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Abstract: Linear regression models are foundation of current statistical theory and have been a prominent

object of study in statistical data analysis and inference. A special class of linear regression models is

called the seemingly unrelated regression models (SURMs) which allow correlated observations between

different regression equations. In this article, we present a general approach to SURMs under some general

assumptions, including establishing closed-form expressions of the best linear unbiased predictors (BLUPs)

and the best linear unbiased estimators (BLUEs) of all unknown parameters in the models, establishing

necessary and sufficient conditions for a family of equalities of the predictors and estimators under the single

models and the combinedmodel to hold. Some fundamental and valuable properties of the BLUPs andBLUEs

under the SURM are also presented.
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1 Introduction

Linear regression models are foundation of current statistical theory and have been a prominent object of

study in statistical data analysis and inference. A special class of linear regression models is called the

seemingly unrelated regression model (SURM) which allows correlated observations between regression

equations. In this article, we consider a SURM of the form:

L1 : y1 = X1β1 + ε1, (1.1)

L2 : y2 = X2β2 + ε2, (1.2)

where yi ∈ R
ni×1 are vectors of observable response variables, Xi ∈ R

ni×pi are known matrices of arbitrary

ranks, βi ∈ R
pi×1 are fixed but unknown vectors, i = 1, 2, ε1 ∈ R

n1×1 and ε2 ∈ R
n2×1 are random error vectors

satisfying

E

[
ε1
ε2

]
= 0, Cov

[
ε1
ε2

]
=

[
Σ11 Σ12
Σ21 Σ22

]
:= Σ. (1.3)

Under these assumptions, (1.1)–(1.3) can jointly be written as

L : y = Xβ + ε, E(ε) = 0, Cov(ε) = Σ, (1.4)
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where

y =

[
y1

y2

]
, X =

[
X1 0

0 X2

]
, β =

[
β1
β2

]
, ε =

[
ε1
ε2

]
.

The two individual equations are in fact linked each other since the disturbance terms in the two

models are correlated. Thus, such a pair of linear regression models are usually called a seemingly unrelated

regression model (SURM). It is well known that there are twomain motivations for using SURMs in statistical

analysis: the first one is to gain efficiency in estimation of parameters by combining information on the given

different equations; the second is to impose and/or test restrictions that involve parameters in the different

equations. Some earlier and seminal work in this area was presented in [1–3], whereas there are relatively

many papers and also chapters in monographs on econometrics that approached SURMs, e.g., a thorough

treatment is given in [4], and a survey can be found in [5–7] among others.

In the statistical inference of L1 and L2, a main objects of study is to estimate βi and predict εi, where

the traditional procedure is to establish estimators and predictors of βi and εi, respectively. It is, however,

better to simultaneously identify estimators and predictors of all unknown parameters in L1 and L2. Some

recent contributions on simultaneous estimators/predictors of combined unknown parameter vectors under

linear regression models can be found, e.g., in [8–10]. In this article, we construct two general vectors of the

unknown vectors βi and εi in L1 and L2 as follows

ψ1 = G1β1 +H1ε1, ψ2 = G2β2 +H2ε2, (1.5)

where Gi and Hi are given ki × pi and ki × ni matrices, respectively, i = 1, 2. Furthermore, merging the two

vectors gives

ψ = Gβ +Hε, ψ =

[
ψ1

ψ2

]
, G =

[
G1 0

0 G2

]
, H =

[
H1 0

0 H2

]
. (1.6)

In this setting,

E(ψi) = Giβi = GiSiβ, E(ψ) = Gβ, (1.7)

Cov(ψi) = HiΣiiH
′

i = HiTiΣ(HiTi)
′, Cov{ψi , yi} = HiΣii = HiTiΣT

′

i , (1.8)

Cov(ψ) = HΣH′, Cov{ψ, y} = HΣ (1.9)

for i = 1, 2, where S1 = [Ip1 , 0], S2 = [0, Ip2 ], T1 = [In1 , 0], and T2 = [0, In2 ]. When Gi = Xi and Hi = Ini ,

(1.5) becomesψi = Xiβi + εi = yi, the observed response vector inL1 andL2. Hence, (1.5) includes all vector

operations in L1 and L2 as its special cases.

