More
generally, a function u : R × Ω → [−1, 1] belongs to � if and only if there
exists a convex function g : [−2, 2] → [0,+∞], null in 0 and strictly positive
elsewhere, such that

∫

g(u − ū) is finite.
We just sketch the proof of the last claim. To construct g for a given u ∈ X,

we use the following identity (which can be derived in a similar way as the
second formula in the proof of Theorem 2.6 below): for every v : R×Ω → (−2, 2)
and every g as above

∫

R×Ω

g(v(x)) dx =

∫ 2

0

ġ(s) · |{v ≥ s}| ds −
∫ 0

−2

ġ(s) · |{v ≤ s}| ds.

(1) Namely, the function which associates to each y ∈ R all values t between
the left and right limit of v at y (thus ṽ agrees with v at all points y where v
is continuous, that is, all but countably many).
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Let Et denote the t-superlevel of u for every t ∈ (−1, 1). Then, for s ∈ (0, 2), the
s-superlevel of u− ū is Es−1 \D+, while for s ∈ (−2, 0) the s-sublevel of u− ū is
D+ \Es+1. Therefore we take g so that g(0) := 0, ġ(s) := (1 ∨ |Es−1 \D+|)−1

for s ∈ (0, 2), and ġ(s) := −(1 ∨ |D+ \ Es+1|)−1 for s ∈ (−2, 0). Thus ġ
is increasing and smaller than 1 in modulus, and then g is convex, positive,
and 1-Lipschitz. Moreover, the formula above (applied to v := u − ū) yields
∫

g(u − ū) ≤ 4. Conversely, given u such that
∫

g(u − ū) is finite for some g,
for t ∈ (−1, 1) we obtain that D+ \ Et is the (t − 1)-sublevel of u − ū, while
Et \ D+ is the (t + 1)-superlevel of u − ū, and both must have finite measure
by the formula above (applied to v := u − ū); hence u belongs to � .

The properties of rearrangement of sets listed in Remark 1.3 and Lemmas
1.4 and 1.5 are mirrored by the corresponding properties of rearrangement of
functions given, respectively, in Theorem 2.6, Proposition 2.7 (and Theorem
2.11), and Theorem 2.10 below.

Theorem 2.6 was already proved in the one-dimensional case in [1, §5],
weaker versions of the n-dimensional statement were given in [5, §2], and [9,
§2]. The idea of the proof of Proposition 2.7 is taken from the proof of [1,
Lemma 5.9]. The first part of Theorem 2.10 was already proved for g(t) = t2

in [5, §2], and generalized to g(t) = tp in [9, §2]. Some of these results are well-
known for radial decreasing rearrangement (see for instance [10, §II.9], [11], and
references therein). Notice however that the second part of Theorem 2.10 is
stronger than the corresponding statement for radial decreasing rearrangement.

Theorem 2.6. For every positive lower semicontinuous function g :
[−1, 1] → [0, +∞] and every u ∈ � there holds

(2.2)

∫

R×Ω

g
(

u(x)
)

dx =

∫

R×Ω

g
(

u∗(x)
)

dx.

Proof. We can assume that g vanishes at ±1, otherwise both sides of (2.2)
are infinite and there is nothing to prove. Since every lower semicontinuous
function g vanishing at ±1 can be monotonically approximated by smooth
functions vanishing in a neighborhood of ±1, it suffices to prove (2.2) for such
functions g only.

If g is of class C1 and g(±1) = 0, then g(s) =
∫ s

−1
ġ = −

∫ 1

s
ġ, and

g
(

u(x)
)

=

∫ 1

−1

ġ(t) 1Et
(x) dt = −

∫ 1

−1

ġ(t)
(

1 − 1Et
(x)

)

dt,

Hence
∫

R×Ω

g
(

u(x)
)

dx =

∫

D−

(

∫ 1

−1

ġ(t) 1Et
(x)dt

)

dx−
∫

D+

(

∫ 1

−1

ġ(t)
(

1−1Et
(x)

)

dt
)

dx.

