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SUMMARY 
The degree-one deformation of the Earth (and the induced discrepancy between 
the figure centre and the mass centre of the Earth) is computed using a theoretical 
approach (Love numbers formalism) at short timescales (where the Earth has an elastic 
behaviour) as well as at  long timescales (where the Earth has a viscoelastic or quasi-fluid 
behaviour). For a Maxwell model of rheology, the degree-one relaxation modes 
associated with the viscoelastic Love numbers have been investigated: the M ,  mode 
does not exist and there is only one transition mode (instead of two) generated by a 
viscosity discontinuity. 

The translations at  each interface of the incompressible layers of the earth model 
[surface, 670 km depth discontinuity, core-mantle boundary (CMB) and inner-core 
boundary (ICB)] are computed. They are elastic with an order of magnitude of about 
1 mm when the excitation source is the atmospheric continental loading or a magnetic 
pressure acting at  the CMB. They are viscoelastic when the earth is submitted to 
Pleistocene deglaciation, with an order of magnitude of about 1 m. In a quasi-fluid 
approximation (Newtonian fluid) because of the mantle density heterogeneity their 
order of magnitude is about 100 m (except for the ICB, which is in quasi-hydrostatic 
equilibrium at this timescale). 

Key words: deformation, elasticity, relaxation modes, viscoelasticity . 

1 INTRODUCTION 

Degree-one deformation has particular characteristics related to geodesy as well as to mechanics: it is related to the centre of mass of 
the Earth and is strongly dependent on the choice of the origin of the reference frame. 

We have first to provide some precise definitions concerning these reference frames. We consider an initial undeformed reference 
sphere that is radially stratified. The geometric centre of the external spherical surface is coincident with that of each layer, and is 
identical to the centre of mass of the whole sphere. For a degree-one deformation, the external surface of the planet remains spherical 
but is translated with respect to the initial configuration; similarly, each internal layer of the planet is translated but the centre of 
mass does not change and remains fixed relative to the centre of the initial reference sphere. We define the figure centre as the geo- 
metric centre of the translated external spherical surface. The geometric centres of the various internal layers move in the deformed 
configuration and are different to the figure centre; they do not play any geodetic role and will not be given precisely (but they may be 
easily computed). 

The sources of degree-one deformation are essentially internal or external redistributed loads (including the atmosphere and 
the oceans), that is without net change in the total mass of the Earth. With respect to the reference configuration, a load is the 
expression of a mass transfer from a given hemisphere to the other one. This is observed for atmospheric and oceanic loading. 
For solid-mass anomalies, such as ice sheets, cool internal zones, surface tectonics, etc., the conservation of the centre of mass 
imposes a displacement of the particles in a direction opposite to that of the mass anomalies. This displacement is distributed 
within the whole planet. 
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I00 M. Gveff-LefStz and H. Legros zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Degree-one deformation involving a translation of the external surface may have some geodetic consequences. I n  fact, obser- 

vation stations, being located on the external surface, undergo the surface translation. If these stations are used t o  define zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAil reference 
frame, the centre of this frame will be the figure centre of the translated Earth and will not be the centre of mass. This discrepancy 
between the centre of figure and the centre of mass may be taken into account in the observations of satellites, whose trajectories are 
related to the centre of mass. Note that, in addition to this surface translation, the stations also undergo tangential displacements 
(for degree one as well as for the other degrees), which create perturbations, especially in the angular measurements. On the other 
hand, note that, contrary to the solid surface, which is translated, the oceans, whose form is related to the equipotential, do not move 
(in the absence of atmospheric perturbation), because the conservation of the centre of mass means that there is no perturbation in 
the surface potential, that is in the degree-one geoid. The observation of variations in sea level could be a simple test to detect 
degree-one deformation. 

Another type of degree-one deformation is the degree-one tidal potential due to the terrestrial bulge acting on the 
Moon (Wilhelm 1983; Dahlen 1993). This source is very different from the loading excitation. In fact, the reference frame 
related to the Earth’s centre of mass moves with respect to the centre of mass of the Earth-Moon system. The resulting 
acceleration could be detected with gravimeters, for example, but it is a rigid translation and there is no relative displacement 
within the Earth. 

In this paper, we work in a frame related to the Earth with an origin at the centre of mass itself and we assume that 
the sources of deformation do not create a net change in the total mass of the Earth. In this frame, the total degree-one 
force acting has to be equal to zero (Okubo zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Endo 1986); this is the case for a surface load, for example, where the effect in 
potential is compensated by the pressure effect, such that the total degree-one resulting force is zero (e.g. Farrelll972; Cathles 1975). 
A degree-one redistributed surface load (that is without net changes in the total mass) will involve degree-one displacements 
at the surface and within the whole planet, and in particular a discrepancy between the centre of figure and the conserved 
centre of mass. 

The aim of this paper is to investigate these deformations at different timescales. 

(1) At short timescales, the behaviour of the Earth is elastic. Atmospheric and oceanic loading are observed (with periods of less 
than two years), with a degree-one coefficient in the spherical-harmonic expansion (Gegout 1995), due both to the distribution of the 
oceans at the Earth’s surface (most of the continents are in the Northern hemisphere) and to the motions within the atmosphere. A 
spherical-harmonic analysis of the pressure field variation shows the existence of the degree-one loading term (Gegout 1995), which 
may be considered as a transfer of atmospheric masses from a given hemisphere to the other one: this transfer is compensated by a 
translation of the Earth (in the opposite direction) in order to conserve the centre of mass. 

(2) At decade timescales, magnetic pressures (Hulot 1992) as well as viscous tractions exist at the core-mantle boundary 
(CMB) and at the inner-core-outer-core boundary (ICB), induced by the fluid motions. These internal pressures and tangential 
tractions involve degree-one elastic deformation. 

(3) At longer timescales, the melting of the Canadian, Fennoscandian and Antartic ice sheets produces surface loads containing 
degree-one terms (e.g. Peltier & Wu 1983). Taking into account the viscoelastic response of the Earth (Peltier 1974; Wu & Peltier 
1982), this deglaciation involves present degree-one deformation within the Earth (Wu 1990). 

(4) At geological timescales, internal loading is induced by density anomalies and deforms the Earth (Hager 1984; Richards 
& Hager 1984; Hager zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al. 1985; Forte, Dziewonski & Woodward 1993; Greff-Lefftz & Legros 1996). There is a shift of the surface 
with respect to the hydrostatic equipotential (that is a shift of the figure centre with respect to the mass centre), which will be 
computed. 

The equations governing the elastic deformation within a pre-stress planet are the impulsion equation, the conservation of mass 
and the Poisson equation. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA rheological law is necessary to relate the stress to the strain. In the classical elastogravitational theory, 
the displacement vector field and the traction are expanded in spherical spheroidal vectors of degree n and order m. For n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 1, the 
equations may be written as sixth-order differential equations in the form given by Alterman, Jarosch & Pekeris (1959). For the 
degree n = 1, there are two problems: the classical boundary conditions are not independent and the centre of mass of the Earth is not 
conserved. In this paper, we propose a theoretical approach using a Love number formalism for the degree-one deformations, 
starting from the classical elastogravitational set of equations and taking into account the conservation of the centre of mass 
(Farrell 1972). Our earth model is incompressible and consists of an elastic lithosphere, a stratified mantle, an inviscid homogeneous 
fluid core and a homogeneous inner core. The deformation is investigated at each interface of the model (surface, 670 km depth 
discontinuity, CMB and ICB). 