Throughout out this article, Rm×n denotes the collection of all m × n real matrices, and use A′, r(A), and

R(A) to stand for the transpose, the rank, and the range of a matrix A ∈ R
m×n, respectively; Im denotes

the identity matrix of order m. The Moore–Penrose inverse of A, denoted by A+, is defined to be the unique

solution G satisfying the four matrix equations AGA = A, GAG = G, (AG)′ = AG, and (GA)′ = GA. PA, EA, and

FA stand for the three orthogonal projectors (symmetric idempotentmatrices)PA = AA+, EA = A⊥ = Im−AA
+,

and FA = In −A
+A induced from A+. For two symmetric matrices A and B of the same size, A < Bmeans that

A − B is nonnegative definite.

Concerning the predictability of ψ in (1.6), we need the following definition.

Definition 1.1. The vector ψ in (1.6) is said to be predictable under L if there exists a matrix L ∈ R
k×n such

that E(Ly−ψ) = 0. In particular, theGβ is said to be estimable underL if there exists a matrix L ∈ R
k×n such

that E(Ly − Gβ) = 0.

Definition 1.2. Let ψ be defined in (1.6). If there exists a matrix L such that

Cov(Ly − ψ) = min s.t. E(Ly − ψ) = 0 (1.10)
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holds in the Löwner partial ordering, the linear statistic Ly is defined to be the best linear unbiased predic-

tor(BLUP) of ψ under L , and is denoted by

Ly = BLUPL (ψ) = BLUPL (Gβ +Hε). (1.11)

IfH = 0 , orG = 0 in (1.6), then the Ly satisfying (1.10) is called the best linear unbiased estimator(BLUE) and

the BLUP of Gβ and Hε under L , respectively, and are denoted by

Ly = BLUEL (Gβ), Ly = BLUPL (Hε), (1.12)

respectively.

BLUPs/BLUEs are well known objects of study in regression analysis because of their simple and optimality

properties in statistical inferences, and are one of the prominent research objects in the field of statistics and

applications. Because the BLUPs of ψi under L1 and L2, and the BLUPs of ψi under L are not necessarily

the same, it is natural to compare the BLUPs under these models, and establish possible connections for the

BLUPs, such as,

BLUPL (ψi) = BLUPLi
(ψi), i = 1, 2, (1.13)

BLUPL (ψ) =

[
BLUPL1

(ψ1)

BLUPL2
(ψ2)

]
. (1.14)

This article aims at establishing necessary and sufficient conditions for the equalities to hold, and presents

some consequences and applications of these equalities.

2 Preliminary results

We need the following tools in the analysis of (1.1)–(1.14).

Lemma 2.1 ([11]). Let A ∈ R
m×n , B ∈ R

m×k , C ∈ R
l×n and D ∈ R

l×k . Then

r[A, B ] = r(A) + r(EAB) = r(B) + r(EBA), (2.1)

r

[
A

C

]
= r(A) + r(CFA) = r(C) + r(AFC). (2.2)

If R(B) ⊆ R(A) and R(C′) ⊆ R(A′), then

r

[
A B

C D

]
= r(A) + r(D − CA+B). (2.3)

In addition, the following results hold.

(a) r[A, B ] = r(A) ⇔ R(B) ⊆ R(A) ⇔ AA+B = B ⇔ EAB = 0.

(b) r

[
A

C

]
= r(A) ⇔ R(C′) ⊆ R(A′) ⇔ CA+A = C ⇔ CFA = 0.

Lemma 2.2 ([12]). The linear matrix equation AX = B is solvable for X if and only if r[A, B] = r(A), or

equivalently,AA+B = B. In this case, the general solution of the equation canbewritten asX = A+B+( I−A+A )U,

where U is an arbitrary matrix.

In order to directly solve the matrix minimization problem in (1.10), we need the following known result.

Lemma 2.3 ([9]). Let

f (L) = (LC + D)M(LC + D)
′ s.t. LA = B,
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where A ∈ R
p×q, B ∈ R

n×q, C ∈ R
p×m and D ∈ R

n×m are given, M ∈ R
m×m is nnd, and the matrix equation

LA = B is solvable. Then there always exists a solution L0 of L0A = B such that

f (L) < f (L0)

holds for all solutions of LA = B. In this case, the matrix L0 satisfying the above inequality is determined by the

following solvable matrix equation

L0

[
A, CMC′A⊥

]
=
[
B, −DMC′A⊥

]
.

