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Introduction. In a recent paper [2] R. H. Brück has introduced
the concept of right neoring and discussed some properties of these
systems. In particular, he has considered analogues of certain prop-
erties of the ring of integers. This paper is essentially a commentary
on Bruck's paper and we generalize some of his results as follows.
The construction of the universal right neoring in [2] is applied to
the free monogenic 23-loop in any subvariety 23 of the variety of
loops and a complete analogue of Theorem 4.1 of [2] is obtained for
any one of these subvarieties. Then, using a result similar to those
obtained in [5], it is shown that this construction yields uncountably
many right neorings with an identity which generates the additive
loop of the right neoring. Conversely, every right neoring with an
identity which generates its additive loop can be obtained from a free
monogenic 23-loop by the above construction. Each of these right
neorings has some properties resembling those of the ring of integers.
One possible answer is given to the question raised by Brück concern-
ing the existence of universal right neorings with free additive loop
of arbitrary rank. A brief proof is given, using the results of [4; 5],
of the cancellation properties of the monogenic universal right neor-
ing. Finally, we discuss briefly the relationship between right neorings
and the logarithmetics of Etherington.

Preliminaries. By a variety of algebras we mean an equationally
defined class of abstract algebras in which the operations are finite in
number and finitary in scope. However, the number of identical rela-
tions defining the variety may be infinite. A subvariety © of a variety
S3 is a variety with the same set of operations as S3 and such that the
identities defining 33 are a subset of those defining ©. The class of
loops is a variety if we use the definition of a loop in terms of three
operations given in [4].

In any variety of algebras S3, we have the free algebra F„(23) on n
generators. This can be defined as follows. An algebra FC 23 is called
the free algebra ^»(23) if any mapping of the « generators of V into
any algebra l4v'£23 can be extended to a homomorphism of V into W.
Such an algebra, if it exists, is unique to within isomorphism. An ex-
plicit construction of Fn(23) can be obtained in the usual way in
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terms of words in the generators. An important property of .Fn(33) is
that any mapping of its generators into itself can be extended to an
endomorphism. This property does not completely characterize Fn(%$)
in the variety 25 since an algebra in 33 with this property could be the
free algebra on n generators in some subvariety of 35. We shall use
later the following theorem.

Theorem 1. Let Vbe a ^8-algebra with the property that any mapping
of the generators of V into V can be extended to an endomorphism. Then
V is isomorphic to Fn{^>) for some subvariety @ of 33.

Proof. Let © be the subvariety of 23 consisting of all 33-algebras
satisfying all the identical relations which V satisfies. Then V is the
free algebra on n generators (for some n) of the variety © since any
relations which the generators of V satisfy are satisfied identically in
V and hence in every algebra in ©. Thus any mapping of the gener-
ators of V into an algebra in © can be extended to a homomorphism
of V into this algebra.

In any 23-algebra, an endomorphism is completely determined by
the images of the generators and, as we have seen, in F„(23) any set of
n elements can be the images of the generators under an endomor-
phism. This gives the following complete generalization of Lemma 3.1
of [2].

Theorem 2. Let V be a ^8-algebra generated by gi, g%, • • • , g„ and
let 6 be the homomorphism ai—*gi of the free ^-algebra Fn(33) generated
by ai, 02, • • • , an onto V. Then, for every endomorphism a of V,
ßd = da where ß is any endomorphism of F„(23) such that a,/30 =g¡a.

In a variety 23 it may happen that restrictions on n imply that
Fn(%$) is the free algebra of some subvariety of 23. For example, if &
is the variety of groups and 21 the subvariety of abelian groups, then
Fi(®)^FiCä). Or, if 2JÎ is the variety of Moufang loops and © the
subvariety of groups, then F2(W)=Fi(®). However, although some
identifications of this type may occur in the set of all Fi(23) where 23
ranges over all subvarieties of the variety £ of groupoids or the
variety 8 of loops, we still have the following theorem.

Theorem 3.
(a) There are uncountably many nonisomorphic groupoids of the

form Fi(Sß) where 23 is a subvariety of $.
(b) There are uncountably many nonisomorphic loops of the form

Fi(23) where 23 is a subvariety of 8.

Proof. The existence of monogenic groupoids satisfying all but one
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of an infinite set of identical relations as shown in [6, p. 345] is
sufficient to prove part (a). However, part (b) cannot be proved in
this manner by reference to Theorem 2.3 of [ó] since the loops con-
structed in the proof of that theorem are not monogenic. It is com-
paratively easy to remedy this by exhibiting an infinite set of identi-
cal relations such that monogenic loops exist satisfying all but one
of the relations. The following proof (due to the referee) is briefer.