Now we apply Fubini’s theorem to the right-hand side (2), and integrate with

(2) We should verify that the function ġ(t) 1Et
(x) – and similarly ġ(t)

(

1 −
1Et

(x)
)

– is summable on D−×(−1, 1). This follows from the fact that ġ(t) = 0
for t ≤ −1 + δ for some δ > 0 (by assumption), while |Et \ D+| is bounded by
|E−1+δ \ D+| for t ≥ −1 + δ.

respect to x:

(2.3)

∫

R×Ω

g
(

u(x)
)

dx =

∫ 1

−1

ġ(t)
(

|Et \ D+| − |D+ \ Et|
)

dt.

Eventually we apply identity (2.3) to
∫

g(u) and
∫

g(u∗), and then (1.2) yields
(2.2).

Proposition 2.7. Let be given a lower semicontinuous function g :
[−2, 2] → [0,+∞] which is positive, convex, null at 0, and even (i.e., g(s) =
g(−s)). Then for every u, v ∈ � there holds

(2.4)

∫

R×Ω

g(u − v) ≥
∫

R×Ω

g(u∗ − v∗).

Proof. Since every l.s.c. convex functions can be monotonically approx-
imated by smooth ones, it suffices to prove the claim for g of class C2. Since
g(0) = ġ(0) = 0, for every s, s′ such that s < s′ there holds

g(s′ − s) =

∫ s′

s

∫ s′

t

g̈(t′ − t) dt′dt.

Let Et and Ft denote the t-superlevels of u and v respectively; then one can
readily check that the previous identity yields

g
(

u(x)−v(x)
)

=

∫ 1

−1

∫ 1

t

g̈(t′−t)
[

1E
t′
(x) (1−1Ft

(x))+1F
t′
(x) (1−1Et

(x))
]

dt′dt,

and integrating over all x ∈ R × Ω

(2.5)

∫

R×Ω

g
(

u(x) − v(x)
)

dx =

∫ 1

−1

∫ 1

t

g̈(t′ − t)
(

|Et′ \ Ft| + |Ft′ \ Et|
)

dt′dt.

Inequality (2.4) follows by applying identity (2.5) to
∫

g(u−v) and
∫

g(u∗−v∗),
and taking Lemma 1.4 into account.

Remark 2.8. If g is of class C2, we deduce from the proof above (and
the second part of Lemma 1.4) that if equality holds in (2.4), then for every
t, t′ ∈ (−1, 1) we have either g̈(t′ − t) = 0, or Et′ ⊂ Ft a.e., or Et′ ⊃ Ft a.e. (3)

Remark 2.9. Taking g(t) := |t|p with 1 ≤ p < ∞, (2.4) becomes

(2.6) ‖u∗ − v∗‖p ≤ ‖u − v‖p.

Hence increasing rearrangement is a 1-Lipschitz mapping of �p into itself (cf.
Remark 2.5).

(3) Here we used the left-continuity in t of Et and Ft (cf. Remark 2.2) to pass
from “almost every” to “every” t, t′ ∈ (−1, 1).
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Theorem 2.10. Let be given a function g : [0,+∞) → [0,+∞) which is
finite, convex, null at 0 and strictly increasing. Then, for every u ∈ � ∩W 1,1

loc

we have (4)

(2.7)

∫

R×Ω

g
(

|∇u|
)

≥
∫

R×Ω

g
(

|∇u∗|
)

.

Moreover, when the right-hand side is finite, equality holds if and only if u = u∗

a.e.

Proof. Since g is convex, strictly increasing, and null at 0, for every s > 0
there exist a > 0 and b ≥ 0 (both depending on s) such that

(2.8) g(s) = as − b and g(s′) ≥ as′ − b for all s′ ≥ 0.

We take a and b for s := |∇u∗(x)|: since u∗ has the same gradient at all points
where it takes the same value, a and b can be chosen (5) so that they only
depend on the value of u∗. Now the following chain of inequalities gives (2.7)

(2.9)

∫

R×Ω

g
(

|∇u∗|
)

dx =

∫

R×Ω

a(u∗)|∇u∗| − b(u∗) dx

=

∫ 1

−1

a(t) P (E∗
t ) dt −

∫

R×Ω

b(u∗) dx

≤
∫ 1

−1

a(t) P (Et) dt −
∫

R×Ω

b(u) dx

=

∫

R×Ω

a(u)|∇u| − b(u) dx ≤
∫

R×Ω

g
(

|∇u|
)

dx.

