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Introduction. In 1954 the mathematical entity called a (sequential)
machine was found to be a valuable tool in designing sequential switching
circuits [2; 8; 9]. Since then there has been considerable mathematical activ-
ity by mathematicians and nonmathematicians relating to the analysis and
the synthesis of these machines. As was to be expected of a topic which
arose because of an engineering need, most of these results have appeared in
engineering and computing journals. Recently though, some of the papers
have appeared in mathematical journals [3; 4; 5; 6; 10]. Also, much of the
recent literature has dealt with questions almost exclusively of mathematical,
as contrasted with engineering, interest [l; 3; 4; 5; 6; 10; 12]. The present
paper is written in that spirit.

The Moore-Mealy (complete, sequential) machine is defined [8; 9] as a
nonempty set K (of "states"), a nonempty set D (of "inputs"), a nonempty
set F (of "outputs"), and two functions 8 (the "next state" function), and
X (the "output" function), 5 mapping KXD into K and X mapping KXD
into F. Then 8 and X are extended to sequences of inputs h • • • Ik (written
without commas) by

8(q\, Ii ■ • ■ Ik) = qk+i

and

X(?i, /!••/*) = X(?i, Ji)X(8(?1, /i), I2 • • • h),

where qj+\ = 8(qj, 73) for 1 ̂ j^k. The properties of machines studied usually
involve sequences of inputs and sequences of outputs. The present paper
arose by observing that many facts about machines, for example, those on
submachines, could be phrased more elegantly by calling "sequences of in-
puts" and "sequences of outputs," "inputs" and "outputs" respectively. From
this it was natural to consider both inputs and outputs as elements from
abstract semi-groups, subject of course, to certain restrictions on the next
state function and the output function under the product of inputs. This led
to the concept of an abstract "quasi-machine." The term "quasi-machine"
was used because certain desirable properties associated with the Moore-
Mealy machines no longer held. By adding a technical condition on the out-
put semi-group, namely the left cancellation law, the lost properties were
restored. This led to the definition of an abstract "machine." While the
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emphasis and interest here is on machines, results have been stated wherever
applicable, to the more general notion of quasi-machines.

The material is divided into seven sections, the first two and the last deal-
ing with certain relations between machines, and the remaining four with
properties about states, inputs, and outputs. The main results are in the last
five sections.

In §1, some basic concepts of machines, such as "submachines," "strongly
connected" machines, and "stable" sets are introduced.

§2 considers properties related to composite machines, i.e., machines
obtained by using the outputs of one machine as inputs to another.

§3 deals with distinguishability and indistinguishability of states between
machines. A sample result is the following: Let \Sb/bGB} be a family of
denumerable state quasi-machines, at least one of the Si having just a finite
number of states. Suppose that for each sequence of inputs {/,•} and each
finite collection of machines [Si, • • • , S„] there exists a set of states
{p,/pjGSj, j^n] such that the output of p}- from I\ • • • J, is the same for

j^n. Then there exists a set {pb/pbGSb, 6=1, •••,»} of states which are
pairwise indistinguishable.

§4 discusses the topic of "essentially different" inputs. Two inputs h and
I2 are said to be input-distinguishable if a state p can be found so that some
two sequences of inputs, starting with Ix and I2 respectively and identical
thereafter, yield different outputs. That is, the inputs h and I2 are essentially
different when measured by the accompanying outputs. It is shown (Theorem
4.1), that each machine may be reduced to one which is input-distinguished
(i.e., all inputs are pairwise input-distinguishable). A test for determining if
a free machine is input-distinguished (Theorem 4.3) is given. For a -free
machine S, with a finite number of states and finite number of generating
outputs, a "best" upper bound on the maximum number of elements in the
input alphabet in order for 5 to be input-distinguished is given (Theorem 4.5).

§5 is concerned with a state being output complete, that is, a state where
all the outputs are actually assumed. In particular, conditions are given
which ensure a machine having an output complete state (Theorems 5.1
and 5.3).

§6 deals with the notion of a rational state, i.e., a state where each ulti-
mately periodic sequence of inputs yields an ultimately periodic sequence of
outputs. Intuitively, this can be interpreted as meaning that the machine
does not yield "wild" sequences of outputs under "repetitive" sequences of
inputs. Relations are given between the period of the input sequence and
the period of the output sequence, in conjunction with the number of states
in the machine (Theorem 6.3).

The final section is concerned with machines which have inverses. Roughly
speaking, an inverse S* of 5 undoes the action performed by 5. Questions on
existence, uniqueness, and "practical tests" for inverses are then answered.
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The emphasis throughout is on questions of mathematics as compared to
those of logic. As such, proofs and counterexamples have been given from an
existential point of view. Thus the axiom of choice is used freely. It is recog-
nized, however, that many of these same proofs and counterexamples can be
made more constructive if desired. For example, when dealing with machines
which have a denumerably infinite number of states, specific relations of
outputs to inputs, instead of existential ones, can be given.

In conclusion, the author wishes to thank C. C. Chang for the many
stimulating conversations which transpired during the writing of this paper.

1. Submachines. The basic notions relating to machines and submachines
are now defined. Some elementary properties are then given.

Definition. A quasi-machine S is a 5-tuple (K~s, Ws, Ys, 8s, Xs) satisfying
the following properties.

(1) Ks is a nonempty set of "states."
(2) Ws (the set of "outputs") and Ys (the set of "inputs") are nonempty

semi-groups(1).
(3) 8s (the "next state" function) is a mapping of KsX Ys into Ks such

that 8s(q, Iih) = 8s[8s(q, Ii), h\ for each q in Ks and each Ji and I2 in Ys.
(4) Xs (the "output" function) is a mapping of Ks X Ys into Ws such that

\s(q, I\I2) =Xs(2, /i)Xs[8s(q, h), h] for each q in Ks and each I\ and 72 in Ys.
The subscript 5 on Ks, Ws, etc., is omitted when 5 is understood.
Unless stated to the contrary, in all examples used in the sequel, only

generating sets(2) for Ws and Ys are used.
Given K, W, and F, it follows from (3) and (4) that a quasi-machine is

uniquely determined when the two functions 5 and X are known for each
input of a generating set of inputs and for each state.

On numerous occasions, as when discussing distinguishability of states, it
is convenient to restrict the semi-group of outputs in a particular way.

Definition. A machine S is a quasi-machine in which the semi-group of
outputs satisfies the left cancellation law(3).

For the purposes of this paper, the most important semi-groups which
satisfy the left cancellation law are the free semi-groups(4). Thus, if Ws is a
free semi-group, then S is a machine.

(') A semi-group is a set of elements A and an operation "o" such that a o b is in A and
(o o 6) o c =a o (6 o c) for every a, b, and c in A. When no confusion can arise, we write ab
instead of a o b and abc instead of (o o b) o c or a o (6 o c) etc.

(s) A subset M of a semi-group 5 is said to generate, or be a generating set for 5, if the closure
of M under the semi-group operation is S.

(8) A semi-group 5 is said to satisfy the left cancellation law if, for any elements a, b, and c
in S, ab=ac implies that 6 = c.

(4) Let D be an abstract set and M the set of all finite sequences of elements of D. Endow
M with the operation of concatenation. That is, if <ri and tri are two sequences in M, let a\tn
be the sequence consisting of the elements of <n followed by the elements of tn. Then M is a semi-
group, called the free semi-group based on the alphabet D.
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Definition. Let 5 be a machine. Suppose that Ws and Ys are both free
semi-groups based on the output alphabet F and the input alphabet D. If
for each state q in S and each element I of D there exists an element E of F
so that Xs(<z, I)=E, then S is said to be a. free machine.

Suppose that Y and W are two free semi-groups (based on the alphabets
D and F respectively) and that K is an abstract set. For each I in D and q
in K define Siq, I) to be an element of K and X(g, 7) to be an element of F.
By extending the definition of 5 and X to all of Y, in the obvious manner, so as
to satisfy (3) and (4) in the definition of a quasi-machine, a free machine is
obtained. It is clear that the theory of free machines is really the theory of
the Moore-Mealy machines(6). In the sequel, free machines will be described
by defining 8 and X only on D.

We now turn to the subject of subquasi-machines.
Definition. A subquasi-machine T of a quasi-machine S is a quasi-

machine such that KtQKs, Wt= Ws, Yt= Ys, 8r is 8s acting on KtX Ys,
and Xr is Xs acting on Kt X Ys-

A subquasi-machine has the same set of inputs as the original quasi-
machine. The definition of a subquasi-machine T could be modified so as to
allow Yt and Wt to be subsemi-groups of Ys and Ws respectively. Since this
generalization has not proved fruitful for the topics considered here, it has
not been used.

In dealing with subquasi-machines, it is frequently convenient to study
certain subsets of Ks-

Definition. A nonempty set of states A of a quasi-machine S is said to
be stable if 5(g, /) is in A for every state q in A and every input I.

It immediately follows from the definitions that in order for a subset A
of Ks to serve as A =KT for a subquasi-machine T of S, it is necessary and
sufficient that A be stable. T is said to be the subquasi-machine associated
with A, and A the stable set associated with T.

Let \Ac/cGC} be a family of stable sets. Since

\8iq,I)/qG U Ac\ C U   {8iq,I)/qGAe} C U Ac
\ c J c c

and

iiiq, I)/q GUiJcU   \8iq,I)/q G Ac} C f| A.
\ c ' c e

for each input /, the set Uc Ac is stable; and iii~\eAc is nonempty, this set is
also stable.

Let A be an arbitrary subset of Ks and let P(A) be the family of all stable

(8) The Moore-Mealy model [8; 9] consists of the input alphabet, output alphabet, states,
and next state and output functions defined for each state and each input in the input alphabet.
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sets which contain A. Since Ks is in F(A), F(A) is nonempty. Then the set
B, defined by B = C\ac<=f<,a) Ac is the smallest stable set containing A. B may
also be described as the set containing A and all states of the form 8(q, I),
for all q in A and all inputs I. B is said to be the stable set generated by A.
If A consists of the single state q, then the subquasi-machine associated with
the stable set generated by q is said to be a principal subquasi-machine, in
particular, the principal subquasi-machine generated by q.

Definition. A quasi-machine S is said to be strongly connected^) if for
every two states <?i and q2 in 5 there exists an input I so that 8(qit I) = q2.

Theorem 1.1. A subquasi-machine S is strongly connected if and only if the
stable set A associated with S contains no proper subset which is stable, i.e., A
is minimum stable.

Proof. Suppose that S is a strongly connected quasi-machine and the
associated stable set A is not minimum stable. Let B be a stable, proper
subset of A, q an element of A —B and gi in B. Since S is strongly connected,
there exists an input I such that 8(qlt I)=q. Since B is stable q is in B, a
contradiction. Hence A is minimum.

Now suppose that A is minimum stable. Let qi and q2 be in A and let B be
the stable set generated by qx. Since A is minimum stable and B is stable,
B=A. Thus q2 is in B, i.e., 8(qi, T) =q2 for some input I. Hence 5 is strongly
connected.

Corollary 1. A quasi-machine S contains no proper subquasi-machine if
and only if S is strongly connected.

Corollary 2. For each state q in the finite state quasi-machine S, there exists
a strongly connected subquasi-machine T and an input I such that 8(q, I) is in T.

Corollary 3. A necessary and sufficient condition that each state in a quasi-
machine S be in a minimum stable set is that S be the sumC) of strongly connected
(sub)quasi-machines.

Proof. In view of Theorem 1.1, only the necessity has to be shown. There-
fore let each state in .S be in a minimum stable set. Since the intersection of
two stable sets is stable if it is nonempty, two minimum stable sets are either
identical or disjoint. Let \Ha/aQM} be the collection of all minimum stable
sets. For each a let Sa be the subquasi-machine associated with Ha. By Theo-

(6) This follows the terminology of Moore [9] who defined strongly connected in terms of
sequences of inputs of the input alphabet of a free machine.

(7) Let j.S(a)/a£E A } be a family of quasi-machines, all with the same input semi-group
Y and same output semi-group W respectively. Without loss of generality, it is assumed that
K~s(a)C\ Ksib) is empty for each a^b in A. Define Ks to be U0ex Ksw- Let Ys = Fand Ws = W.
For q in Ks and I'm Y, let \siq, I) = Xs<a)(g, I) and Ss(q, /) = 4s(0) (g, I), where g is in Ksm- Then
5 is a quasi-machine and is said to be the sum of the family {S(a) /a Q. A }.
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rem 1.1, each Ha is strongly connected. Since the {Ha) are a partition of K,
S is the sum of strongly connected quasi-machines {Sa/aGM}.

From Corollary 3 there follows

Corollary 4. A necessary and sufficient condition that a quasi-machine S
be the sum of strongly connected quasi-machines is that for each two states q\ and
q2, if there exists an input I so that 5(gi, I) =q2, then there exists an input J so
that 5(g2, 7) = Si-

Corollary 5. Each permutation quasi-machine^1) with a finite number of
states is the sum of strongly connected quasi-machines.

Proof. By Corollary 3, it is sufficient to show that for each state q and
each input I, there exists an input I\ such that 5(g, Hi) =q. If 5(g, T)=q, it
is sufficient to let Ii = I. Suppose that Siq, 7)=gi^g = g0. For each integer
/>0 define gy = 8(gy-i, I). Let k be the smallest integer such that g* = g,- for
some i<k. The existence of k is guaranteed by S having just a finite number
of states. Suppose that qk7*qo. Then qk = 8iqk^i, I) =gj = 5(gi_1, I) since i>0.
As I is a permutation, thus one to one, Qk-i — Qi-i. This contradicts the mini-
mality property of k. Therefore qk = qo- Let Ii = II • • • /(£ —1 times). Then
q = 8iq, //:). Q.E.D.

It is easily seen that Corollary 5 is no longer true if either the finiteness
condition is removed or if one of the inputs does not affect a permutation.

In passing, it can readily be shown that each quasi-machine is the sum of
indecomposable quasi-machines(9), the decomposition being unique to within
rearrangement of the indecomposable quasi-machines.

2. Composite quasi-machines. The notion of a composite quasi-machine
arises when the outputs of one quasi-machine are used as the inputs to an-
other quasi-machine.

Definition. Let Si, • • • , Sn be n quasi-machines. For each i^n let F,-
be the input semi-group, W{ the output semi-group, 5*' the next state func-
tion, and X* the output function, of S{. Suppose that W,-CTF,-+i for i^n—1.
The composite quasi-machine T = Si—> ■ • ■ —>Sn is defined as follows. The
inputs // of T are the inputs I) of S\ and the outputs E\ of T are the outputs
Ek of Sn. The states qj of T are the w-tuples iq1, • • • , qn), where each q{ is a
state of 5,-. 8T and XT are defined by

Tr      1 n T-. 1 n Tr     1 n T, n
8  [iq , • • • ,q),I \ = (go, • • • , go)    and    X  [(g , • • • , g ), I J = E ,

where E1 = X'fe1, IT), Ei = X«(j«, £'-»)  for i > 1, q\ = S^g1, IT), and ql
= 8liq\ E-'-1) for i>\.

(8) A quasi-machine 5 is said to be a permutation quasi-machine if each input affects a per-
mutation of K.