In [l, p. 450], Artzy has constructed a class of loops such that
each loop is uniquely determined to within isomorphism by a single-
valued function on the integers, this function satisfying a certain con-
dition. From the construction given by Artzy it can be seen that there
are uncountably many different functions of this type and hence un-
countably many nonisomorphic loops in the class. Brück has shown
[2, p. 57] that each of these loops is monogenic and is the additive
loop of a neofield. By Theorem 6 in the next section such a loop is the
free loop in some variety of loops. This proves part (b) of the theo-
rem.

Right neorings. As defined in [2], a right neoring R is a system
with two binary operations (+), ( • ) such that R is a loop with respect
to (+) with zero 0, R is closed with respect to (•) and x0 = 0, and
(x+y)z=xz-\-yz for all x, y, z in R. A simple consequence of these
axioms is that 0x = 0 for all x in R. If R has a left identity 1 which
generates the additive loop of R, then 1 is actually a two-sided iden-
tity and multiplication in R is associative (Theorem 2.1 of [2]). In
this section we shall generalize Bruck's construction of a universal
right neoring and show that our construction actually gives all right
neorings having a left identity which generates the additive loop of
the right neoring.

Let 23 be any subvariety of the variety of loops 8. Consider the
loop Fi(23) with the loop operation written as addition and let the
generator of .Fi(23) be written as 1. Let <f>x be the endomorphism of
•^1(23) which maps 1 into the element x of Fi(25). Define a multiplica-
tion xy in 7^(23) by xy = x<py. Then, exactly as in [2], we obtain a
right neoring with an associative multiplication and having 1 as a
two-sided identity. We shall denote this right neoring by i?i(23). The
construction given in [2] is the special case 23 = 2 of our construction.
Theorem 4.1 of [2] becomes, in this general situation, the following.

Theorem 4. Let R be a right neoring with left identity 1 such that 1
generates the additive loop R+ of R. Then, if R+ belongs to the subvariety
23 of 8, the homomorphism 9 of Fi(23) onto R+ given by 10 = 1 induces
a homomorphism of the right neoring i?i(23) onto the right neoring R.
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Proof. This is the same as the proof of Theorem 4. lin [2 ] if Lemma
3.1 of that paper is replaced by our Theorem 2. We note that this
theorem also implies that 1 is a two-sided identity and that multipli-
cation in R is associative.

Combining the preceding construction of right neorings .Ri(23) with
Theorem 3 we obtain a theorem giving the number of distinct right
neorings of the type described in Theorem 4.

Theorem 5. There are uncountably many nonisomorphic associative
right neorings with a two-sided identity which generates the additive loop.

We thus have a means of constructing a large class of right neor-
ings, namely, the i?i(23) for subvarieties 23 of 8. The question arises,
what are the other right neorings having a left identity which gener-
ates the additive loop? By Theorem 4.1 of [2] (our Theorem 4 with
33 = 8), any such right neoring is a homomorphic image of -f?i(8). The
next theorem shows that any such homomorphic image is necessarily
an i?i(S3) for some subvariety 33 of 8. Hence our construction of the
i?i(33) includes all right neorings having a left identity such that this
left identity generates the additive loop of the right neoring.

Theorem 6. Let Rbe a right neoring with a left identity 1 such that 1
generates R+, the additive loop of R. Then R is isomorphic to i?i(33) for
some subvariety 23 of 8.

Proof. The right distributive law in R implies that the mapping
<f>y defined by x^>v — xy is an endomorphism of R+ into itself for any
y in R. Since 1 is a left identity in R, y — \-y — \<j>y. Hence there is an
endomorphism of R+ mapping its generator into any element. In
other words, any mapping of the generator 1 of R+ into R+ can be ex-
tended to an endomorphism of R+. By Theorem 1, this implies that
R+ is isomorphic to .Fi(23) for some subvariety 33 of 8.

Since multiplication xy in R has the property xy=x<bv where <pv
is the endomorphism of Fi(33)( = i2+) which maps 1 into y, the right
neoring R is thus i?i(33).