The first identity and the last inequality follow from the choice of a and b
(cf. (2.8)); we get the second and third identities by applying the coarea
formula (see [8, §5.5]) to u∗ and u, respectively; the first inequality follows
from Lemma 1.5 and Theorem 2.6. Moreover, if the first inequality is not
strict, then P (E∗

t ) = P (Et) for a.e. t, and then u = u∗ a.e. (cf. Lemma 1.5).
Notice that this proof does not work if both integrals at the second line

of (2.9) are infinite. Therefore a slight modification is required: we assume
that the integral of g(|∇u∗|) is finite, fix a small parameter δ > 0, and choose
0 < s1 < s2 < +∞ so that the integral of g(|∇u∗|) over all x such that
|∇u∗| < s1 or |∇u∗| > s2 is smaller than δ. Then we take a and b as before
for the values of u∗ such that s1 ≤ |∇u∗| ≤ s2, and set a = b = 0 for the
others. Now both integrals at the second line of (2.9) are finite, and we get

(4) By Remark 2.4, ∇u∗ is an L1 function, and then both sides of (2.7) are
well-defined.
(5) If g is not differentiable at s, the corresponding values for a and b are not
uniquely determined; consequently the choice of a and b may be not Borel
measurable with respect to the value of u∗. This can be fixed by a suitable
measurable selection theorem, e.g. [6, Theorem III.6].

∫

g(|∇u∗|)− δ ≤
∫

g(|∇u|), which yields (2.7) by letting δ → 0. The rest of the
proof can be similarly fixed.

For the rest of this section we assume that Ω is a parallelepiped spanned
by the vectors v1, . . . , vn−1 ∈ R

n−1, namely Ω :=
{

∑

αivi : αi ∈ (0, 1)
}

. We
also assume that all functions on R × Ω (and corresponding superlevels) are
extended to R

n by Ω-periodicity, so that u(x) = u(x + vi) a.e. for every i. For
all such functions we consider

(2.10) G(u) :=

∫

R×Ω

∫

Rn

J(h) g
(

u(x + h) − u(x)
)

dh dx,

where g is taken as in Proposition 2.7, and J is a positive Borel function on
R

n.

Theorem 2.11. If G is given in (2.10), for every u ∈ � there holds

(2.11) G(u) ≥ G(u∗).

If in addition we have that g is of class C2 and g̈(0) > 0, and J is strictly
positive in a neighborhood of 0, then G(u) = G(u∗) < +∞ implies u = u∗ a.e.

Proof. If we denote by τhu the translated function u(x+h), G(u) can be
rewritten as

(2.12) G(u) =

∫

Rn

J(h)
[

∫

R×Ω

g(τhu − u)
]

dh,

and to prove (2.11) it suffices to apply inequality (2.4) to
∫

g(τhu−u) for every
h, and take into account the identity (τhu)∗ = τh(u∗), which follows from the
identity (E − h)∗ = E∗ − h.

We prove now the second part of the claim. Let be given u such that
G(u) = G(u∗) < ∞. Then

∫

g(τhu − u) =
∫

g(τhu∗ − u∗) for a.e. h such that
J(h) > 0, and therefore also for every h in the support of J . By Remark 2.8 and
the assumptions on g and J , this implies that for every h in a neighborhood U of
0 and every t ∈ (−1, 1), one of the following inclusions must hold: Et −h ⊃ Et

a.e. or Et − h ⊂ Et a.e.
Let t be fixed for the time being, and take h ∈ U so that the first component

h1 is strictly positive. Since the second inclusion implies E∗
t − h ⊂ E∗

t , which
cannot hold when h1 > 0, we conclude that Et − h ⊃ Et a.e. Moreover, if we
denote by Ẽt the set of density points of Et, this inclusion becomes

(2.13) Ẽt ⊃ Ẽt + h.