In this case, the general expression of L0 and the corresponding f (L0) and f (L) are given by

L0 = argmin
LA=B

f (L) =
[
B, −DMC′A⊥

] [
A, CMC′A⊥

]+
+ U

[
A, CMC′

]⊥
,

f (L0) = min
LA=B

f (L) = FMF′ − FMC′TCMF′,

f (L) = f (L0) + (LC + D)MC′TCM (LC + D)
′

= f (L0) +
(
LCMC′A⊥ + DMC′A⊥

)
T
(
LCMC′A⊥ + DMC′A⊥

)′

,

where F = BA+C + D, T =
(
A⊥CMC′A⊥

)+
, and U ∈ R

n×p is arbitrary.

3 Exact formulas for BLUPs of all parameters under SURMs

Classic estimation/prediction problems of unknown parameters in SURMs were considered, e.g., in [13–

15]. Some effective algebraic methods for deriving analytical formulas of BLUPs/BLUEs under general linear

regression models have recently been proposed and used in [8–10, 16–26]. In this section, we first give a new

derivation of exact formulas for calculating the BLUPs of ψi in (1.5), and show a variety of algebraic and

statistical properties of the BLUPs. It can be seen from (1.1), (1.2), and (1.5) that

Liyi − ψi = LiXiβi + Liεi − Giβi −Hiεi

= (LiXi − Gi)βi + (Li −Hi)εi

= (LiXi − Gi)βi + (Li −Hi)Tiε, i = 1, 2. (3.1)

Then, the expectations and covariance matrices of Liyi − ψi can be written as

E(Liyi − ψi ) = (LiXi − Gi)βi , (3.2)

Cov(Liyi − ψi ) = Cov[ (LiXi − Gi)βi + (LiTi −HiTi)ε ]

= (LiTi −HiTi)Σ(LiTi −HiTi)
′ △
= fi(Li) (3.3)

for i = 1, 2. Hence, the constrained covariance matrix minimization problems in (1.10) convert to mathemat-

ical problems of minimizing the quadratic matrix-valued functions fi(Li) subject to (LiXi −Gi)βi = 0, i = 1, 2.

Our first main result is presented below.

Theorem 3.1. Let L1 and L2 be as given in (1.1) and (1.2), respectively, and denote

Ci = Cov{ψi , yi} = HiTiΣT
′

i , i = 1, 2. (3.4)

Then, the parameter vectors ψi in (1.5) are predictable by yi in L1 and L2, respectively, if and only if

R(X′

i) ⊇ R(G′

i), i = 1, 2. (3.5)

In these cases,

Cov( L̂iyi − ψi ) = min s.t. E(L̂iyi − ψi ) = 0 ⇔ L̂i[Xi , ΣiiX
⊥

i ] = [Gi , CiX
⊥

i ], i = 1, 2. (3.6)
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The matrix equations in (3.6) are solvable under (3.5), and the general solutions L̂i and the corresponding

BLUPLi
(ψi) can be written as

BLUPLi
(ψi) = L̂iyi = L̂iTiy =

(
[Gi , CiX

⊥

i ][Xi , ΣiiX
⊥

i ]
+ + Ui[Xi , ΣiiX

⊥

i ]
⊥
)
Tiy, (3.7)

where Ui ∈ R
ki×ni are arbitrary, i = 1, 2. The corresponding fi(L̂i) and fi(Li) under (3.1)–(3.3) are given by

fi(L̂i) = Cov[ BLUPLi
(ψi) − ψi ]

=
(
[Gi , CiX

⊥

i ][Xi , ΣiiX
⊥

i ]
+Ti −HiTi

)
Σ
(
[Gi , CiX

⊥

i ][Xi , ΣiiX
⊥

i ]
+Ti −HiTi

)′

, (3.8)

fi(Li) = fi(L̂i) +
(
LiTiΣT

′

i −HiTiΣT
′

i

)(
X⊥i TiΣT

′

iX
⊥

i

)+(
LiTiΣT

′

i −HiTiΣT
′

i

)′

= fi(L̂i) + (LiΣii − Ci)
(
X⊥i ΣiiX

⊥

i

)+
(LiΣii − Ci)

′ (3.9)

for i = 1, 2. Further, the following results hold.