This completes the proof. We mention briefly another approach.
The kernel K of the mapping of i?i(8) onto R defined by 1—»1 is a
normal subloop of Fi(%). It is actually a fully invariant normal sub-
loop of .Fi(8) since K- Fi(2)GK (see Lemma 4.3, [2]) so that K is
mapped into itself by all endomorphisms of Fi(8). Thus K is a word
subloop of Fi(8) and the quotient loop Fi(L)/K is generated by 1 and
satisfies the identical relations arising from equating to 0 the words
which generate K. Hence R is the monogenic free 33-loop for some
23C8, where 23 is determined by the words generating K. In view of
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the remarks preceding Theorem 4, K may be any fully invariant nor-
mal subloop of Fi(2) showing that condition (b) of Lemma 4.3 of
[2] is redundant when the additive loop of the right neoring is Fi(2).
In fact, the same reasoning shows that condition (b) is redundant
whenever the right neoring (R, +, •) (in Bruck's notation) has a left
identity which generates the additive loop. A direct proof is possible
of a more general result than this, namely, that if x, y, k are three
elements of the monogenic loop ^(23) then x(y-\-k) =xy+k' for some
k' in the normal subloop of .Fi(S3) generated by k. Here, right multi-
plication by an element denotes as usual the endomorphism sending
1 into that element.

It is seen then that the study of right neorings with a left identity
which generates the additive loop is equivalent to the study of either
fully invariant normal subloops of the free monogenic loop or of free
monogenic 23-loops for any subvariety 23 of the variety of loops. One
property of Ri(2) which is true for any 2?i(23) is that given in Lemma
4.2 of [2]. Namely, if G is a subloop of ^(Sî), the G is a subneoring
of i?i(S3). The proof is the same as that for 23 = 2 given in [2, p. 54].

In the proof of the cancellation laws for Ri(2) given in [2], the
proof that zx—zy, z^O, implies x=y is only sketched since a com-
plete proof along the same lines would be very long. However, a brief
proof of both cancellation laws is possible using the results of [4]
and [5] and we shall give this now. Of course, this proof is only short
because the tedious consideration of cases has already been done in
these earlier papers.

Let x, y, z be elements in Fi(2) and let them be given by the normal
forms w(l). u(l). w(l) respectively. Then the cancellation law
xz = yz, Zt^O, =>x = y is equivalent to the statement that, if ^(1)^0,
then u(w(\)) =v(w(l))=$u(l) =v(l). Similarly, the cancellation law
zx = zy, zt^O, =>x=y is equivalent to the statement that, if ^(1)^0,
then w(u(l)) =w(u(l))=>w(l) =v(l). These equivalences follow from
the fact that under the endomorphism 1—H of Fi(2), the word p(i) is
mapped into p(t).

Our proof is actually an extension of that of Lemma 2 in [S]. Let
p(i), q(l) be two normal forms in Fi(8), neither of which is the zero
element. Now, if g(l) is not a repeated inverse of 1, the word p(q(l))
is necessarily normal, for an elementary reduction of p(q(l)) would
imply that an elementary reduction is possible in either q(l) or p(\)
whereas these words are normal. If g(l) is a repeated left (right)-
inverse of 1 and p(\) contains no components which are repeated right
(left)-inverses of 1, again p(q(l)) is normal, for the same reason.

Hence, in both these cases, if r(l) is another normal word, not
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equal to q(l), then ^»(g(l))?i^»(>v(l)), for two normal forms are equal
if and only if they are identical. Also, if s(l) is a normal form not
equal to p(\), then p{q(\)) ^s(q{\)).

The only possibility for p(q(l)) left to consider is when g(l) is a
repeated left (right)-inverse and some of the components of p(v) are
repeated right (left)-inverses. This case is treated fully in Lemma 2,
[5]. Again, we reach the conclusion that r(\)?±q(i) implies that
P(q(^))^P(r(l)) and s(l)^p(l) implies p(q(l))*s(q(l)).

Universal right neorings. The right neoring i?i(8) is universal in
the sense that any right neoring with a left identity which generates
the additive loop is a homomorphic image of i?i(8). Brück raises the
question of whether there exist universal right neorings with additive
loops free of arbitrary rank. Since a right neoring can be constructed,
having the free 33-loop on n generators as additive loop for every
mapping of the elements of the loop into the set of all endomorphisms
(with the restriction that the zero element corresponds to the zero
endomorphism) it seems unlikely that a universal right neoring exists
for the class of all right neorings having the free 25-loop on n gener-
ators as additive loop.

However, we can obtain universal right neorings for some classes of
right neorings having F„(23), the free 25-loop on n generators, as addi-
tive loop. One example is a direct generalization of i?i(25). Let
gi, g2, g¡, • • • be the generators of Fn(23) (n may be infinite) and let
4>x be the endomorphism of F„(33) which maps every g,- onto the ele-
ment x of 77„(23). Define a multiplication xy in F„(V) by xy = x<f>v.
Then Fn(%$) becomes a right neoring which we shall denote by i?„(25).
Multiplication in i?„(25) is associative and the elements g¿ are left
identities with respect to multiplication. The right neoring i?n(23) is
universal in the sense that any right neoring R with n left identities
such that these left identities generate R+, the additive loop of R, is a
homomorphic image of i?n(33) where 25 is a variety of loops containing
R. The proof of this is the same as the proof of Theorem 4 and Theo-
rem 4.1 of [2].