Now, let H be the open half-space of all h ∈ R
n with h1 > 0, and consider the

set of all h ∈ H such that inclusion (2.13) holds. Since this set contains U ∩H,
which is a neighborhood of 0 in H, and is closed under summation, then it
must agree with H.
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Therefore, Ẽt includes Ẽt+H, which is the open half-space (a,+∞)×R
n−1,

where a is the infimum of h1 over all h ∈ Ẽt. On the other hand, Ẽt is clearly
included in [a,+∞)×R

n−1. Hence Et = (a,+∞)×R
n−1 a.e., and then Et = E∗

t

a.e. (cf. Remark 1.3). Since this holds for every t ∈ (−1, 1), we have proved
that u = u∗ a.e.

Remark 2.12. The assumption on J in the second part of Theorem 2.11
can be weakened up to requiring that the approximate tangent cone (6) at 0 of
the set where J is strictly positive is R

n. The following example shows that
this assumption is close to optimal.

Example 2.13. Assume that J is supported on the cone

Ca :=
{

h ∈ R
n : |h1| ≥ a|h|

}

for some a > 0, and let E be the set of all x = (x1, x̃) such that x1 ≥ f(x̃),
where f : R

n−1 → R is a non-constant Ω-periodic function with Lipschitz
constant smaller than a/

√
1 − a2. Let u be the function equal to 1 on E and

to −1 elsewhere, so that all superlevels of u are equal to E.
The definition of E yields x − h ∈ E for every x ∈ E and every h ∈ Ca

with h1 ≤ 0, i.e., E − h ⊂ E. Conversely E − h ⊃ E if h ∈ Ca and h1 ≥ 0.
From Remark 2.8 we deduce that

∫

g(τhu− u) =
∫

g(τhu∗ − u∗) for all h ∈ Ca

(as in the proof of Theorem 2.11, τhu denotes the translated function u(x+h)),
and then G(u) = G(u∗) by (2.12). On the other hand u does not agree with
u∗ because the function f which determines E is not constant.

3. – Some applications

Theorems 2.6 and 2.10 have the following immediate corollary.

Corollary 3.1. Let be given p ∈ (1,∞) and a positive continuous func-
tion W on R which vanishes at ±1 only. Then the infimum of the functional

(3.1)

∫

R×Ω

|∇u|p + W (u),

on � is equal to the infimum on the subclass of rearranged functions, and every
minimizer u ∈ � agrees a.e. with u∗.

It follows immediately that every minimizer u can be written as u(x) =
w(x1 − h) for a.e. x, where h belongs to R and w minimizes

∫

R

|ẇ|p + W (w)

(6) The approximate tangent cone at y of a set S ⊂ R
n is the cone generated

by the cluster points of every sequence yn−y
|yn−y| , where all yn are density points

of S, and converge to y as n → ∞.

among all increasing functions on R which tend to ±1 at ±∞ and satisfy the
normalization w(0) = 0. The existence of such minimizers can be easily proved
by the direct method (cf. the proof of Corollary 3.3 below), and agrees with
the unique solution of the following Cauchy problem (7)

ẇ =

[

W (w)

p − 1

]1/p

, w(0) = 0.

The fact that the infimum of (3.1) is achieved on the class of rearranged
functions was proved in [9, Theorem 1.1], and in [5, Theorem 1] for p = 2, but
it can also be directly deduced from a sharp lower bound á la Modica-Mortola
of the integral in (3.1) (see for instance [13]). The second part of Theorem 2.10
allows a simple direct proof of the fact that every minimizer of (3.1) must be a
function of the first variable only.

Minimizers of (3.1) in � are the n-dimensional optimal profiles for transi-
tion in the Cahn-Hilliard model for phase separation (cf. [13]). An interesting
variation of that model is obtained by replacing the first term in (3.1) by a
non-local interaction energy, namely setting

(3.2) F (u) :=
1

4

∫

R×Ω

∫

Rn

J(h)
(

u(x + h)− u(x)
)2

dh dx +

∫

R×Ω

W
(

u(x)
)

dx,

where W is taken as above and J is a positive even function on R
n which

satisfies

(3.3)

∫

Rn

J(h) dh = 1 ,

∫

Rn

J(h) |h| dh < +∞.