(a) r[Xi , ΣiiX
⊥

i ] = r[Xi , Σii ], R[Xi , ΣiiX
⊥

i ] = R[Xi , Σii ] and R(Xi) ∩ R(ΣiiX
⊥

i ) = {0}, i = 1, 2.

(b) L̂i are unique if and only if r[Xi , Σii ] = ni , i = 1, 2.

(c) BLUPLi
(ψi) are unique with probability 1 if and only if yi ∈ R[Xi , Σii ] hold with probability 1, i = 1, 2.

(d) The covariance matrices of BLUPLi
(ψi), as well as the covariance matrices between BLUPLi

(ψi) and ψi

are unique, and satisfy the formulas

Cov[BLUPLi
(ψi)] =

(
[Gi , CiX

⊥

i ][Xi , ΣiiX
⊥

i ]
+
)
Σii

(
[Gi , CiX

⊥

i ][Xi , ΣiiX
⊥

i ]
+
)′

, (3.10)

Cov{BLUPLi
(ψi), ψi} = [Gi , CiX

⊥

i ][Xi , ΣiiX
⊥

i ]
+C′

i , (3.11)

Cov(ψi) − Cov[BLUPLi
(ψi)] = HiTiΣ(HiTi)

′

−
(
[Gi , CiX

⊥

i ][Xi , ΣiiX
⊥

i ]
+
)
Σii

(
[Gi , CiX

⊥

i ][Xi , ΣiiX
⊥

i ]
+
)′

(3.12)

for i = 1, 2.

(e) The BLUPs of ψi can be decomposed as the sums

BLUPLi
(ψi) = BLUELi

(Giβi) + BLUPLi
(Hiεi), i = 1, 2. (3.13)

(f) If ψ1 and ψ2 are predictable under L1 and L2, respectively, then P1ψ1 and P2ψ2 are predictable under

L1 and L2, respectively, and BLUPLi
(Piψi) = PiBLUPLi

(ψi) hold for any matrices Pi ∈ R
ti×ki , i = 1, 2.

Proof. It can be seen from (1.1), (1.2), and (1.5) that

E
(
Liyi − ψi

)
= 0 ⇔ LiXiβi − Giβi = 0 for all βi ⇔ LiXi = Gi , i = 1, 2.

From Lemma 2.2, the matrix equations are solvable respectively if and only if (3.5) hold. In these cases, we

see from Lemma 2.2 that the first parts of (3.6) are equivalent to finding solutions L̂i of the solvable matrix

equations L̂iXi = Gi such that

fi(Li) < fi(L̂i) s.t. LiXi = Gi , i = 1, 2 (3.14)

hold in the Löwner partial ordering. Further from Lemma 2.3, there always exist solutions L̂i of L̂iXi = Gi such

that (3.14) hold, and the L̂i are determined by the matrix equations

L̂i[Xi , TiΣT
′

iX
⊥

i ] = [Gi , HiTiΣT
′

iX
⊥

i ], i = 1, 2,

thus establishing the matrix equations in (3.6). Solving the matrix equations by Lemma 2.2 gives the L̂i in

(3.7). Also from (3.3),

fi(L̂i) = Cov(L̂iyi − ψi )

=
(
[Gi , CiX

⊥

i ][Xi , ΣiiX
⊥

i ]
+Ti −HiTi

)
Σ
(
[Gi , CiX

⊥

i ][Xi , ΣiiX
⊥

i ]
+Ti −HiTi

)′

,
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as required for (3.8) for i = 1, 2. Eq. (3.9) follows from Lemma 2.3.

Result (a) is well known. Results (b) and (c) follow directly from (3.7). Taking covariance matrices of (3.7)

yields (3.10). From (3.4) and (3.7),

Cov{BLUPLi
(ψi), ψi} = Cov{L̂iyi , ψi} = L̂iCov{yi , ψi} = [Gi , CiX

⊥

i ][Xi , ΣiiX
⊥

i ]
+C′

i ,

thus establishing (3.11) for i = 1, 2. The two equalities in (3.12) follow from (1.8) and (3.10). Results (e) and (f)

are direct consequences of (3.7).