(•) A quasi-machine is said to be indecomposable if it is not the sum of at least two sub-
quasi-machines.
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Both Si-*(S2—*S3) and (Si—>S2)—>& are isomorphic(10) in the obvious
manner, to Si—*S2-^>S3. Because of this, the parentheses are omitted. Similar
remarks hold for four or more quasi-machines.

Clearly Si—► ■ ■ • —»S„ is a machine if and only if Sn is a machine.
If, for each i^n, Si is a free machine, then so is Si—> ■ • • —»S„. The con-

verse is not true.
Definition. Let 5 and T be two quasi-machines. Then g is said to be a

box function of (S, T) if (i) WsQYT, and (ii) g maps Ks into KT such that
g[8s(q, I)] = 8T[g(q), ~Ks(q, I)] for each state q and each input I of 5.

Given the box functions g,- of (Si, Si+i), l^i_w— 1, a subquasi-machine
77(gi, ' " ' . £n-i) of Si —»•••—* S„ is determined in a natural way.
-HXgi. • • • » gn-i) is the quasi-machine obtained from the stable set of states

A = { (q\ q2, • ■ • , q^/q1 E Si and ?* = gi-i^'1) for * > l} .

To see that this set is stable let p= (q1, • • ■ , qn) be in A and let I be any
input of Si-r ■ ■ ■ ->Sn. Then 8(p, 7) = (gj, ■ ■■ , gj), where E1=\1(q\ I),
£«=X*(g4, £<-») for *>1, gj = 8,(«1. -0- and qo = 8l(q\ E1'1) for *>1. Let £° = 7.
Then for each *>1,

i i,   i        i— 1. ir .   «— 1.        *— 1 .  i—1     _*—1. i
qo = 8(q,E    )=8[gi-i(q    ), X     (g    ,£    )]

= g,_i[8    (q    , E    )], since g,_i is a box function of (Si_i, Si),

= g<-i(q'o   )•

Thus (gj, • • • , q") is in A, i.e., .4 is stable.
To see if g is a box function it is sufficient to check g for all the inputs of a

generating sets of inputs. More precisely

Lemma 2.1. Let S and T be two quasi-machines and H a generating set for
Ys- If (i) Ws^Yt and (ii) g is a function mapping Ks into Kt such that
g[8s(q, 71)] = 8r[g(g), Xs(g, Ji)] for each state q and each Ii in 77, then g is a
box function of (S, T).

Proof. Let Ii and 72 be in 77. Then

g[8s(q, Iih)] = g[8s(8s(q, h), h)]
= 8T(g{8s(q, h)],\s[8s(q, 7,), I,])

= «r(«rk(?), Xs(?, 70], X/sfcsfa, /i), 7,])
= «r(«(?), Xs(?, 7,)Xs[Ss(g, 7i), 72])

_ = 8T[g(q), \s(q, 7J2)].
(10) Two quasi-machines 5 and T are said to be isomorphic if Ys = Yt, Ws = Wt, and there

exists a one to one function / of Ks onto Kt so that for each input I and each state g in S,
/[8s(g, /)] = 8r[/(9)> ^] and Xs(g, I)=Xr[/(g), ■?]• If 5and Tare not isomorphic to each other,
then they are said to be nonisomorphic.
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Continuing by induction we see that g and 5 interchange(u) for any finite se-
quence of inputs Ii • • ■ In, each J,- in H. As H generates Ys, g and 8 inter-
change for all / in Ys.

To each box function g of (5, T) there is associated a "box decomposition"
of S in the following sense. A box decomposition of 5 is a decomposition of
Ksin) into a family /= {Ah/hGH} of classes such that whenever states pi
and p2 are in the same class of J and whenever h and I2 in Ys are such that
Xs(pi. Ii) =y>-sip2, I2), then 8sipi, Ii) and 8sip2,12) are in the same class of J.
The box decomposition associated with the box function g is the family
J= {AJqGgiKs)}, where Aq= {p/pGKs, giP)=q} \ that is, pi and p2 are
in the same class if and only if gipi) = gip2)- It is obvious that J as just de-
scribed is a box decomposition.

As a partial converse to the above we have

Theorem 2.1. If S is a free machine, then for each box decomposition
J= {Ah/hGH} of S there is at least one free machine T and one box function
g of (5, T) such that the box decomposition of S associated with g is J.

Proof. Let KT=H and Ws =Yt= Wt. Let q be in Ks. Then q is in exactly
one class of J, say Ah- Define giq) to be h. Now let / be an element of the out-
put alphabet F of 5 and let h be an element of Kt- If there exists a state
go in At and an input £0 in the input alphabet D of S such that Xs(go, -Eo) =/,
then let 8Tih, I) =h*, where g[8s(go, E0)]=h*, i.e., 8s(g0, £0) is in Ah: If no
such state go in Ah and input Eo exist, define 8rih, I) to be h. Since / is a
box decomposition, 8T(h, I) is uniquely defined. For each h in H and each
I in F, let 8Tih, I)=I. Since YT and WT are free semi-groups (both based
on the alphabet F) with elements of F mapped on elements of F under Xr,
T is a free machine. By construction, g and 5 interchange on F. By Lemma
2.1, g is a box function. It is obvious that the box decomposition associated
with g is J. Q.E.D.

It is easy to find examples showing that Theorem 2.1 is no longer true if
the condition that 5 be a free machine is removed.

If there exists a box function g of (5, T) then certain properties in one of
the two quasi-machines, 5 and T, imply certain properties in the other.
Several results of this nature are listed in the following theorem, the proof
of which, being straightforward, is omitted.

Theorem 2.2. (a) If g is an onto box function of (5, T) and if S is strongly
connected, then T is strongly connected.

(b) If g is om onto box function of (5, T) and if q in Ks is connected to each

(u) If g[&s(q, I)] = &r[g(G), \s(q, I)], then g and 5 are said to interchange (for /).
(IZ) By decomposition of a set P is meant a family of nonempty disjoint sets whose set

union is P.
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state in Ks (i.e., for each p in Ks there exists Ip so that 8s(q, Ip) =p), then g(q)
is connected to each state in Kt-

(c) If g is a one to one box function of (S, T), if Yt= Ws and S is output
complete^3), and if T is strongly connected; then S is strongly connected.

(d) If g is a box function of (S, T), if Ws = Yt, if A is a stable set of S, and
if S is output complete at each state qin A; then g(A) is a stable set of T.

3. Distinguishability of states. In this section we shall be dealing with the
notion of "distinguishability" and "indistinguishability" between states in
a set of quasi-machines. We shall assume that each quasi-machine in a set of
quasi-machines has the same semi-group F of inputs and the same semi-
group W of outputs.

Definition. State g in a quasi-machine S is said to be distinguishable
from state g in a quasi-machine T if there exists an input 7 such that Xs(q, I)
7^Xr(g, 7). If g and g are not distinguishable, they are said to be indistinguish-
able. A quasi-machine S is said to be distinguished if each two distinct states
in S are distinguishable.

The following result, in the case of free machines, is implied in [9].

Lemma 3.1. If state q in machine S is indistinguishable from state q in
machine T, then for every input E, 8s(q, E) is indistinguishable from 8r(q, E).

Proof. Let 7 be an input. Since q and q are indistinguishable, Xs(g, E)
= Xr(g, E) and

\s(q, E)\s[8s(q, E), i] = Xs(g, EI) = \T(i, EI) = Xr(g", E)\T[8T(q, E), i].

Since S and T are machines, W satisfies the left cancellation law. Thus
Xs[os(g, E), 7]=Xr[8r(g, E), I]. Consequently 8s(q, E) is indistinguishable
from 8r(q, E).

Lemma 3.1 is no longer true if the word "machine" is replaced by "quasi-
machine."

Example 3.1. Let Ks= {qi, q2\. Let Ys and Ws be generated by 7i and 72,
subject to the relations 7i72 = 7i7j and I2Ii = I2l2. Let 8s(qk, Ii) = g*, Xs(gi, 7<)
= 7i, and Xs(g2, 7.) = 7,-, where i, j, k=l, 2, i^j. Let Ks = Ks, 8i(g,-, 7*) =g,-,
Xs(gi, 7,-) =7,-, and Xs^. 7,0 = Ijlwhere again i, j, k = l, 2, i^j. Then gx in
S is indistinguishable from gi in S. This follows from the fact that the output
from gi in S and 5 under any sequence of elements of Ys, beginning with 7, is
7, ■ • • Ii, i=l, 2. However gi=Ss(gi, 7i) in S is distinguishable from q2
= 8T(qu 7i) in T.

Definition. Two quasi-machines S and T are said to be equivalent if for
each state g, in S there exists a state q, in T which is indistinguishable from qs,

(13) See §5 for the definition of output complete.
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and conversely, for each state qt in T there exists q, in 5 which is indistin-
guishable from qt.

It is a well known (but unpublished) result that to each free machine S
there corresponds a unique (up to isomorphism), distinguished machine which
is equivalent to 5. Using Lemma 3.1, this result is now extended to machines.

Theorem 3.1. To each machine S there corresponds a unique {up to iso-
morphism) , distinguished machine which is equivalent to S.

Proof. Let YT = Ys and WT = Ws. For states qi and g2 in S, write q\Rq2
if gi and q2 are indistinguishable. Then R is an equivalence relation decompos-
ing Ks into a set of equivalence classes Kt- Denote by [q] the equivalence
class containing q. Let XT([g], I) = Xsiq, I) and 8r([g], /) = [8siq, I)] where g
is an element of [g]. Since the elements of [g] are indistinguishable, Xr is
uniquely defined. By Lemma 3.1, 8T is uniquely defined. In view of Lemma
3.1, Xt and 8T satisfy properties (3) and (4) of a quasi-machine since Xs and
8s satisfy these properties. Thus T is a machine. It is obvious that T is
equivalent to 5.

Now suppose that S* and T are two distinguished machines, each equiva-
lent to 5. For q* a state in 5*, let q be a state in S which is indistinguishable
from q*, and q=fiq*) the unique state in S which is indistinguishable from q,
thus from q*. Since S* and T are distinguished,/ is a one to one mapping of
Ks* onto Kt- Using Lemma 3.1, it is seen that S* and T are isomorphic.
Q.E.D.

Theorem 3.1 cannot be extended to hold for quasi-machines. For example,
the two quasi-machines given in Example 3.1 are distinguished, equivalent to
each other, but nonisomorphic. Because of this, whenever the notion of equiv-
alence appears, it is usually necessary to assume that the quasi-machines
involved are actually machines.

Theorem 3.1 cannot be extended to hold for quasi-machines even if the
uniqueness condition is dropped. In other words, it is not true that to each
quasi-machine there corresponds at least one distinguished, equivalent ma-
chine. This is a fundamental difference between machines and quasi-ma-
chines.

Example 3.2. Let W be the semi-group generated by the set of nine ele-
ments {Oi/i^9\ subject to the three relations

(1) 0,04 = 0803, 0206 = 0,03, and 0306 = 0307.
Let Y be the semi-group generated by the two elements h and J2, subject

to the relation IiIi = I2I2.
Let Ks= {gi, g"i, q2, q*, qt, q&, go, qi). The output function \s is defined by

Xs(g6, I2)=0U Xs(g7, h) =02, \siqi, h) =Xs(gi, I2) =Xs(g"i, h) = Xs(g"i, I2) =03,
Xs(g4, h) =Xs(g4, h) =04, Xs(gB, h) =Xs(g6, Ii) = 06, Xs(g2, Ii) =Xs(g2, h) =06,
Xsfe, /i)=Xs(g3, I2) = 07, Xs(g6, ii)=08, and Xs(g7, 7i) = 09. The next state
function 8S is defined by 8s(g6, h)=qi, Ss(g7, 2i)=gi, Ss(gi, Ii) = 8siqi, I2)
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= 8s(q2, h) = 8s(q2, I2) = 5s(g4, 7i) = 8s(qi, h) = g2, 8s(q~u 70 = 8s(qlt I2)
= 8s(g3, 7i) = 5s(g3, 72) =5s(g6, 7i) =5s(g6, 72) = g3, 8s(q<s, 72) =g4, and 8s(q7, I2)
= gs. It is readily verified that S is a quasi-machine.

Suppose that T is a distinguished quasi-machine which is equivalent to S.
Since S has seven distinguishable states (only gi and q\ are indistinguishable),
the states of T may be labelled qi to q-i, with qt in T indistinguishable from g,
in S, for i = 7. Thus Xr(gi, 7) =Xs(g,-, 7) for all g,- in Kt and all 7 in F. Consider
the next state function 8r. First note that

(2) if 0X0V = 0XE, where *, y, ^9, x^3, then 0„ = £.

[Thus left cancellation occurs in certain cases.] Now

OfiOe = Xr(g2, 7i7i)

= Xr(g2, 7i)Xr[Sr(g2, 7i), 7i]
= 06E,

whence E = 0%. Since g2 is the only state gx such that Xr(gx, 7i) = 06, 87'(g2, Ii)
= g2. Using the same procedure it is seen that 5V agrees with 8s for (q2, I),
fe. 7), (qt, I), (qit I), (g6, 72), and (g7, 72), where 7 = 7! or 72. Furthermore,
8r(qt, 7i) = 5r(g7, 7i)=gi since gi and gi in S are combined to form gi in T.
Consider 5r(gi, 7X). It is easily seen that 8T(qi, Ii) is either g2 or g3, say g3. Then

Sr(g6, 7i7i) = 5r[5r(g6, 7i), 7i]
= 8r(qi, 7i) = g».

Since Iih = I2h,
8r(qe, Iili) = 5r(ge, 7272)

= 8r[8r(<76, 72), 72]

= 8r(qi, 72) = g2.

This is a contradiction. Another contradiction, using g7, arises if it is assumed
that 8r(gi, 7i) is g2. Hence T cannot be a quasi-machine.

Therefore S is a quasi-machine for which there is no equivalent, distin-
guished, quasi-machine.

In the proof of Theorem 9 of [9] the following result, applied to a free
machine, is used.(14)

Lemma 3.2. If S and T are two nonisomorphic, strongly connected, distin-
guished machines, then each state qof S is distinguishable from each state q of T.

The proof of Lemma 3.2 follows immediately from Lemma 3.1 and the
hypothesis.

(u) Communicated to the author by Moore.
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Notation. For a nonempty set Hlet JiH)iJfiH)) be the set of all strongly
connected (finite state) distinguished machines such that KQH.

The question arises as to when a state is distinguishable from each state
of each machine in JiH)iJfiH)). The answer is given by

Theorem 3.2. (a) Let S be a distinguished machine with KsQH. A state
qi of machine S is distinguishable from each state of each machine in JiH) if
and only if g, is contained in no strongly connected submachine of S.

(b) Let S be a distinguished, finite state machine with Ks^H. A state g,
of S is distinguishable from each state of each machine in J/iH) if and only if
gi is contained in no strongly connected submachine of S.