For the rest of this paper we assume, as at the end of the previous section, that
Ω is a parallelepiped spanned by the vectors v1, . . . , vn−1 ∈ R

n−1, and that all
functions on R × Ω are extended to R

n by Ω-periodicity (so that the double
integral in (3.2) makes sense). The fact that F is not identically +∞ on � is
granted by the second condition in line (3.3) (see [1, §4c] for a more detailed
analysis).

Theorems 2.6 and 2.11 immediately yield the following.

Corollary 3.2. The infimum of F on � is equal to the infimum on
the subclass of rearranged functions. If in addition J is strictly positive in a
neighborhood of 0 then every minimizer u ∈ � agrees a.e. with u∗.

A simple computation shows that every function u on R
n which depends

only on the first variable, that is, u(x) = w(x1) for some w defined on R,
satisfies

(3.4) F (u) = |Ω| · F (w),

(7) Multiply by ẇ both sides of the identity p(p − 1)|ẇ|p−2ẅ = Ẇ (w), which
is the Euler-Lagrange equation of

∫

|ẇ|p + W (w), and then integrate.
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where

(3.5) F (w) :=
1

4

∫

R

∫

R

J̄(h)
(

w(x + h) − w(x)
)2

dh dx +

∫

R

W
(

w(x)
)

dx,

and

(3.6) J̄(h) :=

∫

Rn−1

J(h, h̃) dh̃.

In particular, identity (3.4) applies to rearranged functions, and therefore
Corollary 3.2 implies that F is minimized on � by functions of the form
u(x) := w(x1 − h) with h ∈ R, where w minimizes F on the class (cf. Remark
2.2)

(3.7) � :=

{

w : R → [−1, 1]

∣

∣

∣

∣

∣

w increasing, right-continuous, such that
w(x) ≥ 0 for x > 0, w(x) ≤ 0 for x < 0,
and limw = ±1 at ±∞

}

.

The existence of minimizers of F on � can be easily proved by the direct
method (see the proof of [1, Theorem 2.4]). Take a minimizing sequence (wk);
possibly passing to a subsequence, we can assume that they converge a.e. to
a function w (8). Obviously w agrees a.e. with an increasing right-continuous
function, takes values in [−1, 1], satisfies w(x) ≥ 0 for x > 0 and w(x) ≤ 0 for
x < 0 (cf. (3.7)), and lim inf F (wk) ≥ F (w) by Fatou’s lemma. Since F (w) is
finite and W is strictly positive in (−1, 1), the limit of w at ±∞ must be ±1.
Then w belongs to � , and minimizes F .

We have thus proved the following.

Corollary 3.3. There always exists at least one minimizer w of the one-
dimensional functional F on the class � , and every function u on R

n of the
form u(x) := w(x1 + h) with h ∈ R minimizes the n-dimensional functional F
on � . If in addition J is strictly positive in a neighborhood of 0, all minimizers
of F on � can be written as above.

Remark 3.4. In the phase separation model mentioned above, minimizers
of F on � are called instantons, or optimal profiles for transition (with respect
to the direction x1 – notice that F is not isotropic unless J is).

The fact that the infimum of F over � is achieved on rearranged functions
was proved, in a much more complicated way, in [1, §3]. What is new in
the previous corollaries is that every minimizer of F on � agrees with its
rearrangement, and can therefore be obtained from a minimizer of F on � .

We remark that rearrangement techniques plays an essential rôle in the
proof not only of the monotonicity of minimizers of F , but also of their exis-
tence. Indeed, even in dimension n = 1, due to the lack of compactness of X,

(8) This is a well-known compactness result for uniformly bounded sequences
of increasing functions. Alternatively, one can notice that the sequence (wk) is
bounded in BVloc(R), and therefore pre-compact in Lp

loc(R) for every p < ∞.

the direct method can be hardly applied directly to the minimization of F (cf.,
however, [1, §4d]).

Remark 3.5. No integrability assumptions on J are required for the first
parts of Corollaries 3.2 and 3.3 to hold; in particular (3.3) can be removed.
For the second parts of both corollaries, the positivity assumption on J can be
weakened as in Remark 2.12, while the integrability assumptions in (3.3) can
be replaced by

∫

R

J̄(h) · (h ∧ h2) dh < +∞.