We next derive the BLUPs of ψ and ψi under L , respectively. Note from L , (1.5) and (1.6) that

Ky − ψ = KXβ + Kε − Gβ −Hε = (KX − G)β + (K −H)ε,

Kiy − ψi = KiXβ + Kiε − Giβi −Hiεi = (KiX − GiSi)β + (Ki −HiTi)ε, i = 1, 2.

Then the expectations and covariance matrices of Ky − ψ and Kiy − ψi can be written as

E(Ky − ψ ) = (KX − G)β, E(Kiy − ψi ) = (KiX − GiSi)β, (3.15)

Cov(Ky − ψ ) = Cov[ (KX − G)β + (K −H)ε ] = (K −H)Σ(K −H)′
△
= g(K), (3.16)

Cov(Kiy − ψi ) = Cov[ (KiX − GiSi)β + (Ki −HiTi)ε ] = (Ki −HiTi)Σ(Ki −HiTi)
′ △
= gi(Ki) (3.17)

for i = 1, 2. Our second main result is presented below.

Theorem 3.2. Let L be as given in (1.4), and denote

J = Cov{ψ, y} = HΣ, Ji = Cov{ψi , y} = HiTiΣ, i = 1, 2. (3.18)

Then, the parameter vector ψ in (1.6) is predictable by y in L if and only if

R(X′) ⊇ R(G′), i.e., R(X′

i) ⊇ R(G′

i), i = 1, 2. (3.19)

In this case,

E(K̂y − ψ ) = 0 and Cov( K̂y − ψ ) = min ⇔ K̂[X, ΣX⊥ ] = [G, JX⊥ ]. (3.20)

Thematrix equation in (3.20) is solvable as well under (3.19),while the general forms of K̂ and the corresponding

BLUPL (ψ) can be written as

BLUPL (ψ) = K̂y =
(
[G, JX⊥ ][X, ΣX⊥ ]+ + U[X, ΣX⊥ ]⊥

)
y, (3.21)

where U ∈ R
k×n is arbitrary. The corresponding g(K̂) and g(K) in (3.16) are given by

g(K̂) = Cov[ BLUPL (ψ) − ψ ] =
(
[G, JX⊥ ][X, ΣX⊥ ]+ −H

)
Σ
(
[G, JX⊥ ][X, ΣX⊥ ]+ −H

)′

, (3.22)

g(K) = g(K̂) + (KΣ −HΣ)
(
X⊥ΣX⊥

)+
(KΣ −HΣ)

′ = g(K̂) + (KΣ − J)
(
X⊥ΣX⊥

)+
(KΣ − J)

′ . (3.23)

In particular, the parameter vectors ψi in (1.5) is predictable by y in L if and only if

R(X′) ⊇ R[(GiSi)
′], i = 1, 2. (3.24)

In this case,

E(K̂iy − ψi ) = 0 and Cov( K̂iy − ψi ) = min ⇔ K̂i[X, ΣX
⊥ ] = [GiSi , JiX

⊥ ], i = 1, 2. (3.25)

Thematrix equation in (3.25) is solvable aswell under (3.24),while the general forms of K̂i and the corresponding

BLUPL (ψi) can be written as

BLUPL (ψi) = K̂iy =
(
[GiSi , JiX

⊥ ][X, ΣX⊥ ]+ + Ui[X, ΣX
⊥ ]⊥

)
y, (3.26)
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where Ui ∈ R
ki×n are arbitrary, i = 1, 2. The corresponding gi(K̂i) and gi(Ki) in (3.17) are given by

gi(K̂i) = Cov[ BLUPL (ψi) − ψi ]

=
(
[GiSi , JiX

⊥ ][X, ΣX⊥ ]+ −HiTi

)
Σ
(
[GiSi , JiX

⊥ ][X, ΣX⊥ ]+ −HiTi

)′

, (3.27)

gi(Ki) = gi(K̂i) + (KiΣ −HiTiΣ)
(
X⊥ΣX⊥

)+
(KiΣ −HiTiΣ)

′

= gi(K̂i) + (KiΣ − Ji)
(
X⊥ΣX⊥

)+
(KiΣ − Ji)

′ (3.28)

for i = 1, 2. Further, the following results hold.