Logarithmetics. In a series of papers (see [3] and the references
given there) Etherington has defined and investigated the basic prop-
erties of logarithmetics. Originally defined for a linear algebra, the
logarithmetic of this algebra is essentially the algebraic system of all
exponents of a general element of the algebra with addition and
multiplication defined in the usual way. The resulting system resem-
bles a left neoring with an identity which generates the additive
system, the difference being that the additive system is a groupoid
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and not a loop. The logarithmetics of quasigroups and loops have
been studied by H. Popova (see [7] and the references given there)
and in the latter case the resulting algebra is actually a left neoring
with an identity which generates the additive loop. In this section we
discuss this connection between neorings and logarithmetics.

Let G be a multiplicative groupoid, with or without an identity ele-
ment, and let x denote an element of G. We introduce exponents,
which are elements of the free additive groupoid generated by 1,
into G by (i) x1=x, (ii) xm+n = xm-xn. If G has an identity we introduce
0 into the system of exponents and define x° = e, the identity of G.
Multiplication is introduced into the additive groupoid of exponents
by xm'n = (xm)n.

Now let 5 be a subset of the elements of G. Etherington defines
the logarithmetic of S, which we shall denote by L(S), to be the
algebra of all exponents, that is, all words in 1 with respect to ( + )
and (•), with equality m = n between exponents m, n if and only if
xm=xn for every element x in S. Important special cases are when 5
consists of a single element in which case the resulting algebra is
called the logarithmetic of the element and when 5 consists of the
whole of G in which case the algebra is called the logarithmetic of
the groupoid. It is clear that a logarithmetic L(S) is an algebraic sys-
tem with two binary operations (+), (•) such that additively the
system is generated by one element 1. For any two additive words
ii(l), v(l) in the system, the relation w(l) v(l) —v(u(l)) holds and in
addition there are relations r(l) =5(1) between certain pairs of addi-
tive words. Other properties of L(S) are described in the following
theorem.

Theorem 7. The logarithmetic L(S) of a subset S of a groupoid G has
the following properties: (i) L(S) is a groupoid with respect to addition
and has a two-sided zero if G has an identity, this zero also satisfying
Ox = x-0=0 for all x, (ii) multiplication in L(S) is associative, (iii) 1,
the generator of the additive groupoid L+(S) of L(S), is a two-sided
identity with respect to multiplication, (iv) L(S) satisfies the distributive
law x(y+z) =xy+xz, (v) L+(S) is the free monogenic 23-groupoid for
some subvariety 23 of the variety of groupoids (or variety of groupoids
with zero).

Proof, (i), (ii), (iii), (iv) have been discussed by Etherington, (v)
follows from Theorem 2 after we have observed that y—>xy is an
endomorphism of L+(S) and thus there are endomorphisms of L+(S)
which send the generator 1 into any element.

We define an abstract logarithmetic to be an algebraic system
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closed with respect to addition and multiplication and such that (i) it
is a groupoid (possibly with a two-sided zero) with respect to addi-
tion, (ii) it possesses a two-sided identity with respect to multiplica-
tion and this element generates the additive groupoid, (iii) multipli-
cation is associative, (iv) the distributive law x(y+z) =xy+xz is
satisfied. If the abstract logarithmetic has a zero, we assume that
x ■ 0 = 0 • x = 0 for all x.

Let Fi(25) be the free monogenic 23-groupoid where 23 is a sub-
variety of £. We assume Fi(23) is written additively with generator
1. A multiplication x-y is introduced into Fi(23) by x-y—y<px where
<px is the endomorphism of .Fi(25) which maps 1 onto x. The resulting
system is an abstract logarithmetic which we shall denote by Z-i(33).
Corresponding to Theorem 4 we have the following theorem for ab-
stract logarithmetics.

Theorem 8. Let L be an abstract logarithmetic such that its additive
groupoid L+ belongs to the variety 33. Then the homomorphism of Fi(23)
onto L+ given by 1—»1 can be extended to a homomorphism of Li(33)
onto L.

As a corollary of this we obtain the result due to Etherington,
[3, p. 450], that every abstract logarithmetic is a homomorphic image
of Li(S). Combining the proof of Theorem 6 with part (v) of Theorem
7 we obtain the following stronger result.

Theorem 9. Every abstract logarithmetic is isomorphic to an ¿i(33),
where 23 is a subvariety or ¿3.