In the first part of this paper, we are interested in the elastic deformation (that is deformation at timescales less than the decade), 
in particular the nearly annual translation induced by atmospheric continental loading and the decadal deformation due to the 
geostrophic magnetic pressure acting at the CMB. 

In the second part, we assume that the Earth has a Maxwell rheological model. First, the number of relaxation modes 
associated with the viscoelastic Love numbers is studied, and then some geophysical applications are investigated, such as the 
translations induced by the Pleistocene deglaciation, and at longer timescales, in a quasi-fluid approximation, the degree-one 
deformation resulting from the mantle-density heterogeneity. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Degree-one deformation of the Earth zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA701 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 E L A S T I C  T H E O R Y  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2.1 Equations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2.1.1 Analytical solutions 

The classical elastogravitational theory is a theory of perturbation. We start with an initial state where the earth is assumed to be in 
hydrostatic equilibrium, radially stratified following the PREM model (Dziewonski zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Anderson 1981). The origin of the reference 
frame is the centre of mass, which is identical to the centre of geometry of the sphere at this initial state. In the perturbed state, the 
earth is elastic and the equations are always written in a reference frame related to the centre of mass. 

The differential equations governing the spheroidal part of the displacement field, the stresses and the body-force potentials 
are of sixth order. Expanding the displacement vector field u and the traction T in spherical spheroidal vectors, VH denoting the 
tangential gradient, we obtain the following: 

n = l  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm=O 

where the potential 

n = l  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm=O 

and introducing a function defined by 

for the radial derivative of the potential, where Y," are the spherical harmonics, 0 the colatitude and cp the longitude, the system can 
be written 

(Alterman et al. 1959), where A ,  is a 6x6 matrix whose elements are a function of the compressibility A(r), the rigidity p(r) ,  the density 
p(r) and the gravity g(r). 

Our earth model consists of N homogeneous layers (Fig. I): an elastic lithosphere (layer l), a stratified elastic mantle (layers 2 
to N-2),  an inviscid fluid core (layer N -  1) and an elastic inner core (layer N>. The planet is assumed to be incompressible. In 
each homogeneous elastic layer zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi (that is in each layer except the fluid core) with a density pi and a constant rigidity pi, solving the 
system (4) the yin(r) may be written as follows: 

n + 3  
n(n + 1) 

f l+ l  
1 1  

n + 1 r(n+2) 
-- 1 

n 
0 0 

1 
0 0 0 0 ? y o  

- - 4nGp' - 4nGp' 
rn + 2) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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702 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGreff-Lefftz and H. Legros zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a 

a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. Earth model consisting of N incompressible homogeneous layers: an elastic lithosphere, N - 3 viscoelastic layers describing the mantle, an 
inviscid fluid core and a viscoelastic inner core. Earth layer zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi is defined by a radius zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa, in metres, with a the radius of the earth's surface, b=a,+ -2 the 
core radius and c'uN-1 the inner-core radius, a density zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApI in kg m-3 and an elastic rigidity pt in Pa. 

(e.g. Wu & Peltier 1982; Spada et al. 1990), where G is the gravitational constant and Ci,, Cl,,, C;,, Gin, C;, and C& for 
i =  1, . . . , N - 2 ,  N are 6 x ( N -  1) unknown constants which will be determined by the boundary conditions. 

Within the inviscid fluid core, the system (4) is not valid. The equations of motion reduce to a set of two ordinary differential 
equations in y;"-' and #-' (Smylie & Mansinha 1971): 

where By is a 2x2 matrix whose elements are a function of the density p(r) and the gravity g(r). 

paper, we use the theoretical approach introduced by Chinnery (1975): 
The boundary conditions have been discussed by Chinnery (1975), Crossley & Gubbins (1975) and Dahlen & Fels (1978). In this 

(1) the radial stress is equal to zero: y t -  ' (r) = 0; 
(2 )  the tangential displacement y f - ' ( r )  is undetermined; 
(3) the form is the equipotential; we may define a radial displacement f l v - ' ( r )  as the high of the equipotential: 

The solutions for a homogeneous incompressible fluid core may be written 

Cg-1 
3 

( r )  =nCE-' P-' - (n + 1) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1"+2 - 47cGpN-'yE-' (r) 

(7) 

where Cz- '  and Cg-' are two unknown constants. 

2.1.2 Excitation sources 

Knowing. the propagators within the earth, we have to write the boundary conditions between each layer of our earth model 
in order to determine the unknown constants. In this paper we are particularly interested in the effect of internal loads on the 
degree-one deformation. A degree-n superficial mass distribution a(r,), located at the radius r, within the mantle, produces 
two effects: 
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Degree-one deformation of the Earth zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA703 

(1) a degree-n pressure effect, -g(r,,)o(r,,), acting at the radius r = r , ;  
(2) a degree-n potential effect, 

Surface pressure, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPe (a dynamical pressure related to motion within the atmosphere, for example), and internal pressures (with a 
magnetic origin), PC and Pic, within the core, acting respectively at the CMB and the ICB, and a surface load, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASe, will also be taken 
into account. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATe,  TC and Tic denote tangential tractions acting respectively at the surface (induced by friction on the mountains or at 
the bottom of the oceans), at the CMB and at the ICB (viscous friction). These internal tangential tractions do not exist if the core is 
assumed to be inviscid, but may exist in a weak boundary layer at the CMB or at the ICB. 

2.1.3 Boundary conditions 

When the earth is submitted to these different excitation sources, the boundary conditions may be written as follows. 

(1) At the surface r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= a: the tangential stress is equal to the acting tangential traction and the radial stress to the acting pressure; 
the discontinuity in the gravity leads to a relation between yi(a), &a) and the acting potential, 

( Yi(4 = re 
2 n + l -  

y;(U)=-pe--ppSe I 3 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf i  is the mean density of the earth. 
( 2 )  At an interface ai within the mantle: the radial and tangential displacements, the tangential stress and the potential are 

continuous; taking into account an internal-loading potential Vin acting at the radius r, the continuity of the radial stress and that 
for the gravity at an interface a; will depend on this excitation source if ai=ro, 

where 6(ai - r,) is the Dirac function, which is equal to 1 if ai = r,, the radius where the load is located, and to 0 if a; # ro, and go is the 
surface gravity. 

(3) At the CMB: the radial displacement is continuous but we have to introduce an unknown parameter K1 in order to take into 
account the difference between the form of the solid mantle and the form of the fluid core, which is an equipotential (Chinnery 1975); 
the tangential displacement is not determined; the tangential stress is equal to the acting tangential traction (the negative sign comes 
from the fact that the tangential traction is expressed following the outer normal of the mantle at the CMB); the gravitational 
potential is continuous; the continuity of the radial stress depends on the fluid pressure acting within the core; the gravity of the 
mantle is related to that of the fluid core, taking into account the discrepancy K1: 

(4) At the ICB: the radial displacement is continuous but we have to introduce an unknown parameter K2 in order to take into 
account the difference between the form of the solid inner core and the form of the fluid core, which is an equipotential; the tangential 
displacement is not determined; the tangential stress is equal to the acting tangential traction at the ICB; the gravitational potential 
is continuous; the continuity of the radial stress depends on fluid pressure within the core acting at the ICB; and the gravity of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 1997 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARAS, GJI 131,699-123 
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704 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM. GrefS-LefStz and H. Legros 

inner core zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis related to that of the fluid core, taking into account the discrepancy K2: 

Assuming that in the homogeneous inner core the displacement and the potential cannot diverge at the origin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0, we have 
Cr  = CF = C t  =O.  Consequently, in the mantle there are C;, C;, C;, Ci, C;, C;, for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi =  1, . . . , N - 2 ,  undetermined constants, in the 
fluid core there are Cy- l ,  C t - ' ,  K1, K2, K3, K4 undetermined constants and in the inner core there are C;", Cr,  C;"i undetermined 
constants, that is 6N-3 unknowns. The numbers of boundary conditions is three for the surface and 6x(N-l) for the other 
interfaces, that is 6N-3 equations. For n f  1 the determinant of this set of boundary conditions is not equal to zero and the system 
can be solved; the solutions y l ( r ) ,  for i= 1, . . . , 6, may then be deduced within the entire earth. 