(a) r[X, ΣX⊥ ] = r[X, Σ ], R[X, ΣX⊥ ] = R[X, Σ ], and R(X) ∩ R(ΣX⊥) = {0}.

(b) K̂ is unique if and only if r[X, Σ ] = n.

(c) BLUPL (ψ) is unique with probability 1 if and only if y ∈ R[X, Σ ] holds with probability 1.

(d) The following covariance matrix formulas

Cov[BLUPL (ψ)] =
(
[G, JX⊥ ][X, ΣX⊥ ]+

)
Σ
(
[G, JX⊥ ][X, ΣX⊥ ]+

)′

,

Cov{BLUPL (ψ), ψ} = [G, JX⊥ ][X, ΣX⊥ ]+J′,

Cov(ψ) − Cov[BLUPL (ψ)] = HΣH′ −
(
[G, JX⊥ ][X, ΣX⊥ ]+

)
Σ
(
[G, JX⊥ ][X, ΣX⊥ ]+

)′

,

and

Cov[BLUPL (ψi)] =
(
[GiSi , JiX

⊥ ][X, ΣX⊥ ]+
)
Σ
(
[GiSi , JiX

⊥ ][X, ΣX⊥ ]+
)′

,

Cov{BLUPL (ψi), ψi} = [GiSi , JiX
⊥ ][X, ΣX⊥ ]+J′i ,

Cov(ψi) − Cov[BLUPL (ψi)] = HiTiΣ(HiTi)
′

−
(
[GiSi , JiX

⊥ ][X, ΣX⊥ ]+
)
Σ
(
[GiSi , JiX

⊥ ][X, ΣX⊥ ]+
)′

hold for i = 1, 2.

(e) The BLUPs of ψ and ψi satisfy the following identities

BLUPL (ψ) = BLUEL (Gβ) + BLUPL (Hε),

BLUPL (ψi) = BLUEL (Giβi) + BLUPL (Hiεi), i = 1, 2.

(f) Tψ is predictable under L , then BLUPL (Tψ) = TBLUPL (ψ) holds for all matrices T ∈ R
t×k .

Proof. It is obvious from (3.15) that

E (Ky − ψ) = 0 ⇔ KXβ − Gβ = 0 for all β ⇔ KX = G,

E
(
Kiy − ψi

)
= 0 ⇔ KiXβ − GiSiβ = 0 for all β ⇔ KiX = GiSi , i = 1, 2.

From Lemma 2.2, the matrix equations are solvable respectively if and only if (3.19) and (3.24) hold, respec-

tively. In these cases, we see from Lemma 2.2 that the first parts of (3.20) and (3.25) are equivalent to finding

solutions K̂ of the solvable matrix equations K̂X = G and K̂i of the solvable matrix equations K̂iX = GiSi such

that

g(K) < g(K̂) s.t. KX = G, (3.29)

gi(Ki) < gi(K̂i) s.t. KiX = GiSi , i = 1, 2, (3.30)

hold, respectively, in the Löwner partial ordering. Further from Lemma 2.3, there always exist solutions K̂ of

K̂X = G and K̂i of K̂iX = GiSi such that (3.29) and (3.30) hold, respectively. Applying Lemma 2.3 to (3.29) and

(3.30) leads to the conclusions in the theorem.
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4 How to establish decomposition identities between BLUPs under

SURMs

The exact formulas of BLUPs and their analytical properties presented in Section 3 enable us to conduct

many new and valuable statistical inference for SURMs via various matrix analysis tools. Especially through

comparing the formulas of the BLUPs of the same unknown parameters under two different models, people

can propose various types of equality between the BLUPs. Some previous and recent work on the equivalence

of BLUPs under linear regression models can be found in [27–30]. In this section, we derive necessary and

sufficient conditions for (1.13)–(1.14) to hold, and present some of their direct consequences.

Theorem 4.1. Assume thatψi in (1.5)are predictable underL1 andL2, i.e., (3.5)holds, i = 1, 2. Then, they are

predictable under L as well. Also let BLUPLi
(ψi) and BLUPL (ψi) be as given in (3.7) and (3.26), respectively,

i = 1, 2. Then, the following statements are equivalent:

(a) BLUPL (ψi) = BLUPLi
(ψi), i = 1, 2.