Proof, (a) The necessity being obvious, only the sufficiency shall be shown.
Therefore suppose that g, is contained in no strongly connected submachine
of 5 and that gi is indistinguishable from state q~i of machine T in JiH). Since
qi is contained in no strongly connected submachine of S, there exists state
g2 in 5 and an input E0 such that Ss(gi, E0) ~q2 but for no input E is 8s(g2, E)
= gi. Let g2 = 8r(gi, E0). By Lemma 3.1, g2 and g2 are indistinguishable. Since
T is strongly connected, there exists Ei such that 8T(q2, Ei)=q~i. Let g3
= 8s(q2, Ei). Then g3 and qx, thus g3 and gi, are indistinguishable. Since S is
distinguished gi = g3. Thus gi = 8s(g2, £i) =gi contradicting the selection of g2.
Hence the result.

(b) An analogous argument yields the proof of (b).
Via personal correspondence, Moore has conjectured the validity of the

next result for the case when 51 is a free machine.

Theorem 3.3. Let L be a set of distinguished, finite state machines, each
KC.H, containing J/(H). Furthermore, suppose that for every two nonisomorphic
machines S and T in L, every state of S is distinguishable from every state of T.
ThenL = JfiU).

Proof. Suppose that S is a machine in L which is not strongly connected.
By hypothesis, Ks is finite. Since each finite stable set contains a minimum
stable set, by Theorem 1.1 S contains a strongly connected, thus proper, sub-
machine T. By hypothesis, T is in L. Then S and T are two nonisomorphic
machines, but not all the states of 5 are distinguishable from all the states
of T, a contradiction. Thus no such machine 5 is in L, i.e., L = JfiH).

If the machines in L are permitted to have an infinite number of states,
then Theorem 3.3, with J/iH) replaced by JiH), is no longer true. For let S
be any distinguished machine, with KsQH, containing no strongly con-
nected submachine and let L = J(H)\J{S}. By Lemmas 3.1 and 3.2, for two
nonisomorphic machines Ti and T2 in L, each state of Ti is distinguishable
from each state of T2.

Notation. Given two quasi-machines S and T, by 5 g T is meant that
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for each state g in S and each input E, there exists state g in T (depending
on q and E) such that \s(q, E) =\r(q, E).

Example 3.3. An example is now given of an infinite state distinguished
machine S and a finite state distinguished machine T having the property
that S= F and T^S. Let 7i and 72 generate the inputs. For machine S let
8s(qn, 7i) =g„_i for n> 1, 8s(qi, h) =gi, 8s(qn, I2)—qi and Xs(g„, 70 =0 for all n,
Xs(g„, 72)=0 for «^2, and Xs(g2, 72) = 1. For machine T, let 8T(q2, 72)
= 8T(qi, Ii) = 8T(qi, 72)=gi, 5r(g2, 7i)=g2, Xr(g2, 72) = 1, Xr(gi, 7i)=Xr(gi, 72)
= Xr(g2, 7i)=0.

Observe that gi in S is indistinguishable from qi in T. It is shown below
that such states always exist when T^S, S has only a finite number of states,
and T has a denumerable number of states.

Theorem 3.4. Let k be a positive integer and for each positive integer j^k
let Aj be a denumerable set of states of the quasi-machine Sj and let Hj be the
stable subset of Sj generated by Aj. Suppose that for every sequence {I{} of inputs
there exists a set of states {q'/q' in Aj, j^k] such that Xj-(g', 7i • • • 7.)
= Xm(gm, 7i • • • 7.) for all j, m ^ k and all i. Then there exists a set
{P'/P'in Hj, j' = k} of states which are pairwise indistinguishable.

Proof. Since each Ai is denumerable, the set of all ^-tuples
| (g1 • • ■ q1' ■ ■ ■ qk)/q'G.Aj} is denumerable and may be relabelled as
\(Pt " - - £*)/*= L 2, ■ ■ ■ }. Suppose that the conclusion of the theorem is
false. Then there exists an input Fi and integers s(l) and t(l) so that
X«(r>(£i(1), 7'i)^X((i)(^i(1), .Fi), and for each integer i>\ there exists an input
Fi and integers s(i) and t(i) so that X,(,)(5,(,)(pfi), Fx ■ ■ • F,_i), F{)
^X«w(*«o(^. 7"i •" • • F,-i), Ft). This is so since 8j(pii, Fi • ■ • F.-O is in
77,-. Applying the hypothesis to the sequence of inputs {Fi}, there exists an
integer, say n, such that Xy(^J, F% • • • Fi) =\m(p™, Fi • • • F() for all i, thus
\j(p>n, Fi • • • Fn) = X.C/C. Pi' ■ ■ Fn) for j, m^k. If n > 1, then
Xy(8y(#i, Fi--- Fn-i), F„)=\m(8m(p™, Fi ■ ■ ■ Fn-i), Fn), contradicting the
manner in which Fn was selected. If »=1, then \j(pi, Fi)=~Km(p^, Fi) for
/, m^k, another contradiction. Hence the result.

Remarks. (1) What has actually been proved in Theorem 3.4 is the
slightly stronger result that, under the given hypothesis, there exists a set
of states {p'/p' in Aj, j^k} and an input E such that the states in
{8j(p>, E)/j^k} are pairwise indistinguishable.

(2) It is easy to find examples showing that if either the denumerability
condition or the sequence {7,} assumption is removed, then Theorem 3.4 is
no longer true.

Corollary 1. Let k be a positive integer and for each positive integer j^k
let Aj be a finite set of states of the quasi-machine Sj. Let Hj be the stable subset
of Sj generated by Aj. Suppose that for every input E there exists a set of states
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{q'/q' in Aj, j^k} such that Xy(g', E) = Xm(gm, E) for all j, m^k. Then there
exists a set {p'/p' in Hj, j^k} of states which are pairwise indistinguishable.

Proof. Let {/,} be any sequence of inputs. Two cases arise.
(a) Suppose that {it} is a finite sequence, with It the last 7,-. Then there

exists \q'/q'GAj,j^k} such that Xy(g», h ■ ■ ■ It)=\miqm, h ■ ■ It) for all
j, m?£k. Thus X(g', Ji • • • 7i)=Xm(g', 7X • • • 7.) for all j, m^k and all i^t.

(b) Suppose that {/,•} is an infinite sequence. For each integer i there
exists yt= {qi/qi in Ah j^k} such that Xy(gJ, h • • • 7<) =Xy(g™ h • • • Ii)
for all j, m^k. Since the sets Ai are finite there are only a finite number of
distinct elements in the sequence {7,}. Hence one of them, say yr= {qi/j}
occurs an infinite number of times in the sequence {7,}. It follows that
Xy(g^, 7i • • • 7,)=Xm(g™, 7i • • • 7„) for all/, m^k and all 5.

Hence the hypothesis of Theorem 3.4 is satisfied in either case whence
the conclusion.

Suppose that Si and S2 are two quasi-machines such that 52 has a finite
number of states and Si^S2. Letting Ai consist of just one state (any one)
of Si and A2 = Kslt there follows from Corollary 1

Corollary 2. If Si^S2 and S2 has a finite number of states, then there exist
states qi of Si and q2 of S2 which are indistinguishable.

It is not difficult to see that Corollary 2 is no longer true if S2 is allowed
to have an infinite number of states.

A generalization of Theorem 3.4 to an infinite family of quasi-machines is
as follows:

Theorem 3.5. Let {Sb/bGB} be a family of quasi-machines, and for each b
in B let Abbe a denumerable family of states of Sb. Let Hb be the stable subset of
Sb generated by Ab and let one of the 77&, say Hbo, contain just a finite number,
n, of states. Suppose that for each sequence of inputs {It} and each n or fewer
oftheAb,sayD\ • ■ ■ , 7>, there exists a set \p/pGAba\^j{d'/d>GD',j^r} of
r + 1 states such that \j(d\ h • • • Ii) =X6o(/j, 7i • • • 7,) for all j^r and all i.
Then there exists a set {pb/pbGHb, bGB} of states which are pairwise indis-
tinguishable.

Proof. Let the n states of TTj,, be {qf/i :g n}. For each g,- let G,- be the family
of all sets Hb which contain a state indistinguishable from g,-. Assume that
the conclusion of the theorem is false. Then for each i^n there exists an Hb,
say H,'i), such that each state in 77„(j) is distinguishable from qit i.e., H„u)
is not in Gt. Now the m + 1 or fewer sets {7T&,,, ^4<r(i), • • • , AC(„)} satisfies the
hypothesis of Theorem 3.4. Hence there exists a set {q„ pt/q, in 77io, pi in
77„(i), i^n) of states which are pairwise indistinguishable. Since q, and p, are
indistinguishable, HcM is in G,. But this is a contradiction. Thus the theorem
is true.
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In an analogous manner, using Corollary 1 of Theorem 3.4 instead of
Theorem 3.4 itself, it is seen that

Theorem 3.6. Let {Sb/bEB} be a family of quasi-machines, and for each
b in B let Ah be a finite family of states of Sb. Let Hh be the stable subset of Sb
generated by Ab and let one of the Hb, say Hbt, contain just a finite number, n, of
states. Suppose that for each input E and each n or fewer of the Ab, say D1, • • • ,
Dr, there exists a set {p/pEAbl)}\j{d'/d'ED', j^r) of r + l states such that
\j(d>, E) =Xio(£, E) for allj^r. Then there exists a set {pb/pbEHb, bEB) of
states which are pairwise indistinguishable.

Remarks. (1) The conclusion of Theorem 3.5 is no longer true if every
77& is allowed to have an infinite number of states. In fact, it is not even true
if one replaces the finiteness condition with the hypothesis that for each
sequence of inputs {7,} there exists a set {qh/qb in Ah, bEB) such that
X6i(261, 7i • • • 7.) =Xi,2(g*2, 7i • • • 7.) for all bi and b2 in B and all i. This is
shown by the following example.

Example 3.4. For each positive integer m let Rm consist of all sequences,
each term of which is either 1 or 2, of length m. Let {q\) UU^.j {q\/o-ERm}
be the set of states of Si. For each integer i > 1 let

00

{,p,./<rERi-i\j= 1, 2, -■-,i- 1} U   U    {ql/o-ERm}
m=i—l

be the set of states of S,. Clearly the number of each machine is denumerable.
Let the inputs be generated by 71 and I2. For each machine S,-, the functions
8i and X,- are defined as follows. For a = aia2 ■ • • a^i and j <i— 1 let S»G/>i-, 71)
= i+iPl and 8i(jPl I2)=jp\ if ay=l, h(sp\, Ix)=iP\ and 5,G/><„ I2)=j+ipi if
a, = 2, \i(jp*r, 71)=a1o2 • • • a,-_il, and X <(,-/£, I2)=aia2 • • ■ a,_i2. When
<r = aia2 • ■ ■ a,_i let 5,(,_ip*, 71)=g1, and 5,-(,-_i/>'„ P)=i-ipt„ if a,_i = l,
Sid-ip'., 71) = i-ip<„ and iiii-ip*., I2)=qi„ if oM-2,X<(«^t, 71)=«i • ■ • a,-2l,
and \i(i-ip\, 72)=ai • • • a<_22. Finally, let fcfai, 71)=gti, Wtf., 72)=?t2,
\i(q\, 7i)=<rl, and X,(gt, I2) =<rl.

To show that the hypothesis pertaining to the sequence {7,} of inputs
holds, it is obviously sufficient to show that it holds when the sequence is
infinite and each 7, is either 71 or I2. Accordingly, let {7,} be any infinite
sequence of inputs, each Ii being either 71 or I2. Consider the set consisting
of go and all ip%), where a(i)=ai • • • a,-, with Cj=l if 7J = 71 and Cy = 2 if
Ij = I2. The output from each of these states under 7i • • • Im, for all m, is
the same, namely <r(l), <r(2), • • • , a(m). Thus the hypothesis is satisfied.

To see that there is no set {qi/qi in Si} of states which are pairwise in-
distinguishable, first note that Si (as well as each of the other machines)
is distinguished. Now assume that {qi/qi in S,} is a set of pairwise indistin-
quishable states. Obviously gi^gj. Suppose that gi = gi, where <r = ai ■ ■ ■ am.
Since g™+2 is indistinguishable from q\ for each r = bi ■ • • bmbm+i • • • , qm+2
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must be one of the jp™+2, where j^m + 1 and y = Ci • ■ ■ cm+i. Hence there
exists an input, either 71 or I2, say 7, such that 8m+2(jpy, I)=jpy. Then
Xm+s(yp7> H)=EE for some output E, whereas Xi(gJ, 77)=oi<r2 with ai^a2.
Thus gi and qm+2 are distinguishable.

(2) The above example also shows that the condition that one of the
Hb be finite cannot be relaxed to the extent that one of the Ab be finite.
[Let Hb = KSl and Ah = {gj}. ]

(3) The machines Si constructed in Example 3.4 possess the property of
having an infinite number of generating outputs. The machines may be modi-
fied so as to have but a finite number of generating outputs. A brief sketch
doing this is now given.

Example 3.5. Let B be the set of all irrational numbers s, 0<#<1. In
binary form let each x in B be x= (.a0Oi •••«,••••)> each at — 0 or 1. For
x and y in B write xRy if 2{x — 2'y is a rational number for some i,j = 0, +1,
+ 2, • • • . Clearly R is an equivalence relation, decomposing B into an
infinite number of equivalence classes {7?0}. Let {B,-/t=l, 2, • • • } be a
denumerably infinite number of these equivalence classes. For each i let
Xi=(.aQa[ ■ ■ ■ a*n • ■ •) be an element of 2?,-. Since x,- is irrational, its sequence
of a*„ cannot be ultimately periodic.

To define the machine Si let the states of Si be {go} ̂l-C=1 {ql/aGRm},
Rm being as in Example 3.4. The elements of K^ are arranged into a sequence
{pi), with go the first element, followed by the elements of {q\/aGRi} ar-
ranged in any order; and in general, the elements of {qi/aGR,} are to be
followed by the elements of {ql/aGRi+i} arranged in any order. Let Ei = 71
and for each i>l let £< = £,-_i71. Associate a\ with pi and a) with 8i(pi, Ei).
Continuing by induction, suppose that each a], i^k,j=l, 2, ■ ■ • is associ-
ated with a state qi. Let p~k+i be the first state in {pi} which is not associated
with any a). Associate a%+1 with p~k+i and o*+1 with 8i(pk+i, Ei) for i= 1, 2, • • ■.
It is easily seen that this association establishes a one to one, onto, cor-
respondence, pi with 6,-, between the set of pi and the set of a*. Define Xi(g^, 7)
= bi if and only ii 8i(ql, I) =p{, I = Il or I2.

The machines Si, i>\, are now constructed in the obvious manner from
Si as 5j was constructed from Si. It is readily seen that (1) for each sequence
of inputs {ii) there exists a set {gy/gy in Sj\ such that Xy(gy, h • ■ ■ 7.)
= /\k(qk, 7i • • • Ii) for all/, k, and i; (2) there is no set {g,/g» in S{} of states
which are pairwise indistinguishable; and (3) the outputs are generated by
two outputs, 0 and 1.

4. Input-distinguishability. In the previous section we discussed the dis-
crimination between states by considering the outputs obtained from identical
inputs. In this section we discuss the discrimination between inputs by con-
sidering the outputs obtained from identical states.