2.1.4 

For the degree n= 1, there are two problems: first, in the set of (6N -3) equations (S), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(9), (lo) and (1 l), only (6N-4) equations are 
independent, and second, the centre of mass of the earth is not conserved. In fact, the elastic solutions given by the propagator matrix 
do not automatically meet this requirement. According to the well-known formula of MacCullagh (e.g. Munk & MacDonald 1960), 
the conservation of the centre of mass will simply require that the degree-one surface potential is equal to zero, that is we just have to 
add a surface boundary condition, 

Degree-one case and consistency relation 

y&)=O. (12) 

We thus obtain a set of 6N-3 independent equations and the system can be analytically solved. The last equation (the non- 
independent one) will be automatically verified as a relation between the excitation sources, and in particular will require the global 
resulting force acting at the solid-fluid interfaces of the earth to be equal to zero, 

a 2 ( P  - 2Te) +b2( -pc -2TC) + c 2 p c  -2T'C) =o , (13) 

where, for simplicity, b = a ~ - 2  is the outer-core radius and C = U N -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 is the inner-core radius. This relation has a simple explanation: 
in order to conserve the centre of mass of the earth, the total force acting on the earth must be equal to zero. Pressures Pe, PC and Pic 
and tangential tractions Te, TC and Tic involve a force F, such that 

where n = ( sin 0 cos cp, sin 19 sin cp, cos 0) is the outer normal of the solid spherical mantle (0 being the colatitude and cp the longitude) 
and Y,(B, cp) is the degree-n spherical harmonic. This force is equal to zero (because of the orthogonality of the spherical harmonics) 
except for a degree-one pressure and tangential traction. Noting the following: 

~e Y, (0, cp) = p y  cos e+ ( p r  cos cp+pr sin cp) sin 8 ,  

PC Y, (0, cp) = p y  cos 8+ (p;' cos cp+ptc sin cp) sin e , 
P I C  Y, (8, cp) = p p  cos e + (p;'" cos cp +$Ic sin cp) sin e , 
~ey, (e ,  cp)= t~co~e+( t~~coscp+ i i~s in (p)s in8 ,  

~ ~ ~ ~ ( 8 , c p ) = t ~ c o s ~ + ( t ~ ~ c o s c p + t f ~  sincp)sinO, 

PC y1 (0, cp) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtp cos 8 + (t!" cos cp +i;lc sin cp) sin 6 ,  

the resulting force F, in a geographic frame (centred at the centre of mass), is 

This force must be equal to zero and consequently imposes the following relation on the degree-one coefficients of the pressures and 
frictions: 2 - P  + 2 ~ ~ )  + b 2 ( p  + 2 ~ ~ )  + &pic t 2 ~ " )  =o. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Degree-one deformation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the Earth 705 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
We want to investigate the connection between this equation and the Consistency Relation introduced by Farrell (1972). 

According to Farrell(1972) (see also Okubo zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Endo 1986), only two of the three surface conditions are needed and the Consistency 
Relation ensures that the third boundary condition is met automatically. This Consistency Relation is a special condition that the 
degree-one valid solutions have to obey. Farrell(l972) wrote this relation when the earth is submitted to a surface load: 

This has been proved using the reciprocity theorem (Saito 1974) and interpreted by Okubo & Endo (1986) as implying that in the 
static case there cannot be net force on any portion of the earth. 

We wish to rewrite this Consistency Relation when the earth is submitted to external and internal pressures and tangential 
traction. We start from the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy i  system (4) within the elastic parts of the earth, and combining the equations we show that for I?= 1 

Within the fluid core, the set of two ordinary differential equations (6) will involve the following for I? = 1 

Integrating these equations with respect to the radius zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr leads to the following: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(1)  within the mantle: 

(2) within the fluid core: 

(3) within the inner core: 

Using the boundary conditions (8), (10) and (1 I), we may write the Consistency Relation at the centre 0, the ICB, the CMB and 
the surface: 

From this system, we may compute the integration constants A, B and C: 

c=o 
B = c2(pic - 2TiC) 

A = CZ(PiC - 2FC) - P(PC + 2TC) ' 

A = a*( - pe + 22-7 

Note that the surface load Se and internal load Vin disappear in these boundary conditions. The two last conditions involve 
a'( -P" + 2Te) + b 2 ( P  + 2 p )  + 2( -Pic +2T") = 0, that is the Consistency Relation implies that the total degree-one force acting at 
the various fluid-solid interfaces and at the surface of the planet has to be equal to zero. Consequently, we have extended the results 
of Okubo & Endo (1986) to an earth submitted to external and internal pressures and tangential tractions and to internal loading. 

In order to do this, we present the analytical solutions for a simple incompressible earth model, first for pressure or tangential 
traction acting at the surface, the CMB and the ICB, and then for surface and internal loads. The subscript n = 1 from the previous 
section will be suppressed for simplicity of notation. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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2.2 Particular analytical solutions 

2.2.1 

In this section, the earth model consists of a homogeneous incompressible elastic mantle, an inviscid fluid core and an incompressible 
elastic inner core. External pressure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPe and tangential traction Te and internal pressures F ,  PI" and tangential tractions TC.  TIc act 
at the surface (r=a),  at the CMB (r=b) and at the ICB ( r=c) ,  respectively. The system of equations is as follows. denoting the 
solutions within the mantle y ; ,  those within the fluid core y"' and those within the inner core y y :  

External and internal pressure and tangential traction excitation 

v&)=O, Y~(b)=yr-'(b)/g(b)+bKl zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> v;y(c)=Y:-'(c)~g(c)-CKz zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

Y:(a)= - p  3 $(c) + K2cg(c)pC = -PIC zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 y:(b) - KI b g(b)pC = - Pc , 

Solving the 13 first equations leads to solutions in terms of constants. Substituting these solutions into the last equation involves the 
relation noted in the previous section, 

a2(P" - 2Te) + b2( - P" - 2TC) + c2(Pic - 2T") = 0 . 

We may compute the deformation as a function of the pressures and tangential traction. Introducing Love numbers, we have the 
following: 

Because of eq. (13), these Love numbers are not independent and have to be used simultaneously; for example a pressure at the CMB 
cannot exist alone. 

The values of these Love numbers are given in Table 1 for ro=a, r,=b and ro=c, that is at the surface, the CMB and the 
ICB, and also for r=O. y1(O)=y3(O) is the distance between the mass centre of the earth, which is conserved, and the centre of 
the initial reference sphere, denoted 0. Note that, for a homogeneous and incompressible inner core, in the absence of tangential 
traction acting at the ICB, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$(c) = 0 and thus Cf = 0; the total displacement within the inner core y?(r) = C t  is consequently a rigid 
translation and thus the distance between the centre 0 and the mass centre of the earth is equal to the translation at the ICB. 

yl(a)  is the translation of the figure centre with respect to the mass centre. Ifwe want to express, for example, the displacement in 
a reference frame related to the centre of figure, we have to compute yl(r)-yl(a)  and y3(r)-yl(a) using our previous notations. 