Indeed this condition is necessary and sufficient to ensure that F is not identi-
cally +∞ on � (see [1, Theorem 4.6]), or, equivalently, that F is not identically
+∞ on X.

Remark 3.6. By Corollary 3.3, every minimizer w of F on � also min-
imizes F on the one-dimensional version of � , which contains in particular
all functions on R bounded between −1 and 1 converging to ±1 at ±∞ (cf.
Remark 2.5). A simple truncation argument shows that the boundedness as-
sumption can be removed (9). Hence, if W is of class C1(R) and positive, a
standard computation (see, for instance, [1, §4a]) shows that w must satisfy
the Euler-Lagrange equation

(3.8) J̄ ∗ w − w = Ẇ (w) , lim
x→±∞

w(x) = ±1,

where ∗ is the usual convolution product, and the equality holds almost every-
where.

Existence and uniqueness results for solutions of (3.8) have been established
in [7] for a special choice of W , and then generalized in [3] to include also
travelling waves for the associated parabolic equation wt = J̄ ∗w −w − Ẇ (w).
An extension of these results to the n-dimensional case has been given in [4].
Incidentally, Corollary 3.3 provides an alternative simple proof of the existence
of solutions of (3.8) (cf. [7, Theorem 1.1], [4, Theorem 2.7]).

Remark 3.7. Together with Corollary 3.3, the uniqueness up to transla-
tions of solutions of (3.8) proved in [3, Theorem 4.1], imply the uniqueness up
to translations of minimizers of F on � (cf. Corollary 3.12 below). The latter
result requires that J is of class C1, W is of class C2, and the interval (−1, 1)
splits into three sub-intervals where t+ Ẇ (t) is either increasing or decreasing.
Thus the positivity of J in a neighborhood of 0 is only needed in the reduction
to the one-dimensional case. The following example shows that it cannot be
completely removed.

Example 3.8. If we set W (t) := (1 − t2)/2, the function w given by
w :≡ 1 on [0,+∞) and w :≡ −1 on (−∞, 0) minimizes F on � for every
admissible choice of J (see [1, §2.19]). On the other hand, if we take J and u

(9) Replacing w with the truncated function (w ∧ 1) ∨−1 reduces the value of
F .



  

470 GIOVANNI ALBERTI SOME REMARKS ABOUT A NOTION OF REARRANGEMENT 471

as in Example 2.13, we have F (u) = F (u∗), and u∗ minimizes F on � because
u∗(x) = w(x1 − h) for some h. Hence u minimizes F on � , too, but does not
agree with any translation of u∗.

In the rest of this section we briefly sketch an alternative proof of the
uniqueness of minimizers of F on � which relies on an interesting convexity
argument. We will assume that W is of class C1(R) and J̄ is strictly positive
in a neighborhood of 0 (cf. Corollaries 3.2 and 3.3). We begin with a simple
observation.

Lemma 3.9. Every increasing solution w of the equation J̄ ∗u−u = Ẇ (u)
is either constant or strictly increasing. Hence every minimizer of F on � is
strictly increasing.

Proof. Take a maximal open (possibly unbounded) interval I where w is
constant. Equation J̄ ∗ u − u = Ẇ (u) implies that J̄ ∗ w is constant on I and
then (J̄ ∗ w)′ = J̄ ∗ ẇ = 0 a.e. in I. Since ẇ is a positive measure and J̄ is a
positive function, ẇ must vanish on I + U where U is any interval containing
0 where J̄ is strictly positive. Hence w is constant on I + U , which contradicts
the maximality of I unless I = R.

Using the distribution function introduced in Remark 2.2, we can rewrite
the one-dimensional version of identity (2.3), with u and g replaced by w and
W respectively, as follows (10)

(3.9)

∫

R

W (w(x)) dx = −
∫ 1

−1

Ẇ (t) aw(t) dt =

∫ 1

−1

W (t) dȧw(t).