Definition. Two inputs 7i and 72 of a quasi-machine S are said to be
input-indistinguishable if X(g, 7x)=X(g, 72) and X(g, 7X7) =X(g, 727) for each
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state g and each input 7. Otherwise 7i and 72 are said to be input-distinguish-
able. A quasi-machine is said to be input-distinguished if each two distinct
inputs are input-distinguishable.

In case S is a machine with n (finite) states and M is a generating set for
F, 7i and 72 are input-indistinguishable if and only if for each state q and
each sequence Alt ■ ■ ■ , An_i of inputs from M, \(q, 7i) =X(g, 72) and
X(g, hAi ■ ■ • .4n_i)=X(g, 72^4i • • ■ -4„_i). This follows from the following
result, which is an obvious modification of Theorem 6 of [9]. "Two states
qi and g2 in a machine with n (finite) states and generating set M for F, are
distinguishable if and only if there exists a sequence Ai, • ■ ■ , An-i of inputs
from M so that X(gi, Ax ■ ■ ■ ̂ 4n_i) ̂ X(g2, Ai • • • An-i)."

The property of being input-distinguished does not carry over to sub-
quasi-machines. Thus S may be input-distinguished and contain a subquasi-
machine which is not input-distinguished. If S is not input-distinguished, then
no subquasi-machine is input-distinguished.

Suppose that S, T, and S—>T are quasi-machines. If both S and T are
input-distinguished, then so is S^>T. To see this, let 7i and 72 be any two
inputs of S—>T, thus of S. Since S is input-distinguished, there exists a state
p of S so that Ei=\s(p, Ii)t*\s(P, h) =E2. Since T is input-distinguished,
there exists a state g in T so that

Xs-.r[(/>, q), I] = \T(q, Ei) ^ Xr(g, E2) = \s-r[(p, q), It]-

Thus S^>T is input-distinguished. It is not difficult to find examples showing
that S^>T is not input-distinguished if either S or T is not input-distin-
guished. On the other hand, if S—>F is input-distinguished, then it is easily
seen that S is also input-distinguished.

Suppose that for each state q, X(g, 7i)=X(g, 72) and 8(q, Ii) and 8(q, 72)
are indistinguishable states. Then

\(q, hi) = X(g, h)\[8(q, h), l]
= X(q, I2)\[8(q, h), I)

= Hq, hi),
so that 7i and 72 are input-indistinguishable. The converse is not true, that
is, if 7i and 72 are input-indistinguishable, it is not necessarily true that
8(q, 7i) and 8(q, 72) are indistinguishable states.

Example 4.1. Let Ks= {qi, g2, g3}, F be the free semi-group generated
by 7i and 72, and W the semi-group generated by Oi and 02 subject to the
relations (i) 0102 = OiOi, and (ii) O20i = 0202. Let %i> Ii)=qi, 8(qu 72)=g3,
5(g2, 7)=g2, and 5(g3, 7)=g3 for any 7. Let X(gi, 7)=Oi, X(g2, I)=Ou and
X(g2, I) =02 for 7 = 7i or 72. Then 7X and 72 are input-indistinguishable but
5(gi, 7i) and 8(gi, 72) are distinguishable states.

The converse is true in case S is a machine, namely
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Lemma 4.1. If S is a machine and 7i and 72 are input-indistinguishable,
then for each state q, 5(g, 7i) and 5(g, 72) are indistinguishable states. Hence if S
is distinguished, then S(g, 7i) = S(g, 72) for each state q.

Proof. Since X(g, 7x7)=X(g, 727) we get

\iq,Ii)\[8iq,I2),l] = \iq,IiI)

= Hq, hi)
= \(q, I2)\[8(q, l2), I].

AsX(g, 7i) =X(g, 72) and 5 is a machine, X[8(g, Ii), 7] =X[5(g, 72), 7] for each
input 7. Thus 5(g, Ii) and 5(g, 72) are indistinguishable states.

Corollary 1. If S is a machine, if 7X and 72 are input-indistinguishable,
and if qi and q2 are indistinguishable states; then 8(qi, Ii) and 8(q2, I2) are
indistinguishable states.

Corollary 2. Let S be a machine. If 7X and I2 are input-indistinguishable
and if 73 and 74 are input-indistinguishable, then so are 7X73 and I2IA.

Proof. Since 7X and 72 are input-indistinguishable, X(g, 7i)=X(g, 72). By
Lemma 4.1, 8(q, Ii) and S(g, 72) are indistinguishable states. Thus

X[5(g,71),73] = \[8(q, I2), I,]
= X[5(g, 72), 74],

since 73 and 74 are input-indistinguishable. Then

X(g, 7X73) = X(g, 71)X[5(g, Ii), I3]

= X(g, 72)X[6(?, 72), 74]
= X(g, 7274).

Since S(g, Ii) and 8iq, I2) are indistinguishable states and 5 is a machine,
8(g, 7i73) = 8[5(g, Ii), 73] and 5[5(g, 72), 74] = S(g, 7274) are indistinguishable
states by Corollary 1. Then

X(g, 7X737) = X(g, 7:73)X[5(g, 7x73), 7]
= Hq, 7274)X[5(g, 7274), 7]

= X(g, 72747).

Hence 7i73 and 7274 are input-indistinguishable.
Remarks. (1) If 5 is a machine, and if both 7X and 72, and 7X73 and 7274

are input-indistinguishable, it is not necessarily true that 73 and 74 are input-
indistinguishable.

Example 4.2. 5 is to be the free machine defined as follows. Let Ks
= {qi, g2} and let {7i, 72, 73, 74} and {Tii, E2] be the input and output alpha-
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bets respectively. Let 8(gi, 7,)=g2 and X(gx, 7,)=£i for i=l, 2, 4, and let
8(g2, 7y) =ff2 and X(g2, 7y) = £x for j=l, 2, 3, 4. Let 8(gi, 73) =gi and X(gx, 73)
= £2. Then 7X and 72, and 7i73 and 7274, are input-indistinguishable. But 73
and 74 are not input-indistinguishable since X(gx, 73)^X(gi, 74).

(2) Observe in Example 4.2 that for no state g is either S(g, 7x)=gx or
S(g, 72)=gx. This is no accident due to the particular example chosen. For
let S be a machine such that 7X and 72, and 7X73 and 7274, are input-indistin-
guishable. If, for each state q, there exists a state q so that either 5(g, 7i) =g
or 5(g, 72) =g, then 73 and 74 are input-indistinguishable. For let q be any state
of 5 and q such that, say, g = S(g, 7X). To see that 73 and 74 are input-
indistinguishable, it is sufficient to show that (a) X(g, 73) =X(g, 74), and
(b) X(g, 737)=X(g, 747) for all inputs 7. Since 7i73 and 7274 are input-
indistinguishable, X(g, 7i73) =X(g, 7274). Thus

X(g", 71)X[5(g", 70, 73] = X(g", 72)X[5(g", 72), 74].

As 7i and 72 are input-indistinguishable, X(g, 7x)=X(g, 72). Since 5 is a
machine, Ws satisfies the left cancellation law. Thus X[8(g, 7i), 73]
= X[S(g, 72), 74]. By Corollary 1, 8iq, Ii) and 8(g, 72) are indistinguishable
states. Thus X(g, 73) =X(g, 74). As to (b), repeating the above procedure, from
X(g, 7i737)=X(g, 72747) there follows X[S(g, 70, 737]=X[5(g, 72), 747], whence
X(g, 737) =X(g, 747). Therefore (a) and (b) are satisfied, so that 73 and 74 are
input-indistinguishable.

(3) If S is a machine and if both 73 and 74, and 7X73 and 7274, are input-
indistinguishable, it is not necessarily true, as simple examples show, that
Ii and 72 are input-indistinguishable. Reasonable conditions on 5 which will
guarantee that 7X and 72 are input-indistinguishable are not known.

The counterpart to Theorem 3.1 is

Theorem 4.1. To each machine S there corresponds an input-distinguished
machine T with the following properties:

(1) Ks = KTand WS=WT.
(2) There exists a homomorphism k of Ys onto YT such that Xs(g, 7)

= Xr[g, kil)] for all inputs I in Ys and each state q.
(3) If S is distinguished, then any input-distinguished machine T* satisfy-

ing conclusions (1) and (2) is widely isomorphic^*) to T.

Proof. For each pair of inputs 7X and 72 of S write 7X = 72 if 7X and 72 are
input-indistinguishable. Clearly " = " is an equivalence relation on Ks- De-
note the equivalence class containing 7 by I~. Define 7r7r to be [7X72]_,
where 7X and 72 are arbitrarily elements of 7f and Ir respectively. In view of

(16) Two quasi-machines S and T are said to be widely isomorphic if there exists an iso-
morphism h of Ys onto Yt, an isomorphism g of Ws onto Wt, and a one to one mapping / of
Ks onto KT such that/[8s(g, I)) = hT[f{q), h(I)] and g[\s(q, I)] = Xr[/(g), h{I)] for each state
q and each input I. The term "isomorphic" is reserved for the case when Ys = Yt, Ws = Wt, and
g and h are the identity mappings.
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Corollary 2, 7r7r is independent of the 7i in Ir and 72 in I2 chosen. Clearly
the set of I~ form a semi-group, which we denote by YT.

Define \r(q, I~) to be Xs(g, 7) for some arbitrary 7 in I~. Since the inputs
7 and I~ are input-indistinguishable, Xs(g, 7) is independent of the 7 selected
from I~. For each state g, let q~ be the set of states of Ks which are indistin-
guishable from q, and let pq be a definite element of q~. Define 8T(q, I") to be
pq*, where 7 is in I~ and q* = 8s(q, I). By Lemma 4.1, 8T(q, I") is independent
of the 7 selected from I~.

To prove that T is a quasi-machine (thus machine) it is sufficient to show
that conditions (3) and (4) in the definition of a quasi-machine hold. As to
(3), 8T(q, IrI2) = 8T(q, [7i72]-) is an element of 8s(q, Iih)~- Also, 5r(g, 7f) is
in 8s(q, Ii)~. Thus 8T[8T(q, Ir), Ir] is in 8s(8s(q, h),h)~. Since 5s[8s(g, 7i), 72]
= 8s(q, hh) and the element pq of g_is unique, 8T(q,IrI2) =oV[8r(g, 7f), Ir]-
As to (4),

Xr(g, 7f7r) = Xr(g, [7i72]~)
= \s(q, 7i72)

= \s(q, Ii)Xs[8s(q, Ii), h]
= Xr(g, 7r)Xs[8r(g, Ir), It], since 8s(q, Ii) and

8r(q, Ir) are indistinguishable states,

= \T(q, 7f)Xr[5r(g, Ir), Ir].

Define the function k by k(I) = 7~. T is obviously input-distinguished and
k satisfies condition (2) of the conclusion.

Now suppose that S is a distinguished machine and that T* is an input-
distinguished machine satisfying (1) and (2) of the theorem, by the function
k*. Let q in Kt correspond with q in Kt' and E in Wt with E in Wt*- Let
7i and Ei be any two elements of Ir and consider k*(Ii) and k*(Ei). Since k*
is a homomorphism of Ys onto Yt*, for each state q,

\T-[q, k*(Ii)] = Xs(q, h)
= \s(q, Ei)
= \T'[q, k*(Ei)];

and, for each 7 in Ys,

\T'[q, k*(Ii)k*(I)] = \s(q, hi)
= \s(q, Eil)

= Xr'[?, k*(Ei)k*(I)].

Since T* is input-distinguished, k*(Ii) =k*(Ei). Defining h(Ir) =k*(Ii), we
see that h is a uniquely defined function of YT onto YT\ Suppose that
7r5^7r. Then 7i and 72 are input-distinguishable by definition of Ir. If, for
some q, \s(q, h)^~Ks(q, 72), then \T'[q, A(7r)]^Xr'[g, h(Ir)]-  If for some g
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and some 7,Xs(g, hi) ^Xs(g, 727), then Xr' [g, h(Ir)h(I~) ] ̂ Xr« [g, h(I2)h(I~) ].
Thus h is one to one. Since k* is a homomorphism of Ys onto YT',

KIriT) = h([hh]-) = A*(7,J2) = k*(h)k*(h) = h(lT)h(lT).
Thus A is an isomorphism of YT onto Fr*.

To show that Fand F* are widely isomorphic, it is sufficient to show that
gi = §r(g, 7r)=8r«[g, h(Ir)]=q2 for each g and each Ir. Then Xr(g, 7f)
=Xr'[g, h(Ir)] and

Xr(g, 7f)Xr[5(g, 7f), 7~] = \T(q, 7r7~)
= Xr-(g, h(IT)h(I-))
= \r'[q, h(Ir)]\T'[8T-(q, h(Ir)), h(I~)].

Hence Xr[8r(g, 7f), I-]=\T-[8T-(q, h(Ir)), h(I~)] for each J- Then

Xs(gi, 7) = XT(gi, 7-) = Xr*(g2, K7-)) = Xr(?2, 7~) = Xs(g2, 7).

Since S is distinguished, gi = g2. Q.E.D.
In general, it is not true that a free machine S in Theorem 4.1 gives rise

to a free machine F. In order for a free machine S to yield a free machine
F it is necessary and sufficient that whenever 7i • • ■ In = If ■ ■ ■ I*, where
each I, and I* are in the input alphabet, that h = I^, thus that h = I* for
each i.

By an obvious modification of Theorem 4.1, the following result about
free machines is seen to hold.

Theorem 4.2. To each free machine S there corresponds a free machine T
with the following properties:

(1) Ks = KTand WS=WT.
(2) There exists a homomorphism k of Ys onto YT such that \s(q, I)

= Xr [q, k(I) ] for all inputs I in Ys and each state q.
(3) Each two elements of the input alphabet Dt of Yt are input-distinguished.
(4) If S is distinguished, then any free machine T* satisfying (1), (2), and

(3) is widely isomorphic to T.

For a free machine, the question arises of determining a number k having
the property that if all inputs of length k or less are pairwise input-distin-
guishable, then the machine is input-distinguished. One such value for k is
now given.

Theorem 4.3(16). Let S be a free machine with n (finite) states. Let
k=Yln+n=w;w=2 (nl/(n — ri)l)(n\/(n — r2)l),   where  ri = r2  if  w  is  even  and

(16) The idea in Theorem 4.3 of using the 2«-tuples of states to prove the existence of a
bound k on the length of inputs to determine whether or not 5 is input-distinguished is due to
C. C. Chang. He attained a value of nln. The lowering of k by considering permutations of the
distinguishable states is due to the author.
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ri = r2 — 1 if w is odd. If every two distinct sequences 7X • ■ • Ik and £x • • ■ Ek
of elements from the input alphabet are input-distinguishable, then S is input-
distinguished.

Proof. The following symbolism is used in the argument. The letters a
and a (with or without a subscript or superscript) are 2w-tuples of, respec-
tively, states and outputs of S. Thus a = ipi, ■ ■ • , p2n) anda=(Ox, • • • ,02„),
where each pi is a state and each 0< an output. Let 6(a) = ipi, p3, ■ • ■ , p2n-i),
cia) = ip2, piy ■ ■ ■ , p2n), 6(a) = (Ox, 03, • ■ • , 02n_x), and c(a)
= (02, 04, • • ■ , 02n). Let niia) and «2(a) be the number of distinct states in
6(a) and c(a) respectively. Given two inputs 7 and £ let

hia, I, E) = i8ipi, I), 8ip2, E), 8iph I), hip,, E), ■ ■ ■ , 8ip2n, £))

and

X(fl> I, E) = i\ipi, I), Hp2, E), \ip3, I), Hph £),•••, \ip2n, £)).