The pressures at the CMB and ICB have a magnetic origin. From the secular variation of the geomagnetic field, the fluid 
velocity field at the CMB can be estimated, under the hypothesis of geostrophic motions (Hulot, Le Mouel & Jault 1990) that is 
assuming a pressure gradient in equilibrium with the Coriolis force. This geostrophic pressure may be easily computed (Gire & Le 
Mouel 1989; Greff-Lefftz & Legros 1995). Its order of magnitude is around a few hundred pascals and it varies at decade timescales. 
For example, in 1990 the degree-one magnetic pressure coefficients were (Hulot el al. 1990) p p =  - 153 Pa, plC=246 Pa and 
pic= -31 Pa. This creates a degree-one displacement with an amplitude on the millimetre scale. It is more difficult to find out the 
fluid motion and the pressure acting at the ICB (Hulo 1992); the dynamics of the fluid core have to be known (dynamo model). 

If the ICB pressure force does not compensate the CMB pressure force, flow within the atmosphere should appear in order 
to conserve the earth centre of mass. This will create a pressure Pe and a tangential traction Te cancelling the CMB and ICB 
pressure force. This flow cannot appear in our equations because we use the static elastogravitational equations; for a more precise 
investigation, this problem has to be solved using the dynamical equations. 

Because of the timescale of the core pressure, decadal pressure and tangential traction should exist within the atmosphere. Note 
that the most important motions within the atmosphere have a period of less than two years and create a pressure effect and a 
variation of the thickness of the layer which involves an attraction potential; they consequently act as a surface load and not as a 
traction in the computations of the deformation of the earth. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Table 1. Degree-one Love numbers (introduced in eq. 23) expressing 
the radial and tangential displacements and the potential at the surface, 
the CMB, the ICB and the centre 0 induced by surface pressure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(P") 
and surface tangential traction (Te)  and internal pressure (P" and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPic) and 
internal tangential traction (Tc and PC) acting respectively at the CMB 
and the ICB. 

r0=a -0.5629 0.1392 0.0 1.2418 0.3417 0.0 
r,=b -0.2661 0.2002 0.0 0.0447 0.1342 0.0 
r , = c  30.310 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA' -8.983 -6.172 -60.86 -18.099 12.345 
r,=O 30.310 -8.983 -6.172 -60.86 -18.099 12.211 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

lr, 1: I:, 1: 

r ,=a -0.7415 0.1024 0.0 2.3064 0.4046 0.0 

r , = c  30.310 -8.983 -6.172 -60.86 -18.099 12.479 
r,=O 30.310 -8.983 -6.172 -60.86 -18.099 12.211 

ro=b -0.5931 0.1330 0.0 1.1557 0.5509 0.0 

r,=a 0. 0. 0. 0. 0. 0. 

r,=b 1.2740 -0.3150 0. -2.8106 -0.7735 0. 
r,=c 13.588 -4.027 0. -27.284 -8.1136 0. 
ro=O 0 0 0 0 0 0. 

The atmospheric pressure has been well known for 10 years, so it could be interesting to try to find a decadal degree-one term 
in these data in order to show correlation with internal pressure. Nevertheless, it seems more physically likely that there is 
an equilibrium among the tractions within the core (that is among PC, TC, Pic and TIc) and that the atmosphere tractions are 
disconnected from the fluid-core motion. 

2.2.2 Internal and surface load excitation 

A superficial mass distribution located at the radius ro produces a pressure Pin effect and a potential Vin effect (see section 2.1.2). The 
total resulting force is equal to zero and after having solved the first 6 N - 3  equations, the last equation will become O=O. We first 
investigate the deformation induced by these excitation sources for a homogeneous earth model. 

Homogeneous elastic sphere. For this simplest case, noting Se the surface-loading potential, we have to solve the equations 

Y : ( 4  = - 

A ( r o >  =&ro), 

&o> zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA=&To) ' 

The solutions may be written as follows for an incompressible homogeneous sphere: 

Note that the elastic parameter (rigidity p) does not appear in the solutions for a surface load: an incompressible homogeneous 
body submitted to a degree-one surface load has the same behaviour as a non-deformable body. This remark would not be 
true for a compressible homogeneous body: taking the fundamental solutions of the yi  system for a compressible homogeneous 
body (Love 1911), and solving the boundary conditions, the yi solutions are dependent on the elastic parameters. There is a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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708 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM. Greff-Lefftz and H. Legros 

non-negligible difference between compressible and incompressible loading Love numbers for a homogeneous sphere; taking zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
p =  1 .45~10 '~  Pa, 1=3x101* Pa and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp =  5520 kg m- j  as mean values for the Earth, we obtain, for a surface lovd in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA;t homogeneoL,s 
earth, 

(26) 

These values express the displacement in a frame related to the mass centre. 
Comparison with Farrell's Love numbers. In this paper, the displacement is expressed in a frame related to the mass centre and 

consequently the associated Love numbers appear to be in disagreement with those of Farrell (1972) and Merriam (1985). This is 
because Farrell(l972) chose the centre of mass of the undeformed earth for the origin of his reference frame. I f  the earth is rigid. 4 

surface load zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASe will involve a shift of the centre of mass (with respect to the centre of mass of the initial sphere) which may be 
computed from the MacCullagh theorem (see also Mitrovica, Davis & Shapiro 1994a): 

S" 
uo = - 

go 
(27 )  

Consequently, there is only a translation uo between the reference frame used by Farrell and the reference frame related to the centre 
of mass of the deformed earth (this paper), which is conserved and remains coincident with the initial reference sphere centre of mass. 
Farrell's Love numbers (denoted superscript F) are thus defined, using our notation, as 

Se 

go 
=hhF - , with hAF = -0.290, 

se se 
go go 

y3(a)+-=lAF - ,  with 1~F=0.113, 

\ ys(a)+Se=kLFSe,  with khF=O; 

we thus have simple relations between our Love numbers and those of Farrell: 

hhF=l+hA, lLF=l+lA and kLF=l+kA. (29) 

Realistic compressible earth model. For the PREM compressible earth model, using a Runge-Kutta numerical integration, 
our approach, where the origin of the reference frame is the centre of mass of the deformed earth itself, gives a displacement at the 
earths surface 

Se 
y:(a)= - 1.2858 - 

go 

and 

y:(a) = -0.8958 - . 

Adding + 1 to these values allows us to obtain the Love numbers computed by Farrell(l972). We may also compute the shift of the 
centre of the initial reference sphere 0 with respect to the centre of mass for the PREM compressible earth model: 

J J ~ ( O ) = ~ ! ( O ) =  -0.39576 - . 

Se 

go 

Se 

go 

To conclude, in using the degree-one Love numbers it is necessary to be careful about the definition of the Love numbers and the 
chosen reference frame, especially its origin, that is whether it is related to the mass centre of the deformed Earth (this paper) or the 
undeformed Earth (Farrelll972; Merriam 1985; Wu 1990) and whether it is related to the centre of figure or the surface of the planet 
(for geodetic measurements, the stations are located at the earth's surface). 