(b) r



Xi Cov{yi , y}

0 X′

Gi Cov{ψi , y}


 = r

[
Xi Cov{yi , y}

0 X′

]
, i = 1, 2.

(c) r

[
Xi Cov{yi ,X

⊥y}

Gi Cov{ψi ,X
⊥y}

]
= r[Xi , Cov{yi ,X

⊥y}], i = 1, 2.

(d) R

(
[Gi , Cov{ψi ,X

⊥y}]′
)
⊆ R

(
[Xi , Cov{yi ,X

⊥y}]′
)
, i = 1, 2.

Proof. If (a) holds, the coefficient matrices of BLUPLi
(ψi) and BLUPL (ψi) are the same, i.e., the coefficient

matrices of BLUPLi
(ψi) satisfy (3.25)

(
[Gi , CiX

⊥

i ][Xi , ΣiiX
⊥

i ]
+ + Ui[Xi , ΣiiX

⊥

i ]
⊥
)
Ti[X, ΣX

⊥] = [GiSi , JiX
⊥], i = 1, 2. (4.1)

Simplifying both sides by (2.1) and elementary block matrix operations, we obtain

r
(
[Xi , ΣiiX

⊥

i ]
⊥Ti[X, ΣX

⊥]
)
= r

(
[Xi , Σii]

⊥Ti[X, Σ]
)

= r[Ti[X, Σ], Xi , Σii] − r[Xi , Σii ]

= r[ [Xi , 0], TiΣ, Xi , Σii ] − r[Xi , Σii ]

= r[Xi , Σii ] − r[Xi , Σii ]

= 0,

that is, R(Ti[X, ΣX
⊥]) ⊆ R[Xi , ΣiiX

⊥

i ]. In this case, we obtain by (2.3) that

r
{
[GiSi , JiX

⊥] − [Gi , CiX
⊥

i ][Xi , ΣiiX
⊥

i ]
+Ti[X, ΣX

⊥]
}
=r

[
[GiSi , JiX

⊥] [Gi , CiX
⊥

i ]

[TiX, TiΣX
⊥] [Xi , ΣiiX

⊥

i ]

]
− r[Xi , Σii]

=r

[
Gi JiX

⊥ Gi CiX
⊥

i

Xi TiΣX
⊥ Xi ΣiiX

⊥

i

]
− r[Xi , Σii ]

=r




Gi Ji Ci

Xi TiΣ Σii
0 X′ 0

0 0 X′

i


 − r(X) − r(Xi) − r[Xi , Σii ] (by (2.2))
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=r




Gi HiTiΣ HiTiΣT
′

i

Xi TiΣ TiΣT
′

i

0 X′ 0

0 0 X′

i


 − r(X) − r(Xi) − r[Xi , Σii ]

=r




Gi HiTiΣ 0

Xi TiΣ 0

0 X′ 0

0 0 X′

i


 − r(X) − r(Xi) − r[Xi , Σii]

=r



Gi Cov{ψi , y}

Xi Cov{yi , y}

0 X′


 − r(X) − r[Xi , Σii ]

=r

[
Gi Cov{ψi ,X

⊥y}

Xi Cov{yi ,X
⊥y}

]
− r[Xi , Σii ] (by (2.2)).

Combining this equality with (4.1) leads to the equivalence of (a)–(c). The equivalence of (c) and (d) follows

from Lemma 2.1 (b).

The following results are direct consequences of Theorem 4.1.

Corollary 4.2. Let BLUPLi
(ψi) and BLUPL (ψi) be as given in (3.7) and (3.26), respectively, i = 1, 2. Then,

the following statements are equivalent:

(a) BLUEL (Xiβi) = BLUELi
(Xiβi), i = 1, 2.

(b) BLUPL (εi) = BLUPLi
(εi), i = 1, 2.

(c) r



Xi Cov{yi , y}

0 X′

0 Cov{εi , y}


 = r

[
Xi Cov{yi , y}

0 X′

]
, i = 1, 2.

(d) r

[
Xi Cov{yi ,X

⊥y}

0 Cov{εi ,X
⊥y}

]
= r[Xi , Cov{yi ,X

⊥y}], i = 1, 2.