Similarly, identity (2.5) becomes, for every w and v in � ,
∫

R

g
(

v(x)−w(x)
)2

dx =

∫ 1

−1

∫ 1

t

g̈(t′−t)
[

(aw(t)−av(t′))++(av(t)−aw(t′))+
]

dt′dt,

and replacing v(x) with w(x + h) and g(t) with t2,
∫

R

(

w(x + h) − w(x)
)2

dx

=

∫ 1

−1

∫ 1

t

2
[

(aw(t) − aw(t′) + h)+ + (aw(t) − aw(t′) − h)+
]

dt′dt.

Now we set K(y) := 1
2

∫

J̄(h)
[

(−y + h)+ + (−y − h)+
]

dh, and integrate the
previous identity in 1

4 J̄(h) dh

(3.10)
1

4

∫

R

∫

R

J̄(h)
(

w(x+h)−w(x)
)2

dh dx =

∫ 1

−1

∫ 1

t

K
(

aw(t′)−aw(t)
)

dt′dt.

(10) The first identity in (3.9) was proved only for smooth W vanishing in a
neighborhood of ±1, and indeed the second integral in (3.9) may be not well-
defined otherwise. Yet the last integral is always well-defined because both the
function W and the measure ȧw are positive; hence the equality of the first
and last term in (3.9) holds for every W of class C1, and can be proved by
increasing approximation.

Formulas (3.9) and (3.10) yield the remarkable identity (cf. [1, Theorem 2.11)

(3.11) F (w) =

∫ 1

−1

∫ 1

t

K
(

aw(t′) − aw(t)
)

dt′dt +

∫ 1

−1

W (t) dȧw(t).

Notice that K is convex (being an average of convex functions), and then the
right-hand side of (3.11) is a convex functional of aw. This is the key point in
the proof of the following uniqueness result.

Theorem 3.10. If W is of class C1(R) and J̄ is strictly positive in a
neighborhood of 0, then the minimizer of F on � is unique.

Proof. Consider two functions w0 and w1 in � , with distribution func-
tions a0 and a1, such that F (w0) and F (w1) are both finite. For every s ∈ (0, 1)
let ws be the function in � with distribution function

as := sa1 + (1 − s)a0.

We compute the second derivative in s of F (ws) using formula (3.11): since
K̈ = J̄ a.e. (recall that J , and therefore also J̄ , are even) and the second
integral at the right-hand side of (3.11) is linear in aw, we get
(3.12)

d2

ds2
F (ws) =

∫ 1

−1

∫ 1

t

J̄
(

as(t
′) − as(t)

) (

a1(t
′) − a0(t

′) − a1(t) + a0(t)
)2

dt′dt.

Since J̄ is positive, F (ws) is a convex function of s.
Assume now that w0 and w1 minimize F on � . By Lemma 3.9, they are

both strictly increasing, and then a0 and a1 are continuous on (−1, 1), vanish
at 0 (cf. (3.7)) and converge to ±∞ at ±1. On the other hand, the function
F (ws), being convex in s, must also be constant, that is, the integral at the
right-hand side of (3.12) must vanish for every s ∈ (0, 1). Combining this fact
and the positivity of J̄ in a neighborhood of 0, we deduce that

a1(t
′) − a0(t

′) = a1(t) − a0(t)

for every t ∈ (−1, 1) and every t′ in some neighborhood of t. Hence a1(t)−a0(t)
is constant in t, and must vanish everywhere because a1(0) − a0(0) = 0. Thus
a0 ≡ a1, and w0 ≡ w1.

Remark 3.11. Theorem 3.10 holds even if W is continuous and of class
C1 on (−1, 1). Under these assumptions a minimizer w of F on � satisfies
the equation J̄ ∗ w − w = Ẇ (w) only on the set where −1 < w < 1, and a
modification of the proof of Lemma 3.9 yields that w is strictly increasing on
this set (but not elsewhere, cf. Example 3.8). Hence the distribution function
aw is continuous in (−1, 1), which is what we need in the proof of Theorem
3.10.

Combining Theorem 3.10 and Corollary 3.3, we obtain the following.
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Corollary 3.12. If W is of class C1 and J is strictly positive in a neigh-
borhood of 0, then the minimizers of F on � are unique up to translations.
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