Degree-one deformation induced by atmospheric loading. We investigate the elastic deformation induced by a surface-loading 
potential Se using the PREM compressible earth model. Solving the boundary conditions numerically, the solutions may be written 

Se zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASe 

go go zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAyi (lo) = h:, - and y3(r0) = I;, - . 

The values of these Love numbers are given in Table 2 for ro =a, ro = b and ro = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc, that is at the surface, the CMB and the ICB, and 
also for r = 0, the centre of the initial reference sphere. 

Taking the time-dependent zonal and sectorial degree-one continental-loading potential within the atmosphere [computed by 
Gegout (1995) from an 8 yr pressure-field record provided by ECMWF in Reading (UK)] shown in Fig. 2(a), we can compute, for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Degree-one deformation of the Earth zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA709 

Table 2. Degree-one loading Love numbers (introduced 
in eq. 30) induced by a surface load, expressing the radial 
and tangential displacements at the surface, the CMB, the 
ICB and the centre 0. 

-0.89590 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
r ,=b zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 1.0348 1 -0.99641 
r,  = c -0.39583 -0.39583 
r, = O  -0.39583 -0.39583 

r, =a - 1.28585 

this three-layered model, the radial displacement at the surface (Fig. 2b), at the CMB (Fig. 2c) and at the ICB (Fig. 2d) as a function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
of time. For this computation, we use the Love numbers computed above. This result is not perfect because we do not take into 
account the effect of variations of the water thickness induced by the deformation of the bottom of the oceans [coefficient 1 /PI ,  with 
PI = 1 -(pw/3)(1 f k :  -hL), where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApw is the water density, introduced by Gegout (1995) and Gegout & Legros (1997)f. The amplitude 
of the deformations will be amplified by a factor 1 /PI, that is by about 30 per cent. These displacements vary of course, with periods 
of less than two years and orders of magnitude of a few millimetres. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

60 
40 
20 
0 

-20 
- 40 
- 60 

0 5 10 15 20 25 30 
x l o t 2  

I I I I  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt 

0 5 10 15 20 25 30 
x 1 0 t 2  

0 5 10 15 20 25 30 
x 1 0 t 2  

I I I I  

x 1 0 t 2  
Time in Julian day 

Figure 2. (a) Time-dependent zonal (solid line) and sectorial (cosine term shown by dashed line and sine term by dotted line) degree-one continental 
loading originating from an eight-year pressure-field record provided by the European Centre for Medium Range Weather Forecasts (ECMWF) in 
Reading (UK). (b) Radial displacement at the earth's surface induced by the continental loading described in (a). (c) Radial displacement at the CMB 
induced by the continental loading described in (a). (d) Radial displacement at the ICB induced by the continental loading described in (a). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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710 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGrefS-LefStz and H.  Legros zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3 VISCOELASTIC THEORY 

In the previous section we computed the elastic deformation of the Earth induced by degree-one excitation sources varying in 
timescale from a year to several decades. At larger timescales, we have to take into account the viscous response of the Earth. To do 
that we have chosen as the rheological law a linear viscoelastic Maxwell model of rheology. This is because at short timescales 
the Earth has an elastic behaviour, and at intermediate timescales (103-106 years) it shows viscous relaxation (for example the 
Pleistocene deglaciation), whereas at long (geological) timescales its behaviour is characterized by that of a fluid (the flattening 
of the Earth is quasi-hydrostatic and is explained by fluid rotation). In  the frequency domain, the stress-strain relation for an 
incompressible Maxwell body is the Hookean law, but the rigidity p i  is a function of the frequency I :  

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAple is the elastic rigidity and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv' the Newtonian viscosity of layer i. In the Fourier domain, the viscoelastic equations 
and the boundary conditions are the same as those for an elastic body with the same geometry. Consequently, we may use the 
correspondence principle: we solve the elastic problem for different frequencies in order to build the viscoelastic solutions (Peltier 
1974; Wu zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Peltier 1982). 

The viscoelastogravitational equations are the 6N - 3 equations described in Section 2, taking into account the conservation of 
the centre of mass; the frequency dependence comes from the viscoelastic stress y;(r) and yi(r) .  Before solving this set of 6 N - 3  
equations, we compute the determinant of the system, and we find a frequency-dependent polynomial whose zeros are called 
relaxation modes (e.g. Peltier 1974; Wu & Peltier 1982; Yuen & Peltier 1983; Han & Wahr 1995; Vermeesen, Sabadini & Spada 1996). 

3.1 Relaxation modes 

For deformation of degree n > 1, it is well known that these relaxation modes are generated at each interface by the discontinuity of 
physical parameters. For example, for a five-layered model consisting of an elastic lithosphere, aviscoelastic upper and lower mantle, an 
inviscid fluid core and a viscoelastic inner core, we have seven relaxation modes (Peltier 1974; Spada et al. 1992; Lefftz & Legros 1993): 

M, due to the surface discontinuity at r = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa; M I  due to the density jump between the upper and the lower mantle; 
C and G because of the density discontinuity between the fluid core and the lower mantle and between the fluid core and 

Ldue to the viscosity contrast between the elastic lithosphere and the upper mantle; TI and T2 due to a jump in rigidity or viscosity 
the inner core; 

distribution between the upper and the lower mantle, called transition modes because they relax rapidly and are weakly excited. 

In this section we wish to investigate the degree-one relaxation modes. Because the initial system of boundary conditions 
degenerates, the number of modes should be different. To understand their origin, we start with simple models (homogeneous sphere, 
two layers, etc.). 

3.1. I Homogeneous incompressible sphere 

For an incompressible homogeneous earth, the equations are ( c j  eq. 24): 

yi(a)  = - pse , 

Y m  = 0 

The discontinuity of the gravity field &a)+ (2/a)y:(a) = (3/a)Se will be verified after resolving this system. 
Taking 

where pe is the elastic rigidity, v is the Newtonian viscosity of the sphere and z = v / p e  is the Maxwell relaxation time of the mantle, the 
determinant of the system of the three independent equations may be written as follows: 

i l z  

I+iLz' 
det = 3pea2pg, - 

This determinant is equal to zero for iA=O (that is the fluid limit): there is no relaxation mode for a homogeneous incompressible 
sphere. This is because the solution of the system is the rigid translation (only Cl #O, and thus the strains vanish): a homogeneous 
incompressible planet has the same behaviour as a non-deformable body. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Degree-one deformation of the Earth zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA711 

Note that for degree n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> 1, the determinant cancels for 

the M,, mode (e.g. WU zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8~ Peltier 1982). Substituting n by 1 in the last equation has no meaning, because the system of boundary 
conditions is different. We may conclude that for degree one the M,, mode does not exist. 

3.1.2 Two-layered earth model 

In this part we introduce an inviscid fluid core within the viscoelastic mantle. For this model, where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs= bla, the determinant cancels 
for 

(33) 

This mode is proportional to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp, the density contrast between the fluid core and the mantle, and will disappear if p tends to zero: this is 
the C mode. Taking the mean averaged values for the density of the mantle (4414 kg mP3) and of the core ( 12400 kg m-3), a mantle 
rigidity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApe = 0.166~ 10” Pa and viscosity v = 1021 Pa s leads to a relaxation time zc associated with C of about 2300 yr. 

3.1.3 Three-layered earth model 

The earth consists of a viscoelastic homogeneous inner core, an inviscid fluid core and a viscoelastic mantle. Where the density 
contrast between the inner core and the fluid core is pg, and sg = cla, we show that the determinant cancels for 

This is the C mode because it is proportional to p. There is no relaxation mode related to the density contrast between the inner core 
and the fluid core (because the inner core is homogeneous and a homogeneous incompressible sphere does not create a relaxation 
mode). Consequently, for degree one, the G mode does not exist. 