Since 5 is a free machine, two sequences of inputs from the input alphabet
D of different lengths are input-distinguishable. It will now be shown that two
distinct sequences of elements from D of the same length are input-distin-
guishable, thus proving the theorem. To this end, let m be the smallest integer
such that two distinct sequences 7X • • • Im and £x • • • £„ of elements from
D are input-indistinguishable. By hypothesis, k<m. It will now be shown
that

(*) there exist two distinct sequences of elements from D, of the same
length <m, which are input-indistinguishable.

This will affect a contradiction, thus proving the theorem. Accordingly,
let

a   = iqi, qi, qi, g2, • • • , g„, g«) = ipi, • • • , p2n),

where gx, g2, • • • , g„ are the n states of 5. For each positive integer i^m, let

.'+1 ..   i    r      _ . ,   .'+1 »+l.
a      = S(a , Ii, Ei) = ipi   , ■ ■ ■ , p2n )

and

a' = Xia\ Ii, Ei) = (0*i, • • • , 0\n).

To prove that (*) holds it is sufficient to show that either (*) holds or else
(**) there exist two values of i, say s and t, such that a" = at.
For   suppose    that    (**)    holds.    Let    7 = 7X • • • 7s_x7t • • • Im   and

E = Ei ■ ■ ■ £„_i£f • ■ • Em.  It is to be understood that I = It ■ • • Im and
£ = £(••• Em if s— 1. Two cases arise.

(a) Suppose that 7 and £ are distinct sequences. Since 7 and £ are input-
indistinguishable,

b[Xia\ I, £)] = c[Xia\ I, £)] = (0X, Ot, • • ■ , 02„_x)
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and

b[X(a\ I A, EA)] = c[\(a\ I A, EA)] = (Oi, 0*, • • • , ol_i),
where A is an arbitrary input (not necessarily in D), Oi = 0}02 ■ ■ ■ 0™,
Of = OiUf, and 6[X(c-+1, A, A)] = (Ut Uf, ■ ■ ■ , T/^-i). From the fact
that S is a free machine and D is the input alphabet, it follows that 0^
= 0^_! for each j^m and each i^n. Since a" = a',

b[X(a\ 7,E)]= (Oi, Oh ■ ■ ■ , 02n-i) = c[\(a\ I, E)]

and

b[\(a\ I A, EA)] = (Oi, Ot, ■ • • , Ot-i) = c[\(a\ 7A, EA)],

where Oi = 0) ■ ■ ■ 0J_10{ • • -_Otm and Of^OiUf. Thus 7 and £ satisfy (*).
(b) Suppose that 7 and E are not distinct. Since 7 and 7i are distinct,

Is ■ • • h-i and Es ■ ■ ■ Et-i are distinct. Then M = Ix ■ ■ ■ h-i and
N = Ei ■ ■ ■ Et-i are distinct sequences of elements from D. Clearly
b[\(a\ M, N)] = c[\(a\ M, N)]. Since 7 = E, 7X • • • I.-i = Ei • ■ - E.-i. Now
b(al) =c(a1).Thus b(a*) =c(at). Since a' = at, it follows that i(a') =c(a(). Thus

b\\(a\ MA, NA)] = c[\(a\ MA, NA)],

where A is an arbitrary input (not necessarily in D). Thus M and N satisfy (*).
We now demonstrate that either (*) or (**) holds. Consider the sequence

{ai}iim. Two elements ai and a' of the sequence are distinct if and only if
either b(a{) and b(a>) or c(a{) and c(a') are distinct. Clearly

(***) if two states p*a and p\ are identical, where d and e have the same
parity, then pd+1 and p*e+1 are identical.

Thus nx(a*) and n2(al) are nonincreasing, strictly positive, functions of i.
For 2^7 = 2«, let a(j) = («!/(« — ri)!)(w!/(w —r2)!), where ri = r2=j/2 if j is
even and ri = r2—\ = (j—\)/2 if j is odd. Then k= 2~1)~2 a(j)- Given j, it
follows from (***) that there exists at most one pair (nx, n2) of numbers,
with ni+n2=j, such that Wi(a') =Wi and n2(a') = «2 for some ai. For 2Sj;S2«,
let 0(j) be the number of distinct integers i such that ni(al) +n2(ai) =j. Clearly
m= 2~2^-2^U)- Since k<m, there exists at least one integer j so that a(j)
<d(j). Let w be the largest such integer j. Let (ra", «2) be the unique pair
associated with w. Let r" = r2=w/2 if w is even, and rX = r2 — 1 = (w—1)/2 if
ft> is odd. Without loss of generality we may assume that «"^»2 since other-
wise we may interchange the role of n" and w2 in what follows. If n™ = n2 or
M» = w«-1, then «, «?) = (»■?, r?). If <+«? is even and n\<n%, then
M»<r» = r»<w» If ^-Hw^isodd and »?<»?-1, then «r<rr = rj-l<na'-1.
In both cases,
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n\ n\

in — ri[)!   (n — n2)!

= [n(n — 1) •••(« — «i + 1)] [n in— 1) • • • (n — n2 + 1)J

= [n(n — 1) • • • in — wx + 1)] [in — ni) • • • in — «2 + 1)]

£j [n(n — 1) •■•(» — »x -f- 1)] [(« — wx) • • • in — rx + 1)]

■ [(« — ni) • • ■ in — r2 + 1)J, since wx + n2 = rx + r2 ,

w! m!

= (»-rD!   (rc-r?)!
= a(w).

Due to (***) and elementary permutation theory, the maximum number of
distinct a* for which »i(a*) =ra" and M2(a')=w2 is («!/(» —Mf)!)(«!/(« —«")!).
Since

n\ n\
—-^ a(w) < 5(w),
(« — nX)!   (« — n2)!

there exist two values of i, say j and /, such that a' = a', i.e., (**) holds. Thus
the theorem is proved.

It is known that the value for k given in Theorem 4.3 is not the best
possible. For example, a(2«) can be lowered from («!)(«!) to n\ by observing
that the  2w-tuples can be replaced by  the unordered  n-tuples of pairs
[iPii Pl)< ' " * . (Pln-i< Pin)]- In fact, at any stage, the 2w-tuples can be re-
placed  by the two  unordered  n-tuples   [(p\, p\), • ■ ■ ,  ip\n-i,  p\n)\  and
[(Pi? P\)> * ' " i (Pin, Pln-i)\- It is not known if the value of k obtained by this
refinement is the smallest possible.

Another bound for k, which in certain circumstances is better than that
given in Theorem 4.3, is now given.

Theorem 4.4. Let S be a distinguished, free machine. Let Ks^ {gx, • • • ,qr}.
For each i, let nt be the number of states in the principal submachine generated
by qt. Let k = (nx ■ ■ ■ nr)2. If every two sequences 7X • • • Ik and £x • • • Ek of
elements from the input alphabet are input-distinguishable, then S is input-
distinguished.

The proof is an obvious modification of Theorem 4.3.
The line of reasoning given in Theorems 4.3 and 4.4 is now applied to

yield the following lemma.

Lemma 4.2. Let m and n be positive integers. Let S be a free machine with n
states and m elements in the output alphabet F. Suppose that C is a subset of the
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input alphabet and that C contains r elements, where (mkn)n<rk. Then there
exists two inputs AiA2 ■ ■ ■ Ak and B\B2 ■ ■ ■ Bk, each Ai and Bt in C, which
are input-indistinguishable.

Proof. Let K= {pi/i^n}. To each input I = I\ • • • 7*, each 7, in C, asso-
ciate the re-tuple of triples

ti = iiPi, gi, £0, (Pi, qi, E2), ■ ■ ■, (pn, qn, En)),

where, for each i£n, qt = 8(pi, I) and £,-=X(p,-, 7). It is clear that there are
at most imkn)n distinct such re-tuples since there are m elements in F and n
in K. As there are rk>imkn)n such inputs 7, two of the associated re-tuples,
say ti and tj' are identical. Then 7 and 7* are input-indistinguishable. This
is so since X(p, 7) = X(£, I*) for each state p in S; and \(p, IA)=\ip, I*A)
for each state p in S as hip, I) = h(p, 7*). Q.E.D.

Using the above lemma we are now able to prove a result which places
bounds on the number of states, number of elements in the input alphabet,
and number of elements in the output alphabet of a free machine 5 in order
for 5 to be input-distinguished.

Theorem 4.5. Let n, r, and m be given positive integers. Let S be a free
machine with n states, r elements in the input alphabet, and m elements in the
output alphabet. If mn<r, then S is not input-distinguished. If r^m", then
there exists a free, input-distinguished, machine with n states, r elements in the
input alphabet, and m elements in the output alphabet.

Proof. Let 5 be a free machine with m"<r. Since Kr/mn, for some
integer k, nn<rk/mnk, i.e., imkn)n<rk. By Lemma 4.2, there exists two se-
quences Ai • • ■ Ak and Bx ■ ■ ■ Bk of elements from the input alphabet which
are input-indistinguishable. Consequently, 5 is not input-distinguished.

Now suppose that r gmn. Let £ be a set of n elements, say K = {pt/i ^ w},
and F a set of m elements, say F= { Ui/i^m}. Let £ be a set of r distinct
re-tuples of the form

T  =   ((Pu Pi, Ei),   (pi, pi,  E2),   •   ■   ■  ,  (pn, pn,  En)),

where each £,- is in F. T exists since r^mn. To each r in T associate a
symbol 7r and let D={It/tGT\. For each i^n, define 8(pit IT)=pi and
X(£,-, 7T) =£,-, where (pi, pi, Ei) is the ith coordinate in r. This defines a free
machine V with n states, r elements in the input alphabet, and m elements
in the output alphabet.

Let Ai ■ ■ • As and 5X • • • B, be two distinct sequences of elements from
D. Suppose that A t is the firsts, such that At9^Bt, but Ai = Bt for i<t. Then
A t = I<r and Bt = Ir, with <t5^t. For some integer, say j, the jth coordinate
(pj, pj, Ej) of a differs from the/th coordinate (pj, pj, E?) of r. Then Ej^Ef.
From this it follows that X(£y, Ax ■ • • As)^\(pj, Bi ■ ■ ■ Bs). Therefore V is
input-distinguished.
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The next result, in conjunction with Theorem 4.2, asserts that when con-
sidering free machines with a finite number of elements in the output alpha-
bet, only a finite number of elements in the input alphabet is "actually
needed."

Theorem 4.6. Let m and n be two positive integers. Let S be a free machine
with n states and m elements in the output alphabet. Then every set of (mn)" + l
elements in the input alphabet contains two which are input-indistinguishable.
Furthermore, if m'2:2, there is a distinguished, free machine with n states, m
elements in the output alphabet, and (mn)n pairwise input-distinguishable ele-
ments in the input alphabet.

Proof. The first part of the theorem follows from Lemma 4.2 with k = l.
As to the second part, suppose that n and m ^ 2 are given positive integers.

Let K be a set of n elements, say K= {pi/i^n}, and F a set of m elements,
say F= { Ui/i^m]. Let F be the set of all (mn)n distinct w-tuples of the form

r = ((Pu ?i» Ei), (pi, q2, E2), ■ ■ ■ , (pn, qn, £„)),

where for each z = w, g,- is in K and Et in F. To each r in T associate a symbol
7T and let D={It/tET}. Define 8(p{, 7T)=g,- and X (/>,-, 7r)=£,-, where
(pi, qt, Ei) is the ith coordinate in t. This defines a free machine V with n
states and (mn)n and m elements in the input and output alphabets respec-
tively.

Finally, let I, and 7T be two distinct inputs in D. Let i be the smallest
integer such that the ith coordinate (pi, qi, Ei) in a is not identical with the
ith coordinate (pi, g,-, Ai) in r. Two cases arise.

(i) If Ei^Ai, then \(pit h)^\(pt, 7T).
(ii) If Ei = Ai, then qt^q,. As shown above, there exists 7„ in D so that

X(g,-, 7M)=^X(g";, 7M). Thus X(/>,-, 7,7,,) 5^ X (/>,-, 7T7„). In either case we are forced
to conclude that I„ and 7T are input-distinguishable. Thus each two elements
of D are input-distinguishable. Q.E.D.

It is noted in passing that the analogue to Theorem 4.6 for the case where
the number of inputs and the number of outputs are given, is not true.
Namely, it is not true that a distinguished, input-distinguished, free machine,
with n inputs and m outputs, has a finite number of states, depending solely
on the integers m and n. For the free machine Si in Example 3.5 is a distin-
guished, input-distinguished, machine, witu two elements in the input and
two elements in the output alphabet respectively, and an infinite number of
states.

5. Output complete states. We now consider states which yield all pos-
sible outputs.

Definition. A state q of the quasi-machine S is said to be output complete
if for each output E there exists an input 7 so that \(p, I) =£. If each state
of S is output complete, then S is said to be output complete.
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If A is a generating set for W and if for each state q in 5 and each element
£ in A there exists an input 7 so that X(g, 7) =£, then S is output complete.

Given positive integers m, n, and r, there are only a finite number of non-
isomorphic free machines having re states, m elements in the input alphabet,
and r elements in the output alphabet. Thus there are only a finite number of
distinguishable states in these machines. For each of these states p, either p
is output complete or else there is a smallest integer kip) and a sequence
El, • • • , £jt(j,) of generating outputs with the property that X(£, 7X • ■ • Ik{Vi)
= £x ■ • • ££(,,) is false for every sequence 7X, • • • , 7^ of generating inputs.
Let kim, n, r) be the largest of the numbers kip). The number him, re, r) then
has the following property. Given any free machine 5 of re states, with m
and r elements in the input and output alphabets respectively, a state p in
S is output complete if and only if, for each sequence £x, • • • , £t(m,n,r) of
generating outputs, there exists a sequence 7X, • • • , Ik(m,n,r) of generating
inputs such that \ip, 7X • • • Ik(m,n,r->) =£i ■ • ■ Ek(m,n,r). There is no known
explicit formula for kim, n, r) (in terms of m, n, and r, of course). In fact,
there is no known upper bound for k(m, re, r).

If 5—*T is a quasi-machine, and if p in 5 and q in T are both output com-
plete states; then, as is easily seen, ip, q) is output complete in S—*T. Thus,
if S—*T exists, and if both 5 and 7" are output complete, then 5—*T is output
complete. The obvious generalization to Si—> • • ■ —>S„ holds.

If 7\ and T2 are subquasi-machines of 5X and S2 respectively and if Si—>S2
exists, then Ti~^>T2 is a subquasi-machine of Si—*S2. The obvious converse
does not hold. What is true, however, is the following easily proved result.
"Suppose that 5X is output complete, Si—>Si exists, and Wsx = Fst. If ^4 is a
subquasi-machine of 5X —> S2, then £x = {p/ip, q) G Ka) and F2
= W/iPy q)GKA] are stable subsets of Si and S2 respectively."