Using Theorem 3(a), we have the following theorem giving the
number of abstract logarithmetics.

Theorem 10. There are uncountably many nonisomorphic abstract
logarithmetics.

The connection between the logarithmetics L(S) and the abstract
logarithmetics ¿i(33) is given in the next theorem.

Theorem 11. Let rt(x) = 5,(x), i = l,2,3, ■ ■ ■ ,be the set of relations
satisfied by every element in a subset S of a multiplicative groupoid G.
Let U be the subvariety of 3 defined by the set of identical relations
r,+(x) =st(x), * = 1, 2, 3, • • • , where r,+(x), i,+(x) are r,(x), 5<(x) writ-
ten additively. Then L(S) is isomorphic to ¿i(U).

Proof. The words r<(x), s,(x) are powers of x with exponents
r,+(l), s?(l). Hence L(S) can be considered as the homomorphic image
of Li(3) obtained by adding the relations r<(l)=5<(l). Now ¿i(U) is
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the homomorphic image of Z-i(3) obtained by adding the identical
relations r,(x) =Si(x) to Li(¿$). These two homomorphic images of
Li(S) are isomorphic since the relations r\(l)=s,(l) in L(S) imply
that L(S) satisfies the identical relations r<(*)=»s.(x).

Corollary. If G, H are two groupoids belonging to the variety 23 and
not to any subvariety of 23, then L(G), L(H), Li(23) are isomorphic.

In several papers (see [7] and the references given there) H. Popova
has investigated the logarithmetics of finite loops and quasigroups.
Because of this finiteness restriction only "positive" nonassociative
integers are needed for exponents and the definition of these logarith-
metics is exactly the same as the definition for groupoids. To discuss
the logarithmetic of an arbitrary quasigroup or loop we need to
introduce "negative" exponents. This can be done by introducing an
additive notation for quasigroups and loops corresponding to the
multiplicative definition in terms of three operations given in [4]. In
that definition we replace x-y by x+y, x\y by — x+y, and x/y by
x—y. Then we use as exponents of elements in quasigroups or loops
the elements of the free monogenic quasigroup or loop written addi-
tively with generator 1. There is no difficulty in extending to this new
algebra of exponents all the ideas introduced for logarithmetics of
groupoids at the beginning of this section. Corresponding to Theorem
7, we have the following.

Theorem 12. If Q is a loop, the logarithmetic L(Q) of Q is a left neor-
ing with an identity which generates its additive loop.

We can also obtain theorems about logarithmetics of loops and
quasigroups corresponding to Theorems 8, 9, 10 although in view of
Theorem 12 and our earlier results about right neorings, these theo-
rems are superfluous. As a consequence of the theorem corresponding
to Theorem 11, the logarithmetics of two loops (quasigroups) are
isomorphic if the loops (quasigroups) belong to the same subvariety.
Another consequence of this theorem is that given any left neoring
with a right identity such that this right identity generates the addi-
tive loop of the left neoring, there exists a loop having this left neor-
ing as its logarithmetic. Thus the study of left or right neorings with
an identity which generates the additive loop is equivalent to the
study of logarithmetics of loops.
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Emory University

COMPONENT SUBSETS OF THE FREE LATTICE
ON n GENERATORS

RICHARD A. DEAN

1. Introduction. In the free lattice on n generators, FL(w), the
components of a word (lattice polynomial) are defined recursively by :
(i) the only component of a generator is itself, and (ii) if W=A\JB
(or Af~\B) the components of W are W, A, and B and their com-
ponents.1 A component subset, P, of FL(«) is a collection of words in
FL(«) with the following property: if a word belongs to P then so do
all its components.2 A component subset of FL(ra) may be partially
ordered in a natural way: A^B if and only if A^B in FL(«).
Clearly if W=A\JB (or A(~\B) belongs to a component subset, P,
W appears in P as the l.u.b. (or g.l.b.) of A and B under the ordering
( = ). Thus it is natural to say that a component subset P is gener-
ated by the generators of FL(») which appear in the words belonging
to P. This notion is used here to prove:

Theorem 1.* Given any two words, unequal in FL(ra), there exists
a finite homomorphic image of FL(«) in which their images are distinct.

Theorem 2.4 Any lattice possessing a countable number of generators

Received by the editors May 2, 1955.
1 ( = ) denotes logical identity.
1 The author is indebted to R. P. Dilworth for suggesting the definition of com-

ponent subset and its application in the proof of Theorem 2.
* Theorem 1 was conjectured by Marshall Hall, Jr.
* Theorem 2 is due to Sorkin [4] where a sketch of a proof is given.
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