3.1.4 Four-layered earth model 

We want to investigate the mode created by an elastic-viscoelastic interface. To do that we introduce a homogeneous elastic lithosphere 
in the previous model. The determinant will cancel for zero, for the Cmode, and also for another mode, which depends on the viscosity of 
the mantle and does not disappear if the density contrast between the lithosphere and the mantle tends to zero: this is the L mode. 

3.1.5 Five-layered earth model 

If we introduce a viscoelastic-viscoelastic interface (to describe the upper-mantle-lower-mantle boundary), we can show that it 
creates two other modes. The largest one depends on the viscosity of the mantle and exists even if the density contrast between the 
two layers is zero; it is similar to the transition modes TI and T2. The second one is proportional to the density contrast between the 
upper and lower mantle and its value depends on the viscosities of these layers; this is the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM I  mode. The difference between degree 
one and degree n > 1 is the transition mode: for degree one there is only one transition mode instead of two. 

In conclusion, for the five-layered earth model described in Table 3(a), there are only four degree-one relaxation modes 
(T, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC, L, M I )  instead of seven ( T I ,  T2, M,,, C, L, M I ,  G) for the other degrees. Their values are given in Table 3(b), and we show the 
relaxation modes of this earth model in Fig. 3 as a function of the degree n (Greff-Lefftz & Legros 1996). 

3.2 Viscoelastic Love numbers 

For a Maxwell model of rheology, Peltier (1974) and, more recently, Spada et al. (1990) have shown that the viscoelastic Love 
numbers have the following frequency form [for example h( l ) ] :  

M hi 

i = l  

h( l )  = he + ~ 

il+ 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/zi (35) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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7 12 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM .  Grefs-Leftz zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand H.  Legros 

Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3. (a) Geometrical and physical parameters for a five-layered model consisting 
of an elastic lithosphere, a viscoelastic upper mantle, a viscoelastic lower mantle, an 
inviscid fluid core and a viscoelastic inner core. Both rigidity and density are obtained 
from PREM (Dziewonski & Anderson 1981). (b) Four degree-one relaxation modes 
associated with the viscoelastic Love numbers for the five-layered model described in (a). 

(a) Radius (km) Density (kg m-3) Rigidity (Pa) Viscosity (Pa s) 

a, =6221 < r < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu p,=3232 p~=6.114X10'o V ~ = C C  

a2=5701 < r < al zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp2 = 3666 p2 =9.169X 10'" zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv 2  =2X lo2' 
q = 3 4 8 0  < r < a2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1'3 = 8x lo2* p3 = 4904 p3 = 2.225X 10" 

u4=1225.5 < r < u 3  p4=10901 P 4 = 0  "4 = 0 

O < r < a 4  p,=12894 p,=1.644x101' v5=10i3 

(b) Relaxation modes (s-l) Relaxation times (kvr) 

T - 0.427X lo-'' 0.742 
C -0.465X lo-" 68.107 
L - 0 . 1 3 7 ~  lo-'* 230.885 
MI - 0.267 X 10 l4 11781.87 

The first term on the right, he, is the instantaneous elastic Love number and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz; and hi are the relaxation times and residues of the M 

modes of the earth model. hi depends on the excitation sources. 
For degree one, the form is conserved and only the number of relaxation modes changes. In the temporal domain, these Love 

numbers will be written 

For surface and internal loads we have computed the degree-one deformation in radial displacement and in equipotential (at each 
interface ai of the earth model) induced by unit constant internal-mass distribution [a =H( t )  kg m-2], located at radius ro, that is for 
a loading potential 

These deformations are shown in Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 for the topography and Fig. 5 for the equipotential at the surface, at the 670 km depth 
discontinuity, at the CMB and at the ICB (a, b, c and d, respectively ), as a function of ro and of time. 

Degree n 

Figure 3. Relaxation times of the earth model described in Table 3(a) in years, as a function of the degree n. 
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Degree-one deformation of the Earth zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA713 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(a) Kernel  of t h e  s u r f a c e  topography i n  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1E-06 II~ (b) Kernel  of t h e  6 7 0  km topography in 1E-06 m 

(q zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK e r n e l  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof t h e  C M B  topography i n  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1E-06 m (d) Kerne l  of t h e  I C B  topography i n  1E-06 m 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. Topography in 
internal load as a function of time and of the depth of the load. 

m at the surface (a), at the 670 km depth discontinuity (b), at the CMB (c) and at the ICB (d) induced by a unit 

For a geophysical application, we present the degree-one topography induced by the Pleistocene deglaciation. This glaciation- 
deglaciation is modelled simply by three spherical ice sheets (e.g. Peltier & Wu 1983; Wu & Peltier 1984) analytically expanded in 
spherical harmonics (e.g. Farrell 1972) and with a time dependence (shown in Fig. 6a) such that the surface mass distribution 01 (t)  

can be written (Peltier, Drummond & Tushingham 1986) 

(38) o1(t)= R(t)- - " R(t-To)+ - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATo R(t-Tl)] , 
T [ TI - To TI - To 

where R(t) is the ramp function, the glaciation is characterized by a slow build-up over a period To=90 000 years and 
the deglaciation by a fast collapse lasting TI - To = 10 000 years (see Fig. 6a). The parameters (that is the radius, the latitude 
and the longitude of the centre of the spherical cap) for the Fennoscandian, Canadian and Antartic ice sheets are taken from Table 3 
of Spada et al. (1992); from the ice-height and sea-level change we compute the degree-one term of such a density anomaly: 

0 ~ , = 0 . 1 1 2 ~ 1 0 ~  kgm-', o~,=0.29lx1O5 kgm-*, and i5~,=-0.3O8x1O5 kgm-'. (39) 

In Fig. 6(b) we present the temporal evolution of the surface, the 670 km depth discontinuity, the CMB and the ICB degree-one 
topographies induced by the degree-one term of the glaciation-deglaciation: these topographies are translation maximal in the 
directions 

and 

tanq,=-, q1 
q l  

that is eo = 20.7" and cpo = -46.6", zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA80 being the colatitude and cp,, the longitude. Note that the amplitudes of these deformations are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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714 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM. GrefS-LefStz and H. Legros 

(a)Kernel of the  670 km geoid i n  1E-06  m 

(b)Kernel of the CMB geoid i n  1 ~ - 0 6  m 

(C)Kernel of the ICB geoid i n  1 E - 0 6  m 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5.  Equipotential in 
internal load as a function of time and of the depth of the load. 

m at the surface (a), at the 670 km depth discontinuity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(b), at the CMB zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(c) and at the ICB (d) induced by a unit 

about 10 m (Wu 1990). At present, that is almost 7000 yr after the end of the deglaciation, the displacements are 

yl(a)=-l .36m, y1(5701 km)=-0.38m, yl(b)=5.35m and yl(c)=2.44m; 

y3(a)=-2.83m, y3(5701 km)=-6.48m, y3(b)=-1.06m and y3(c)=2.44m. 