A property of quasi-machines which shall be of interest to us in connection
with output complete states is now given.

Definition. A quasi-machine 5 is said to have property Q if whenever
X(g, 7)=£x£2, with £x and £2 in W, there exists 7X and 72 so that 7 = 7X72,
X(g, 7X)=£X, and X[5(g, Ii), 72]=£2.

A simple induction argument shows that if .S has property Q and if
X(gx, 7) =£x • • • £„ with each Ei in W, then there exists 7X, 72, • • • , 7r such
that X(gt, Ii)=Ei, where g, = S(g,_x, 7<_0 for 2^i.

Ii S is a machine, then in order for 5 to have property Q it is sufficient
that whenever X(g, 7) = £i£2, with £x and £2 in W, 7X and 72 in Y can be found
so that 7=7X72 and X(g, 7X) =£i. This is so since

X(g, 7X72) = X(g, 7,)X[8(?J 7X), h]
= £xX[6(g, 7X), h] = EiE2,

whence X[5(g, 7X), 72]=£2.
It is obvious that each free machine has property Q. Also, if 5 and T both

have property Q, then so does S—*T.
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Suppose that S has property Q. Furthermore, suppose that p is an output
complete state, and 7o an input with the following property. For any input 7,
ii\(p, I) =X(£, 70) then q = 8(p, 70) =8(p, I). Then q is also output complete.
For let E be any output and let Eo=~K(p, 70). As p is output complete, there
exists an input 7 such that \(p, 7) =E0E. Since S has property Q, 7 = 7i72 such
that \(p, 7i) =£0 and X[5(£, 7i), 72] = £. In view of the hypothesis on S and
the fact that \(p, h)=\(p, Ii), it occurs that q = 8(p, I0)=S(p, Ii). Thus
X(g, 72) =E, so that g is output complete.

Suppose that S is a free machine with the input alphabet D and the out-
put alphabet F both having the same number (finite) of elements. Then
(1) p being an output complete state, and (2) X being one to one at p, are
equivalent statements; and each implies that the principal submachine Tp
generated by p is output complete. The equivalence of (1) and (2) is obvious
since D and F have the same finite number of elements. If (1), thus (2) holds,
then for any two inputs 7 and la, whenever \(p, 7) =X(/>, 7o), 7 = 70, so that
8(p, I) = 8(p, 70). Hence 8(p, I) is output complete, i.e., Tp is output complete.

The following auxiliary concept is now introduced(17).
Definition. A subquasi-machine T of S is said to have property P if the

following condition holds. For each state q in T, if E is an output such that
X(g, T)=E is false for every input 7, if g in S and 7 can be found so that
8(<Z. 7) =g; then X(g, H) = OE is false for all inputs 77, where 0=X(g, 7).

Lemma 5.1. Let S be a quasi-machine, p a state which is output complete, and
T the principal subquasi-machine generated by p. If T has property P, then T is
output complete.

Proof. It is sufficient to show that for each input A, q=8(p, A) is output
complete. Therefore suppose the contrary, that is, suppose that E is an out-
put such that X(g, 7) =E is false for every input 7. Let 0 = \(p, A). Since T
has property P, \(p, H) =0E is false for every input 77, However, this con-
tradicts p being output complete. Hence there exists an input 7 so that
X(g, 7) =E, i.e., g is output complete.

Corollary 1. Let S have property Q. Suppose that for each state q in S and
each two inputs 7i and 72, 8(q, Ii) = 8(q, 72) whenever X(g, 7i) =X(g, 72). Then S
has property P.

Proof. Suppose that for a given state q, a given output E, and all inputs 7.
X(g, 7) =E is false. Let g and A be such that 5(g, A) =q and let X(g, A) =0.
Suppose that 77 exists satisfying X(g, 77)=0£. Since S has property Q, 77
= 77i772 such that X(g, 770 = 0 and X[8(g", 770, 772] = £. As X(g, 770 =X(g, A),
it results that 8(q, Hi)=8(q, A) =q. Thus X(g, 772) =7f which contradicts the
selection of g and E. Hence S has property P.

(") The author is indebted to C. C. Chang for isolating and pointing out that property P
would suffice in subsequent applications, instead of a more restrictive condition originally given
by the author.
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From Corollary 1 there immediately follows

Corollary 2. Let S be a free machine such that for each state q, X is one to
one on the input alphabet. Then S has property P.

Theorem 5.1. Let S be a quasi-machine with a denumerable number of
states and having property P. If, for each sequence {£„} of outputs, there exists
a state q and a sequence {ln\ of inputs such that X(g, 1\ • • • 7n)=£x • • • Enfor
each integer n; then there exists a subquasi-machine which is output complete.
Thus, under these conditions, if S is strongly connected, then S is output complete.

Proof. In view of Lemma 5.1 it is sufficient to show the existence of a
state p which is output complete. Therefore, suppose that there is no state p
which is output complete. Let the distinct states of S be g0, gx, • • • . There
exists an output £x such that X(g0, 7) =£x is false for each input 7. Let ga(i)
be the first q such that X(g, Ai) =£x for some input Ax. In view of the hypoth-
esis, go(i) exists. Obviously a(l)>0. Let pi = h(qam, Ai). Since p2 is not out-
put complete, there exists an output E2 such that \(p2, 7)=£2 is false for
every input 7. By property P there is no input 7 such that X(ga(i), 7) = £i£2.

Now suppose that for 2^i^n, E{ and g„<i_i) are defined satisfying the
following three properties:

(1) a(i — l)^i— 1 and aij—l) >aij— 2) for 3^/^w;
(2) X(ga(t_X), 7) =£x • • • Ei is false for every input 7; and
(3) qa(i-i) is the first g for which there exists an input 7 such that X(g, 7)

= £i • • • £j_i.
Define g„(„) to be the first g for which there exists an input, call it A„,

satisfying X(g, An) =£x • ■ ■ En. By the hypothesis pertaining to sequences of
outputs, the element qaM exists. From (2) and (3), a(n) >a(n — 1) Sire— 1.
Let pn+i = 8iqa(n), An). Since pn+i is not output complete, there exists an out-
put £n+x such that \(pn+i, I) =£„+x is false for every input 7. By property P,
X(g«(n), 7)=£x • ■ • £n+x is false for every input 7. Thus (l)-(3) are true for
w + 1. By induction, (l)-(3) are true for every integer re.

By construction {£„} is a sequence of outputs. By hypothesis there exists
a sequence of inputs {7„j and a state q of S such that X(g, 7X • • • 7„)
= £x • • • En for each re. Being a state of S, q is one of the g,-, say qm. Then

X(gm, 7X • • • 7m+1)=£i ■ • • £m+i- But ga(m+i) is the first element such that
Mg> I) — Ei ■ ■ • £m+i for some input 7; and a(m + 1) > m. Thus
X(gOT, 7X • • • 7m+x)=£x • • • £«+i is false. From this contradiction it follows
that the assumption of no state being output complete is false.

Corollary. Let {S(i)/i=l, 2, ■ ■ ■ \ be a denumerable collection of de-
numerable state quasi-machines, all having the same input semi-group and same
output semi-group respectively. Suppose that each quasi-machine S(i) has prop-
erty P. If for each sequence {£n} of outputs, there exists S(i), a state q' in S(i),
and a sequence {!„} of inputs such that\si.i)(qi, Ii • • ■ 7„)=£x • • • £„ for each
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integer n; then there exists a subquasi-machine of one of the S(i) which is output
complete.

The above corollary follows from the fact that the sum of the S(i) satisfies
the hypothesis of Theorem 5.1, whence the conclusion.

If the quasi-machine in Theorem 5.1 has just a finite number, say k, of
states, then the proof shows that after at most k steps, no qa(k) will exist. The
hypothesis pertaining to sequences {E„\ of outputs and sequences {ln} of
inputs may be modified by only requiring that for each output E there exists
a state q and input 7 so that X(g, 7) =E. In conjunction with the Corollary to
Theorem 5.1, we thus get

Theorem 5.2. Let {S(i)/i=\,2, ■ ■ • ,n] be a finite collection of finite state
quasi-machines, all having the same input semi-group and same output semi-
group respectively. Suppose that each S(i) has property P. If, for each output E
there exists a quasi-machine S(i), a state ql in S(i), and an input I such that
Xs(,)(g', 7) =£; then there exists a subquasi-machine of one of the S(i) which is
output complete.

Theorem 5.2 is no longer true if "finite collection of finite state" is replaced
by "infinite collection of finite state."

Turning to a "practical" condition for determining when a state in a free
machine is output complete we first prove

Lemma 5.2. Let S have property Q. Let T be a subquasi-machine, and M a
generating set for W, with the following property:

(P') For each state q in T, if an element E of M is such that X(g, I)=E is
false for every input I, if state q in S and input I can be found so that 8(q, 7) =g;
then X(g, 77) = OE is false for all inputs 77, where 0 =X(g, 7). Then T has prop-
erty P.

Proof. Let g be in T and E = EiE2 • ■ ■ Ek, each £,• being in M, such that
X(g, 7) =£ is false for every output 7. Let p in S and A an input be such that
8(p, A)=q. Suppose that there exists an input 77 so that \(p, 77) = OE,
where 0 = X(J>, A). By property P', k>l. Two possibilities exist.

(1) Suppose that there is an input 7 so that X(g, 7)=£i. Let t be the
largest integer such that an input, call it 7, can be found so that X(g, 7)
= £i •••£,. By assumption, t<k. Let qi = 8(q, I). In view of the maximality
property of /, for no input 7 does X(gi, 7)=£(+i. Since S has property Q,
77=77i772 or 77=77i772773, according ast = k— 1 or t<k— 1, such that \(p, 770
= OEi ■ ■ ■ Et and \(p, HiH2) = OEiE2 ■ ■ ■ Et+i. This contradicts T having
property P' since 8(p, AI)=qx and \(p, AI) =OEiE2 ■ ■ ■ Et.

(2) Suppose that for no input 7 does X(g, 7)=£i. Since S has property
Q, 77=77i772773, such thatX(£, 770 = 0 and X(J>, 77x772) = 0£x. This contradicts
T having property P'.
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In either case we are led to a contradiction. Thus, for no input 77 is
\(p, 77) = 0£, where 0 = \(p, A), i.e., T has property P.

Theorem 5.3. Let S be a free machine and let p be a state satisfying the fol-
lowing conditions:

(1) For each sequence £x, • • • , Er, of length re or less, of elements of the
output alphabet F, there exists a sequence 7X, • • • , 7r of elements of the input
alphabet D such that \(p, 7X • • • 7r) =£x • • • £r.

(2) The principal submachine Tv generated by p has re states and satisfies
property P'.

Then Tp is output complete. Thus, under these conditions, if S is strongly
connected, then S is output complete.

Proof. By Lemma 5.2, Tp has property P.
The conclusion of the theorem is obviously true when re=l. Therefore

suppose that re >1. Let Py be the statement that for any sequence £x, • • • , £y
of elements of F, of length/, there exists a sequence 7X, • • • , 7; of elements of
D such that \(p, 7X • • • 7y) =£x • • • £y. By hypothesis, Pj is true for each
j^n. Suppose that P, is true for allj^k, where n^k. Let £x, • • • , £*+x be
any sequence of elements of £, of length k + 1, and let q = 8(p, 7X • • • Ik),
where 7X, • • • , 7* is some sequence of inputs such that \(p, 7X • • • Ik)
= £x • • • Ek. Suppose that X(g, 7) = Ek+i is false for every 7 in D.

(a) If q = p, then from the hypothesis, X(g, 7) =£x for some 7 in D. Thus
q^p.

(b) Suppose that q^p. It is readily seen that if a free machine has n
states, if qy^p, and if there exists an input 7 so that 8ip, I) =q, then there
exists a sequence 7X • • • Ir, r^ n — 1, of elements of D such that 8ip, 7X • ■ •!,■)
= q. Let X(/>, 7X • • • 7r) =£x • • • ET. By (2) there is no input 7 such that

\ip, 7) = £i • • • £r£t+x. This contradicts (1) since £x • • • ErEk+i is of
length^ re.

Hence, both (a) and (b) lead to contradictions. Thus there exists an ele-
ment Ik+i in D such that X(g, 7A+X) =£t+x, whence

\ip, h ■ • ■ Iklk+i) = Mp, Ii ■ ■ ■ Ik)Hq, Ik+i) = Ei • ■ • EkEk+i.

Consequently Pk+i is true, so that, by induction, p is output complete. The
theorem then follows from Lemma 5.1.

The theorem is no longer true if either condition (2) is removed, or if re
is replaced by re —1 condition (1).

Using the previous result we obtain:

Corollary 1. Let S be a free machine having property P, and let Ks
— {qt/i= 1, ■ • • , n}. For each i let mi be the number of states in the principal
submachine generated by q~i, the notation being that m„^mi. If for each sequence
Ai, • • ■ , Ak of elements of the output alphabet F, kg 1 + 2~l"~l (w»— 1), there
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exists a state q and an input I so that X(g, I)=AiA2 • • ■ Ak, then there exists
a submachine of S which is output complete.

Proof. Suppose that the conclusion is false. Then there exists a state go
and an output £x of F so that X(go, 7) =£i is false for every input 7. Label the
remaining states gi, g2, • • • , qn-i- Repeating the proof of Theorem 5.1 for
each *^1, we obtain states qa(i) and pi+i, and output £;+i, so that X(^,+i, 7)
= £i+i is false for every input 7. Now pi+i is in the principal submachine
generated by g <,(,). By hypothesis and Theorem 5.3, such an output £*+i can
be found so that £l+i = ^4i+1yl2+I • • - A$+d, where s(i+l) =sma(j) — 1 and
each A*j+1 is in F. The process in Theorem 5.1 must terminate with £r+i,
where r^n — 1. Then £^2 • • ■ £r+i is of length at most l+Xli-1 («<-1)
elements of F, and for no pair (q, 7) does X(g, 7) =£1 • • • £r+i. Hence a state
p, thus a submachine, exists which is output complete.

Since m^n always holds, there follows

Corollary 2. Let S be a free machine having n (finite) states and satisfying
property P. If for each sequence Ai, ■ • • , Ak of elements of the output alphabet
F, k S (n — l)2 + 1, there exists a state q and an input I so that X(g, 7)
=.4i.42 • ■ • Ak; then there exists a submachine which is output complete.

It is not known if (n— 1)2 + 1 is the best possible bound.
In passing we prove a result on a state being sequence output complete, a

state g being defined as sequence output complete if for each sequence {£,} of
outputs there exists a sequence {7,} of inputs so that X(g, 7X • • -70
= £1 • • • £,- for all i.

An application of the following known result [7, p. 81] will be used in
Theorem 5.4 below.

"Let {Di\ be an infinite sequence of finite, nonempty, pairwise disjoint
sets. Let G be a graph with the following two properties:

(1) The nodes of G are the elements in the set U" Dt.
(2) Each element of 7>n+i is joined with at least one element of Dn.
Then there exists an infinite sequence {Pi\ of nodes, P,- in 7?,-, such that

each PiPi+i is an edge of G."