(e) R

(
[0, Cov{εi ,X

⊥y}]′
)
⊆ R

(
[Xi , Cov{yi ,X

⊥y}]′
)
, i = 1, 2.

(f) R

(
[Cov{εi ,X

⊥y}]′
)
⊆ R

(
[Cov{X⊥

i yi ,X
⊥y}]′

)
, i = 1, 2.

Corollary 4.3. The following statistical facts are equivalent:

(a) BLUPL (ψ) =

[
BLUPL1

(ψ1)

BLUPL2
(ψ2)

]
.

(b) BLUPL (ψ1) = BLUPL1
(ψ1) and BLUPL (ψ2) = BLUPL2

(ψ2).

Corollary 4.4. The following statistical facts are equivalent:

(a) BLUEL (Xβ) =

[
BLUEL1

(X1β1)

BLUEL2
(X2β2)

]
.

(b) BLUPL (ε) =

[
BLUPL1

(ε1)

BLUPL2
(ε2)

]
.

(c) BLUEL (X1β1) = BLUEL1
(X1β1) and BLUEL (X2β2) = BLUEL2

(X2β2).
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(d) BLUPL (ε1) = BLUPL1
(ε1) and BLUPL (ε2) = BLUPL2

(ε2).

Finally, we present a group of consequences for the covariance matrix Σ in (1.3) given by Σ =

diag(σ21In1 , σ
2
2In2 ), where σ

2
1 and σ22 are unknown positive numbers. In this situation, (1.8) and (1.9) reduce

to

Cov(ψi) = σ2i HiH
′

i , Cov{ψi , yi} = σ2i Hi , i = 1, 2,

Cov(ψ) =

[
σ21H1H

′
1 0

0 σ22H2H
′
2

]
, Cov{ψ, y} =

[
σ21H1 0

0 σ22H2

]
.

Corollary 4.5. LetL1 andL2 be as given in (1.1) and (1.2), respectively, and assume that the parameter vectors

ψi in (1.5) are predictable by yi in (1.1) and (1.2), respectively. Then

BLUPLi
(ψi) = [Gi , σ

2
i HiX

⊥

i ][Xi , σ
2
i X

⊥

i ]
+yi = (GiX

+
i +HiX

⊥

i )yi , i = 1, 2.

Further, the following results hold.

(a) The covariance matrices of BLUPLi
(ψi), as well as the covariance matrices between BLUPLi

(ψi) and ψi

are unique, and satisfy the equalities

Cov[BLUPLi
(ψi)] = σ2i (GiX

+
i +HiX

⊥

i )(GiX
+
i +HiX

⊥

i )
′,

Cov{BLUPLi
(ψi), ψi} = σ2i (GiX

+
i +HiX

⊥

i )H
′

i ,

Cov(ψi) − Cov[BLUPLi
(ψi)] = σ2i HiH

′

i − σ
2
i (GiX

+
i +HiX

⊥

i )(GiX
+
i +HiX

⊥

i )
′

for i = 1, 2.

(b) The BLUPs of ψi can be decomposed as the sums

BLUPLi
(ψi) = BLUELi

(Giβi) + BLUPLi
(Hiεi), i = 1, 2.

(c) Ifψ1 andψ2 are predictable under (1.1) and (1.2), respectively, then P1ψ1 and P2ψ2 are predictable under

(1.1) and (1.2), respectively, and BLUPLi
(Piψi) = PiBLUPLi

(ψi) hold for any matrices Pi ∈ R
ti×ki , i = 1, 2.

Corollary 4.6. Let L be as given in (1.4), and assume that ψ in (1.6) is predictable by y in L . Then

BLUPL (ψ) =

[
BLUPL (ψ1)

BLUPL (ψ2)

]
=

[
BLUPL1

(ψ1)

BLUPL2
(ψ2)

]
=

[
(G1X

+
1 +H1X

⊥
1 )y1

(G2X
+
2 +H2X

⊥
2 )y2

]
,

BLUPL (ψ) = BLUEL (Gβ) + BLUPL (Hε),

BLUPL (ψi) = BLUEL (Giβi) + BLUPL (Hiεi) = BLUELi
(Giβi) + BLUPLi

(Hiεi), i = 1, 2.
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