The present-day distance between the geometric centre of the inner core and the mass centre is consequently about 2.44 m. 
In Figs 6(c) and (d) we have calculated the present rate of the radial and tangential surface displacements, that is j l  (a) Yl zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Q, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcp) and 

j3(a)V,Y1(6, cp), where'denotes the time derivative. In the direction of the maximal translation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(e0, cp,), we obtain the maximum 
deformation rate of the radial displacement jq(a) =O. 14 mm yr-I, and in the direction (6, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ n / 2 ,  cp,) the maximum amplitude of the 
tangential displacement vector is j,(a)=0.64 mm yr-'. Notice that in the direction (Qo, cp,) and at the antipode, the tangential dis- 
placement vector is equal to zero; this is a consequence of the degree-one symmetry (Mitrovica et af .  1994a,b; Mitrovica & Davis 1995). 

For these computations, we have taken the five-layered earth model described in Table 3(a), but with an upper-mantle viscosity 
of about lo2' Pa s and a lower-mantle viscosity of about 5x10" Pa s, because this viscosity profile agrees with various glaciation 
data (e.g. Mitrovica & Peltier 1993). As shown in Fig. 12(c) of Wu (1990), the amplitude of the CMB topography induced by a surface 
load is very sensitive to the viscosity profile within the mantle, because of the combination of the relaxations of the different 
interfaces of the earth model. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Degree-one deformation of the Earth zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA715 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
C zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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.- - 
E : zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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:"- -. ... . . . . .. . . , t 

0 20 40 60 80 100 12( 
-3011 I ' ' I ' I I ' I ' ' 

Time in years zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(c) Degree one present radial displacement rate 
induced by Pleistocenic deglaciation 

4 12 

-15 -10 -5 0 5 10 I 5  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Rate in le-2 d y e a r  

d) Surface tangential displacement rate vector 

Figure 6 .  (a) Time dependence of the glaciation model described in eq. (38). The glaciation is characterized by a slow build-up for 90 000 yr and 
the deglaciation by a fast collapse lasting 10 000 years. The present day is almost 7000 yr after the end of the deglaciation. (b) Surface topography 
(solid line), 670 km interface (short-dashed line), CMB (dotted line) and ICB (dashed line) induced by the glaciation-deglaciation model described in 
(a) as a function of time. (c) Present-day surface radial displacement rate. The contour interval is 2x mm yr-'. The maximum amplitude is in the 
direction tlo =20.7", 'po =313.4". (d) Present-day surface tangential displacement vector rate. The maximum amplitude is about 0.64 mm yr-' and is 
at Oo+n/2, ' po .  

3.3 Quasi-fluid approximation 

The timescale of the temporal evolution of the internal load is that of the convection. Consequently, the time t is larger than 
the relaxation times zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAzi of the viscoelastic deformation and we may carry out some limited expansion in the Love numbers in the 
frequency domain for i l z ;  << 1 : 

or in the temporal domain: 

M M 

h(t)= h e +  c h'zj 6(t)-  c h ' z p ( t )  [ i = l  ] i = l  

The first term in the square bracket is the fluid limit of the loading Love number hf, whereas the second term takes into account the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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7 16 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM.  GrefS-Leftz and H. Legros 

past, that is the viscous response of the earth. In this quasi-fluid approximation, the Maxwell body is equivalent to t~ Newtonian body 
[taking zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp(L)-  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAiA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv]. 

We compute for this quasi-fluid approximation the degree-one deformation in topography and equipotential induced by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA;i 

constant internal mass distribution [o=H(t )  kg m-*], located at a radius ro* that is for a loading potential zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ " ' ~ ~ ~ ~ ( ~ ~ ~ ! ~ ~ ) ( ~ ~ ( ~ ) ~ ~ ) ,  

for t > 0, 

These are the deformations remaining just after the viscoelastic relaxation (i.e. t > z;) and they are equivalent to Neutonian 
deformations (e.g. see Forte et al. 1993). 

The topographies and the equipotentials are represented in Figs 7 and 8, respectively. Two cases have been investigaled: 
in Figs 7(a) and 8(a) the five-layered model has a density contrast between the upper and lower mantle (denoted t h a t  is 
there is an M I  relaxation mode, whereas in Figs 7(b) and 8(b) the mantle is assumed homogeneous (there is no MI mode). 
The problem of the existence of such a density contrast at 670 km depth is important for the surface topography because ; in 

internal load located within the lower mantle induces positive topography at the earth's surface if /I, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA# O  and negative topography 
ifp,=O. 

For a viscosity contrast of about 40 between the upper and lower mantle, a positive mass anomaly within the upper mantle 
creates a weak negative topography at the CMB, whereas mass anomaly within the lower mantle involves a larger positive CMB 
topography. The sign of the deformation (positive or negative) for a mass anomaly located in the upper mantle is strongly dependent 
on the viscosity profile within the mantle and on the existence of a density jump at 670 km depth. In any case, the amplitude of the 
CMB topography is larger for mass anomalies located in the lower mantle than in the upper mantle. 

Note that the ICB is in a quasi-hydrostatic equilibrium, that isg(c)yy(c)=yF(c), whatever the value of r,. This is a consequence 
of the low viscosity of the inner core (about IOl3 Pa s.), which means that the inner-core behaviour is closed to that of a hydrostatic 

x l o t 2  x l o t 2  
Radial displacement in metre Radial displacement in metre 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7. Radial displacement at the surface (solid line), at the 670 km depth discontinuity (short-dashed line), at the CMB (dotted line) and at the 
ICB (dashed line) induced by a unit internal load as a function of the radius of the load, that is its location within the mantle, in the quasi-fluid 
approximation. The five-layered earth model used has a density contrast &, # O  at 670 km depth (b) and p, = O  (a). 
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Degree-one deformation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the Earth zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA717 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Geoid in metre zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8. The same zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas Fig. 7 for the equipotential. 

20 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA40 
Geoid in metre 

fluid. On the another hand, the internal loads within the mantle are partly isostatically compensated at the CMB, which explains the 
low amplitude of the ICB deformation. 

In the absence of tangential traction acting at the ICB and for a homogeneous and incompressible inner core, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA#(c) is equal to 
#(O) and thus represents the distance between the geometric centre of the inner core and the mass centre of the earth. 

For a geophysical application, we have computed the degree-one deformation induced by the present-day mantle-density 
heterogeneity derived by Ricard et al. (1993). This model uses plate-motion reconstructions under the assumption that subducted 
slabs sink vertically into the mantle. It assumes no density contrast at 670 km and a viscosity jump of about 40 (see Table 3a). In 
Fig. 9 we show the present-day degree-one spectral amplitude of the density versus the depth. Note that the amplitude increases 
with depth. Consequently, the most important contribution to the CMB topography will come from the density heterogeneities 
located in the lower mantle, that is those related to subduction that occurred some 60 Myr ago. The induced topographies and 
equipotentials at the surface, the 670 km depth discontinuity, the CMB and the ICB are shown in Figs 10 and 11, respectively. The 
amplitude and direction of the resulting translation in topography and in equipotential at each interface of the earth are given in 
Table 4. 

Note that at the earth's surface we obtain a translation of about 100 m in a direction near to the N-S axis. The present 
observed topography (Balmino, Lambeck & Kaula 1973) gives normalized coefficients of the degree-one spherical harmonic 
expansion a10 =639 m, all =591 m and bl l  =409 m. Our computed values are one order of magnitude smaller than the observed 
ones and consequently we can conclude that the mantle-density heterogeneity derived by Ricard et al. (1993) can reasonably 
contribute to the surface topography. This surface translation expresses the discrepancy between the figure centre and the mass 
centre of the Earth. 