Theorem 5.4. Let S have property Q and let qi be an output complete state
of S. Suppose that for each output E and each state p in the principal subquasi-
machine generated by qu the set

L(p, E) = {8(p, I)/\(p, I) = £ for some input i]

is finite (possibly empty). Then gi is sequence output complete.

Proof. Let {£,-} be any sequence of outputs. Let Ci= {gi} and

d = {8(qh l)/\(qi, I) = £1 for some input 7}.
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By hypothesis, C2 = T,(gi, £0 is finite and nonempty. We now define Cj
recursively. Suppose that for each 2<j^s, the finite, nonempty set Cj is
defined so that

Cj = {8(q, I)/ for some g in Cy_i and some input 7, X(g, 7) = £y_i}.

Let
C.+i = {8(q, 7)/for some q in C, and some input 7, X(g, 7) = E,\.

As gi is output complete, there exists an input 77so thatX(gi, 77) =£j£2 • • • £„.
Since S has property Q, inputs 77i, i72, • • • , 77, can be found so that
H=Hi ■ ■ ■ 77, and X(g,-, i7,)=£, for i£s, where gt+i = 5(g,-, 77,). Thus each
giisin (7,sothatgs+iis in C,+i,i.e., C,+iis nonempty. Now C,+i = U8Sct7(g,£,).
Since C, and each L(q, £,) is finite, C,+i is finite.

For each integer 5 and each element q in C, associate the symbol qs. Let
7>, = {q'/q in C,}. Clearly the 7>, are pairwise disjoint. Let G be the abstract
graph defined as follows. The nodes of G are the set U" D„. An edge e(qs, g*+1, A)
is in G if q is in C„ q* — 8(q, A), and X(g, A)=E,. Applying the result cited
above, there exists an infinite sequence {e„} of edges, with e„= (ql, q"Xl, In).
For n^l, g„+i = 5(g„, 7„) and X(gn, 7n)=£». Thus X(gi, 7x • • • 70 =£i • • • £,•
for all i, i.e., gi is sequence output complete.

Corollary 1. Let S be a finite state quasi-machine having property Q. Then
each state which is output complete is sequence output complete.

Corollary 2. Let S be a free machine with a finite number of elements in the
input alphabet. Then each state in S which is output complete is also sequence
output complete.

Theorem 5.4 is no longer true if the condition that for each output £ and
each state p in the principal subquasi-machine generated by qi, the set
L(p, E) is finite is removed.

Example 5.1. Let S be the free machine S defined as follows. Let K =
{po} \J{qi,j/i, i^lj- Let F and W be generated by the input alphabet
7)= {ln/nizl} and output alphabet F= [0, l} respectively. Since IF is de-
numerably infinite, W= {rn/n^l}, with rx = 0 and r2=l. Define 8(p0, I1)
= 3i,i, 8(p0, 72)=g2,i, X(J>„, 7!)=0, and X(i>0, 7») = 1. For 7 in D, £ = 1, 2, and
*^1, let 5(g*,,-, 7)=giil+1 and \(qk,u 7)=0. For w^3 suppose that r„ is a
sequence of m(n) elements of F, say t„= U"Ul • • • C/^(n). Let 5(^>0, 7")
= 5n.i, MPo, 7n) = C/f, and X(g„,,-, 7") = f/?+1 for i£m(n)-l. For 7 in D and
i^l, let 5(g„,,-, 7) =g„,,+i, and X(qn,i, 7) =0 for those (g„,,-, 7) not already de-
fined. Clearly po is output complete For each n let £„=1. There is no se-
quence of inputs {7„} so that \(po, h • • • 7»)=£i • • • En for all n. Hence
Po is not sequence output complete.
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6. Rational states. It is common knowledge that in a finite state Moore-
Mealy machine ultimately periodic sequences(18) of inputs applied to a state
yield ultimately periodic sequence of outputs. We now consider this property
for states of a quasi-machine.

Definition. A state q of a quasi-machine S is said to be rational if for
each ultimately periodic sequence {l„\ of inputs, X(g, {7„})(19) is an ulti-
mately periodic sequence of outputs.

It is easily seen that if p is a rational state of a machine and g is indis-
tinguishable from p, then q is rational. Also, if S-+T exists, if p is a rational
state of S and q a rational state of T; then ip, q) is a rational state of S—+T.

Given a state q and an ultimately periodic sequence {ln\ of inputs, in
checking to see if q is rational, it is sufficient to assume that j I„ j is an infinite
sequence. This observation will tacitly be used in the sequel.

When checking to determine if a state is rational, we need only consider
those ultimately periodic infinite sequences consisting of elements from a
generating set for Y. Specifically we have the following result whose proof,
being quite straightforward (and messy), is omitted.

Theorem 6.1. Let S be a quasi-machine, M a generating subset of Y, and q
a given state ofS.IfXiq, {ln}) is ultimately periodic for every ultimately peri-
odic infinite sequence {In} of elements of M, then qis a rational state.

The next result gives a sufficient condition for a state to be rational.

Theorem 6.2. Let qbe a given state with the property that for every ultimately
periodic infinite sequence {li\ and every positive integer r, the corresponding
sequence of states {g,j contains an element, say pr, which occurs at least r
times. Then q is rational.

Proof. Let g be the given state and {ln} an ultimately periodic infinite
sequence of inputs. Then for some integers m and m0, 7n+m = 7n for all re^w0.
By hypothesis, {g,} contains an element pr, where r= (rezo+?«)(?Wo+?w — 1),
which occurs r times. Let the subscripts * of g, for which pT = qt be a(l),
a(2), • ■ • , air). Since {7,-} is ultimately periodic and I„+m = In for all n^ma,
there are at most mo+m—l different 7* in {7,-}. Hence there exists a finite
sequence of strictly increasing integers su s2, • • • , smo+m so that iqa(Si), 70(,<))
= (g<«(«y), la(sj))- Note that a(sO=w0 for i^m0. Thus there are at least
rez + 1 aisi) with aisi) s^m0. Consequently there exist two integers h and t% in

(18) A sequence {/;} of elements of an abstract set A is said to be ultimately periodic if
either the sequence is finite or else the sequence is infinite and there exist integers m and »ti
so that In+m = In for all »i% m is said to be a period of the sequence {/.}.

(") Let 5 be a quasi-machine and {/„} a sequence of elements of Y. By \{q, {7„}) is
meant the sequence {x(g,-, It)}, where qi = q and for *2:2, g; = 8(g;_i, J;_i). The sequence {qn}
is called the corresponding sequence of {in}-
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{si}, mo^a(ti) <a(t2), so that a(ti)— a(ti) is divisible by m, i.e., a(t2)—a(ti)
= um. It is now readily seen that

(<?«(fl)+»> I<*Ul)+i)   —   (?a(«i)+um+i, 7o((i)+«n»+i)

for alH^O. Thus X(gy,7y) = X(g,-+um,7,-+um) for all j^a(h). Therefore X(gy, {ij})
is an ultimately periodic sequence so that g is a rational state.

Corollary 1. Let qbe a given state with the property that for each ultimately
periodic sequence {7,-}, the corresponding sequence of states {qi} contains just
a finite number of different elements. Then q is rational.

This follows from the fact that if {g,}, the corresponding sequence of the
ultimately periodic infinite sequence {7*}, contains just a finite number of
different elements, one of them occurs infinitely often.

Corollary 2. A quasi-machine with the property that every principal sub-
quasi-machine has only a finite number of states has each state rational. In
particular, a quasi-machine with a finite number of states has each state rational.

Remarks. (1) The hypothesis of Theorem 6.2 may be weakened to merely
require an element pr, where r= (mo+m)(m0+m— 1), m0 and m being asso-
ciated with the ultimately periodic infinite sequence {7i} as denoted in the
proof.

(2) The hypothesis of Theorem 6.2 cannot be weakened to merely require
that {qi} contain an element which occurs twice.

(3) There exist distinguished, denumerable state, free machines, each
state rational, with the property that for each ultimately periodic infinite
sequence {7,} and each state q, the elements of the associated sequence {g;}
are all different. The example we have in mind is rather complicated and so is
omitted.

Suppose that g is a rational state of the quasi-machine S, S having an
infinite number of states. There need be no relation between the period of the
ultimately periodic infinite input sequence {InJ and the period of the resulting
output sequence {£n}. That is, for a given rational state q, one might find a
set of ultimately periodic infinite input sequences {7^} of period m, with the
resulting output sequences {£„} of period mj, such that {mj/j} is an un-
bounded set. The last statement is no longer true if the principal subquasi-
machine generated by q is finite, as the next theorm indicates.

Theorem 6.3. Let p be a state in the quasi-machine S and suppose that the
principal subquasi-machine Tp generated by p has at most n (finite) states. Let
{ij} be an ultimately periodic input sequence, with m0 and m two positive
integers such that Ij+m = Ij for all j^m0. Then there exist positive integers mi
and m2, with (i) miSm0 + (n— \)m, (ii) m2^mn, and (iii) mi+m2^mo+mn,
such that Ek+mt = Ek for all k^mi, where \(p, {Ij}) = {£y}. Furthermore, given



1960] SOME REMARKS ON ABSTRACT MACHINES 435

positive integers mo, m, and n, for each of the inequalities (i), (ii), and (iii),
there exists a case where the equality sign holds.

Proof. To see the first part let p, Tv, mo, m, {7y|, and {£y} be as in the
hypothesis. Consider the finite sequence {ipi, Ii)}mo^i^mo+mn, where
pi = p and pi = 8ipi-i, 7<_x) for *>1. Since Tp has at most re states and there
are exactly mn-\-l terms in the finite sequence, one of the pi occurs as part
of a term at least m-\-\ times. Let the indices at which this pi occurs as part
of a term in the finite sequence be a(l), a(2), • • • , a{r), r^m + l. Then two
of the indices, say a(w) and aiv) differ by an integral multiple of m, i.e.,
aiv) =a(w) -\-wm, w a positive integer. As the sequence {7,} becomes periodic,
of period m, at the m0 term, 7a(u) = 7o(„). Thus (£a(u), 7„(u)) = ipaw, 7oW), and
as is easily seen, for k^aiu) =mx and m2 = wm, Ek+m2 = Ek. This implies that
mi-\-m2^mo+mn. Since aiv) and a(w) are both elements of the set
{i/mo^i^mo+mn},

m2 = wm = aiv) — a(w) ^ mo + mn — mo = mn.

Now the smallest value that w can assume is 1 and the largest that aiv) can
assume is mo+mn. Thus

a(«) g ma + mn — m = mo + (re — \)m.

The last statement of the theorem will now be demonstrated by two
examples. Accordingly, let mo, m and re be given positive integers.

(I) Let 5 be the free machine with the n states gx, • • • , qn which is
defined as follows. The set {Ai/i^m + l} is the input alphabet and
{Bi/i^n + l} is the output alphabet. For i^n and j<m, let 8iqf, Aj)=q(.
If j — m or m + 1, let 8(5,-, .4/)=gi+x when i<n and 5(g,-, A})=qi when i = n.
For i^n, let X(/>», 7y) =B( when j^m and \ipi, If) =Bn+i when j = w + l.

Let r be the non-negative integer < re for which m0 — 1 =yre+ r, y being an
integer; and let p = qn-r+i if r^l and p = qi if r = 0. Let {7,} be the infinite
sequence whose first mo—l terms are Am+U the remaining terms being the
periodic sequence whose periodic part is ^4X, .42, • • • , Am. Then 7y+m = 7m for
j^m0. Let \ip, {ij}) = {£y}. As is easily seen, {Ej} is the sequence whose
first m0—l terms are Bn+i, the remaining terms being the periodic sequence
whose periodic part is m consecutive TVs, followed by m consecutive TVs, • • •,
followed by m consecutive TVs. Then mx = rezo, m2 = mn, and»rex+OT2 = jreo+»wre,
that is, the equality sign holds for both (ii) and (iii).

(II) Let 5 be the free machine which is defined as in (I) with the follow-
ing changes: S(g„, Im)=qn and X(gt-, 7,)=£m+x for i<n and j^m. Let {7y},
r, and p be as in (I). Let X(£, {7y})={£y}. Then {£,•} is the sequence
whose first m0—l+m(w—1) terms are £n+x, the remaining terms being Bn.
Then wx = w0 + (re — \)m and w2=l. Thus the equality sign holds for (i).
Q.E.D.
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7. Inverses. We now consider the situation of one machine "undoing"
the work of another.

Definition. A semi-inverse S* of a quasi-machine S is a quasi-machine
such that (1) Ws= Ys>; (2) Ws,= Ys; (3) for each state q in S there exists a
state g(q) in S* such that Xs*[g(g), ~Ks(q, 7)] = 7 for all inputs 7 of S; and (4)
for each state g* in S* there exists a state h(q*) in S such that
\s[h(q*), Xs*(g*, £)]=£ for all inputs £ of S*.

From the symmetry of the definition, it is clear that S is a semi-inverse
of S* whenever S* is a semi-inverse of S. That is, S and S* are semi-inverses
of each other.

Lemma 7.1. Let S and S* be semi-inverses of each other. Then the following
statements are true:

(a) hg(q) is indistinguishable from q and gh(q*) is indistinguishable from g*.
(b) If S* is distinguished, then gh(q*) =g*, g maps Ks onto Ks*, and h is a

one to one function of Ks' into Ks. If S is also distinguished, then g and h are
inverse functions.

(c) \s[q, Xs*(g(g), £)]=£ and Xs*[g*, \s(h(q*), I)]=Ifor all inputs I in
S and E in S*.

(d) For fixed q, Xs is a one to one function of Ys onto Ws.
(e) If S is a machine, then so is S*.

Proof, (a) Due to symmetry it is sufficient to show that g and hg(q) are
indistinguishable. For any input 7 of S,

\s(q, I) = \a(hg(q), \s'[g(q), Xs(q, I)]) - \s(hg(q), I).

Since 7 is arbitrary, q and hg(q) are indistinguishable.
(b) Suppose that S* is distinguished. By (a), gh(q*) is indistinguishable

from q*, thus gh(q*)=q*. Since g[h(q*)]=q*, g is onto. If h(q*)=h(qt),
then q* = gh(q*) =gh(q*) =g*. Thus h is one to one. If S is also distinguished,
then g and h are inverse functions by virtue of gh(q*) =q* and hg(q) =q.

(c) Obviously it is sufficient to show that \s[q, ^s*(g(q), £)]=£. Since q
and hg(q) are indistinguishable,

X«[g, \g-(g(q), E)] = \s[hg(q), \s'(g(q), £)] = E.

(d) That Xs is one to one follows from Xs*[g(g), Xs(g, 7)] = 7. By (c), for
£ in Ws, Xs[g, ^s'(g(q), £)]=£• Hence Xs is onto.

(e) Suppose that S is a machine and that 7i72 = 7i73, where 7i, 72, and
73 are in Ys- Let q be a fixed state of S. Then

Xs(g, Ii)\s[8s(q, h), 72] = Xs(g, 7x72) = \s(q, hh)
= \s(q, 70Xs[Ss(g, 70, 73].