At the CMB, we obtain a translation of about 870 m in the direction 151", 19.7", whereas at the ICB the translation of about 9 m 
is almost in the opposite direction (53.6", - 133"). The relative translation of each layer is carried out in order to conserve the centre 
of mass of the Earth. The amplitude of the degree-one topography at the CMB seems to be large in comparison with that obtained by 
seismological studies (e.g. Forte, Mitrovica & Woodward 1995), which is about 300 m. This point is also valid for higher degrees. We 
have seen that the density heterogeneity located in the bottom of the lower mantle contributes in a very important way to the CMB 
topography and it raises the problem of slabs sinking until they reach the CMB. The distance between the geometric centre of the 
homogeneous inner core (that is the centre of the initial reference sphere) and the mass centre of the earth induced by these mantle 
density heterogeneities is thus about 9 m in the direction 53.6", - 133". 

In Figs 12 and 13 we show the total deformation (topography and equipotential) at the CMB and the ICB induced by this 
mantle-density heterogeneity in the degree range 1 to 15 (from Greff-Lefftz & Legros 1996). Note that the CMB topography is larger 
beneath the Pacific belt, that is beneath the principal zones of subduction: in fact, the topography follows the density heterogeneities 
within the lower mantle very closely (See Fig. 4 of Greff-Lefftz & Legros 1996), which are related to subduction that occurred some 
60 Myr ago, and thus are maximal over the Bering sea. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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718 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM. Greff-Lefftz and H. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALegros zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI I I I I I I I I I 

>4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY 4 
.- = I  

0 5 10 

1 

15 20 
I 25 

x lot2 
Depth in km zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 9. Degree-one spectral density of the mantle-density heterogeneity derived by Ricard et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa1 (1993) versus the depth. Note that the amplitude 
increases with depth. 

(a) Degree one surface topography 

-100 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA100 

Topography (meter) 

(c) Degree one CMB topography 

-1000 0 low 
Topography (meter) 

(b) Degree one 670 km depth topography 

-3000 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA30W 

Topography (meter) 

(d) Degree one ICB topography 

-10 0 10 

Topography (meter) 

Figure 10. Degree-one radial displacement at the earth's surface (a) (contour interval 20 m), at the 670 km depth discontinuity (b) (contour 
interval 500 m), at the CMB (c) (contour interval 100 m) and at the ICB (d) (contour interval 1 m) induced by the mantle-density heterogeneity 
described in Fig. 9. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Table 4. (a) Degree-one normalized coefficients o f  the computed topography (at the surface, the 670 km 
interface, the CMB and the ICB) induced by manlle-density heterogeneity. and the amplitude and direction of 
the resulting translation. (b) Degree-one normalized coefficients of the coinputed equipotential (at the surface, 
the 670 km interface, the CMB and the ICB) induced by mantle-density heterogeneity. and amplitude and 
direction of the resulting translation. 

(a) Topography aio ai 1 b l i  Resulting translation Direction (0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( p )  

Radius in km (in m) (in m) (in m) (in m) (in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA")  

637 1 55.1051 -5.3610 6.3377 96.522 (8.56", 130.2')) 

3480 -441.2536 228.6626 81.9422 872.421 (I51 .l7", 19.71(7 
1225.5 3.0643 -2.8594 -3.0290 8.960 (53.66". - 133.35") 

570 1 -820.5396 1127.5465 -763.4430 2753.63 (121.07". - 34.10") 

(b) Equipotential zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa10 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAall b iL  Resulting translation Direction (0. cp) 

Radius in km (in m) (in m) (in m) (in m) (in ") 

6371 0. 0. 0. 0. 
5701 - 13.8870 8.9475 -4.9303 29.8604 (143.66", - 28.85") 
3480 3.3356 -3.1123 -3.2965 9.7487 (53.66", ~ 133.35") 

(53.66". ~ 133.35") 1225.5 1.3784 - 1.2862 -1.3621 4.0284 
_. . 

Note that the equipotentials at the CMB and ICB are proportional: this is because the fluid core is OLItside the mantle mass 
anomaly and the potential at the CMB can be simply continued down to the ICB. The proporlionalily factor being (c lh)" ,  the 
dominant terms in the ICB equipotential are the degree range 1 to 3. The ICB topography, with an order of magnitude of about zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(a) Degree one surface geoid 

i 

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 0 

Geoid (meter) 

(4 Degree one CMB geoid 

1 I 

10 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA10 

Geoid (meter) 

(b) Degree one 670 km depth geoid 

40 a 40 

Geoid (meter) 

(4 Degree one ICB geoid 

5 0 5 

Geoid (meter) 

Figure 11. Degree-one equipotential at the Earth's surface topography (a), at  the 670 km depth discontinuity (b) (contour interval 5 m), at the 
CMB (c) (contour interval 2 m) and at  the ICB (d) (contour interval 0.5 m) induced by the mantle density heterogeneity described in Fig. 9. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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720 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM. GrefS-LefStz and H. Legros 

(a) CMB topography zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-15 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-12 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-9 -6 -3 0 3 

Topography (km) 

Equipotential at the CMB 

l I l l l I l  

-700 -400 -200 0 200 400 700 

Geoid (meter) 
Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA12. CMB topography (a) (contour interval 1 km) and equipotential (b) (contour interval 50 m) induced by the mantle-density heterogeneity 
of Ricard zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al. (1993) in the degree range 1-15. 

300 m, is exactly equal to 

that is the inner core is in hydrostatic equilibrium. 
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Degree-one deformation of the Earth zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA121 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ICB topography 

-200 0 200 

Topography (meter) 

Equipotential at the ICB zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-30 0 30 

Geoid (meter) 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA13. ICB topography (a) (contour interval 20 m) and equipotential (b) (contour interv: 
Ricard zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet at (1993) in the degree range 1-15, 

m) induced by the mant..-density heterogeneity of 

4 CONCLUSIONS 

In this paper we have computed the degree-one elastic and viscoelastic deformation of an incompressible earth model. Our 
theoretical approach using a Love-number formalism has allowed us to do the following. 

(1) Investigate the non-independent equations of the yi system: we have shown that the last equation expresses the fact that the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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722 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM. GrefS-LefStz zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand H. Legvos 

total degree-one force acting on the Earth has to be equal to zero (Okubo zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Endo 1986), which involves a rclation between internal 

and external pressure and tangential traction. 
(2) Using this approach, we have investigated the relaxation modes associated with the viscoelastic Love numbers induced by 

density, rigidity o r  a viscosity jump a t  the interfaces of our incompressible model: for degree one. the M,, and G modes do not exist 

and a discontinuity in the Maxwell time involves only one transition mode (instead of two for degree 77 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 2). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
As a geophysical application, we have computed the degree-one elastic deformation induced by atmospheric continental 

loading: we obtain, a t  each interface of the earth, translations of a few millimeters with a nearly annual period. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAt longer timesc:lles* 

we have computed the viscoelastic deformation induced by the Pleistocene deglaciation: at present (almost 7000 yr after the end of 

the deglaciation), we find translations (of about a metre) in the direction 0, =20.7’ and i= -46.6‘E which tend zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto  be relaxed, that is 
t o  be equal to zero, because of the surface isostatic compensation. 

In a quasi-fluid approximation of the Maxwell model of rheology, we have computed the degree-one deformation induced by the 

mantle-density heterogeneities derived by Ricard et al. (1993). We have obtained a surface translation of the earth of about 100 m 
and a translation of the CMB of about 900 m. The inner core is in quasi-hydrostatic equilibrium and its centre of figure differs from 
the centre of mass of the earth by a distance of about 9 m. 
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