Since S is a machine, Xs[8s(g, 70, 72]=Xs[Ss(g, 70, 73]. As S has a semi-
inverse, Xs is one to one. Thus 72 = 73, i.e., S* is a machine.
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Lemma 7.2. Let p in S and q in T be two indistinguishable states. If S* and
T* are semi-inverses of S and T respectively, then gsip) and gr(q) are indistin-
guishable states.

Proof. For arbitrary £ in Ws, consider \s'[gs(P), £] and Xr*[gr(g), £].
Since p and g are indistinguishable and X« is one to one onto, there exists 7
in Fso thatXs(p, 7)=£=Xr(g, 7). Then \s*[gs(P), \sip, I)]=*s'[gsiP), E]
= 7 = Xr*[gr(g), X7-(g, 7)] = \r*[griq), £]• This proves the lemma.

Lemma 7.2 is now applied in the following result:

Theorem 7.1. If S* is a semi-inverse of the quasi-machine S, then S is a
semi-inverse of S if and only if S is equivalent to S*.

Proof. Let 5 and S* be semi-inverses of each other under g and h.
Suppose that 5 is equivalent to S*. For each state q in 5 let d(q) be a

state in S* which is equivalent to q; and for each state q* in 5* let/(g*) be
a state in S which is equivalent to q*. For g in 5 let f (g) =fg(q) and for g in
S let h(q)=hd(q). Then

Xslf(g), Mq, D] = *s[fgiq), \siq, I)}
= Xs*[g(g), Xs(g, 7)], as g(q) and/g(g) are indistinguishable,
= 7.

Also

■\s[HQ), MZ, E)] = Xs[hd(g), Xs(q, £)]
= Xs[hd(q), Xs'(d(q), £)], as q and d(q) are indistinguishable,
= £.

Thus ,S and S are semi-inverses of each other.
Now suppose that 5 and S are semi-inverses of each other under £ and h.

Let q* be an arbitrary state of S*. Then h(q*) is in S. By Lemma 7.2, gh(q*)
and gh(q*) are indistinguishable states. By Lemma 7.1(a), q* and gh(q*),
thus q* and gh(q*) are indistinguishable. In a similar fashion it is seen that
to each state q in S, there corresponds gh(q) in S* indistinguishable from q.
Thus S and 5 are equivalent.

In order to obtain "structure" results, i.e., results involving the next state
function, the following notion is introduced.

Definition. S* is said to be an inverse(20) of 5 if (i)S* is a semi-inverse
of 5, and (ii) g[8s(q, I)] = 8S'[g(q), Xs-(g, 7)] for each q and 7 in 5.

Theorem 7.2. If S* is a distinguished machine which is a semi-inverse of S,
then S* is an inverse of S.

Proof. 11 is necessary to show that g [8s(g, 7) ] = 8S« [giq), Xs(g, 7) ] for each

(so) Inverses were first introduced in [l 1 ] for special machines.
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state g and each input 7 of S. For all inputs 7i of S,

Ih = \s'[g(q), Xs(q, Ih)]
= *s*[g(q), \s(q, I)\s(8s(q, I), h)]

= *s'[g(q), *s(q, 7)]Xs-(gf, \s[8s(q, 7), /J)
= I\s>(qi*,\s[8s(q,I),h]),

where q* = 8S'[g(q), \s(q, I)]- Since S* is a machine, the left cancellation law
holds for Ys. Thus

*s<g[8s(q, D], \s[6s(q, D, h]) =h = \s'[q?, Xs(5s(g, 7), 70].
As S* is distinguished and h, thus Xs[5s(g, 7), 7i] is arbitrary,

g[8s(q, I)] = qf = 8s-[g(q), \s(q, I)]. Q.E.D.

The theorem is no longer valid if S* is not distinguished.
Example 7.1. Let S and S* be the free machines defined as follows. Let

Ks= {<Zi} • Let 7 generate both Ws and Ys. Let Ks'= {qt, q*}, and 8s(qf, 7)
= g*, where i,j=\, 2, i^j. Then S* and S are semi-inverses but S* is not an
inverse of S.

The above example also shows that being an inverse is not invariant
under equivalence. For S is an inverse of S, S* is equivalent to S, but S* is
not an inverse of S. What is true, however, is the following result, which is a
consequence of Theorem 7.2.

Corollary. If S* and S are semi-inverses of each other, if T* is a distin-
guished machine which is equivalent to S*, and if T is a distinguished machine
which is equivalent to S; then T* and T are inverses of each other.

When S and its inverse S* are both distinguished quasi-machines, then
the relation between S and S* may be reversed, namely:

Theorem 7.3. If S and S* are both distinguished quasi-machines, and if S*
is an inverse of S, then S is an inverse of S*.

Proof. It is necessary to show that h[8S'(q*, E)] = 8s[h(q*), Xs*(?*. £)]•
Let q = h(q*) and 7 = Xs*(g*, £)• Then g(q) =g* since S* is distinguished, and
E=\s(Hq*), I)- Since S* is an inverse of S, g[5s(g, 7)] = 5s*[g(g), Xs(g, 7)].
Thus hg[8s(q, I)] = h(8S'[g(q), Xs(ff, 7)]). Since S is distinguished,

hg[8s(q, I)] = 8s(q, I) = 8s[h(q*), \s-(q*, £)] = h[8s-(q*, E) ].

Turning to "uniqueness" of inverses we have

Theorem 7.4. If S* and S are both distinguished quasi-machines which are
inverses of S, then S* and S are isomorphic to each other.

Proof. Let g and h be the functions relating S and 5. Since S* is distin-
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guished, gh is a one to one function of Ks' onto Tvg. Let q be in Ks and
q* = gh(q). Then gh(q) =q and h(q*) =hg[h(q)] is indistinguishable from h(q).
Since S is distinguished, by Lemma 7.1(e) q = gh(q)=gh(q*). Thus gh maps
Tvs' one to one on Kg. Next

£ = Xs[h(q*), XS'(q*, £)] = Xs[hghiq*), *s(gh(q*), £)j

= Xs[A(g*), Xs(gh(q*), £)],

the last equality occurring since hgh(q*) is indistinguishable from h(q*).
Since Xs is one to one, \s*(q*, E) = ~Xs(gh(q*), £). Thus the outputs from q*
and gh(q*) are identical. To complete the proof it is necessary to show that
the next state functions correspond under gh, i.e., hs[gh(q*),E]
= gh[8s*(q*, £)]. Let q = h(q*) and I = Xs*(q*, £). Then

8s[gh(q*), E] = 8s[g(q), Xs(q, I)]
= g[8s(q, I)], since 5 is an inverse of S.

Since 8s(q, I) and hg[8s(q, I)] are indistinguishable and S is distinguished,

g[Ss(q, I)] = gA*M«, 7)]
= gh[8S'(g(q), Xs(q, I))], since S* is an inverse of S,

= I*[M«*fo*), £]
= gh[8s'(q*, £)], since 5* is distinguished.

Thus 8s[gh(q*), E] =gh[8S'(q*, £)], whence the theorem.
The theorem is not true if inverse is replaced by semi-inverse. For let 5

and 5 be as in Example 3.1. Then S and 5 are two nonisomorphic semi-
inverses of S.

A characterization of those quasi-machines which have an inverse is now
given.

Theorem 7.5. A necessary and sufficient condition that a quasi-machine S
possess an inverse S* is that for each state q, Xs be a one to one function of Ys
onto Ws.

Proof. The necessity being obvious, only the sufficiency shall be shown.
Therefore assume that Xs is a one to one function for each state q. To each
q in 7vS associate in a one to one manner, a symbol g* = g(g). Denote by Ks*
the set of all such g*. Let h be the inverse function of g, let Ws*= Ys, and
let Fs*= Ws. For each g* in Ks* and each £ in Fs*, define Xs*(g*. E) to be
7 and 8S'(q*, E) to be g(hs[h(q*), Xs-(g*, £)]), where \s[h(q*), l]=E. In
view of the assumption on Xs, 8s*(g*, £) is uniquely defined.

It is now to be shown that S* is an abstract quasi-machine. This is to be
done by verifying properties (3) and (4) in the definition of a quasi-machine.
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From the method of construction, it is obvious that if S* is a quasi-machine,
then it is an inverse of S.

Let g* be in KS' and £1 any element of Fs*. Let q = h(q*) and Xs(g, 70
= £1. Clearly 7i is uniquely defined. For any £2 in Ys' let 72 be such that
E2=\s[8s(q, 70, 72]. Since S is a quasi-machine

£i£2 = Xs(g, h)\s[8s(q, 70, h]
= Xs(g, 7i72).

Thus
\S'(q*,EiE2), = hl2.

(a) Now

8s-[q*, EiE2] = g(8sh(q*), Xs-(g*, £i£2)])

= g[8s(q, hh)]
= g(5s[8s(q,h),h]);

and
Ss-[Ss-(g*,£i),£2] = Ss>[g(Ss[h(q*), \s-(q*, £,)]), Et]

= 8s'[g(8s[q, h]), £2]

= g(8s[hg[8s(q, 70], Xs'(g[5s(g, 70], £2)])
= g(5s[5s(g, 70, 72]).

Thus 8S'[q*, £i£2] = 5s,[5s*(g*, £1), £2], that is, property (3) in the definition
of a quasi-machine holds.

(b) \S'[q*, £i£2]=7172and

Xs-(q*, Ei)\S'[8s'(q*, Ei), E2] = h\s'[g(8s[h(q*), \S'(q*, Ei)]), E2]

= 71Xs*[g(6s[g, 7!]),£2] = 7X72.

Thus Xs*[g*, £i£2]=Xs*(g*, £i)Xs*[8s*(g*, £1), £2], that is, property (4) in
the definition of a quasi-machine holds.

This completes the proof.
In certain cases, the property of a quasi-machine S having an inverse may

be deduced from the behavior of Xs on a generating set of inputs. Specifically
we have

Corollary 1. Let A be a generating set for Ys and B a generating set for
Ws such that each E in Ws is the product, in a unique way, of elements in B.
If for each state q, Xs is a one to one function of A onto B, then S has an inverse
S*.

Proof. Let g be a state of S and £ an element of Ws. Let £ = £i£2 • • ■ £„,
where each Ei is in B. Define gi to be g and let Ii in A be such that Xs(gi, h)
= £1. 7i exists since Xs maps A onto B. Let g2 = 5s(gi, 70- For each i^j<n
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suppose that g,- and 7t- are defined so that Xs(q<, Ii) = £.-. Let gy+1 = Ss(gy, I,)
and let 7J+1 be such that Xs(qj+i, Ij+i) =£y+x. In this way 7,- becomes defined
for each i^n. Let 7 = 7X • • ■ 7„. There is no difficulty in seeing that Xs(g, 7)
= £. Thus X,5 maps Ys onto Ws- Now suppose that 7 is such that \s(q, I) =E.
Let 7 = TX • • ■ Im, each 7, in A. Define gx to be g. Then £ = £x • • ■ £m, where
£i = Xs(gi, 7X) and for i^2, £<=Xs(g,-, 7,-), with qi = hs(qi-i, li-i). In view of
the uniqueness property, m = n and £» = £i for each £,-. Since Xs maps ^4
one to one onto B, Ii = I, for each i. Thus 7 = 7, that is Xs maps Fs one to
one onto Ws. Thus, from Theorem 7.5, 5 has an inverse S*. Q.E.D.

Corollary 2. Let S be a free machine. If for each state q, Xs maps the input
alphabet one to one onto the output alphabet, then S has an inverse S*.

In order to check that two quasi-machines 5 and S* are inverses of each
other, it is sufficient to verify the basic laws over a set of generating inputs
and generating outputs. More precisely we have

Theorem 7.6. Let S and S* be two quasi-machines with Ys=Ws* and
Ws = Ys'. Let g be a one to one function of Ks into Ks' and h a one to one func-
tion of Ks* into Ks- Suppose that A is a generating set of inputs of Ys and B a
generating set of ouputs of Ws such that g[Ss(g, 7)] = 8s*[g(g), Xs(g, 7)],
h[hs'(q*, £)] = hs [*(«*), Xs-(g*, E)], \s*[g(q), Xs(q, I)] = T, and
Xs[h(q), Xs*(q*, £)] —Efor each I in A, £ in B, q in Ks, and q* in Ks*. Then
S and S* are inverses of each other.

Proof. We first show that

(*) g[Ss(q, D] = Ss*[g(q), Xs(q, I)]

for each input 7 in Ys- Denote by Cn the set of all finite sequences 7X • • • 7y,
j^re of inputs 7, in A. Since A is a generating set for Ys, Fs = U1" C„. Thus
it is sufficient to show that (*) holds for each 7 in C„, re= 1, 2, • • • . By as-
sumption (*) is true for 7 in Cx. Suppose that (*) is true for 7 in Ck, k^n.
For 7 in C„+i—Cn, 7= UIi, where U is in C„ and 7X in Cx. Then

g[8s(q,I)] = g[8s(q, UIi)]
= g[8s(8s(q, U),Ii)]
= 8s*[g(8s(q, V)), Xs(8s(q, U), Ii)], since (*) holds for Cu
= 8s'[Ss*{g(q), Xs(q, U)}, Xs(8s(q, U), Ii)], since (*) holds for Cn,

= SS'[g(q), Xs(q, U)Xs(Ss(q, U), Ii)]

= 8S'[g(q), Xs(q, UIi)}

= hs*[giq), Xsiq, I)].

Thus (*) holds for 7 in Cn+i, so that, by induction, (*) holds for each Cn.
Suppose that Xs*[g(g). ~^s(q, U)]^U for some U in some Cm. Let re be
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the smallest integer such that there exists h • • • I„ for which
Xs*[g(g), \s(q, h ■ ■ ■ In)]*h ■ ■ ■ h. Then «^2. Let 7 = 7^ • ■ • 7„_j.
Hence Xs*[g(g), Xs(g, 7)] =7. Now

*s'[g(q), Xs(g, 7i • • • 7„)]
= *s'[g(q), Xs(g, 77„)]
= Xs-[g(g), Xs(g, 7)Xs(5s(g, 7), 7„)]
= *s'[g(q), Mq, I)]*s'{5s'[g(q), \s(q, I)], \S[8s(q, I), 7.]}

= 7Xs-{g(5s(g, 7)),Xs[5s(g, 7),7„]}
=  77n  =  h  ■  ■   ■ In.

This is a contradiction. Therefore Xs*[g(g), Xs(g, U)]=U for all U in Ys.
In a similar fashion it can be shown that

k[8S'(q*, £)] = 8s[h(q*), Xs«(g*, E)]
and

\s[h(q*), \s'(q*, £)] = £ for each £ in Fs«

Consequently, all the laws for S and S* to be inverses of each other are
satisfied.

One application of Theorem 7.6 occurs when S and S* are free machines.
Then one only has to check the basic laws for the elements in the input
alphabet D and the output alphabet F.

Theorem 7.7. Let S and S* be two distinguished machines, each of n (finite)
states. Let Ys = Ws' and Ys'= Ws. Let g be a one to one function of Ks into
Ks' and h a one to one function of Ks* into Ks. Suppose that A is a generating
set of inputs of Ys and B a generating set of inputs of Ys' such that Xs maps A
onto B, \S'maps B onto A, Xs*[g(g), ^s(q, 7)] = 7, and\s[h(q), \S'(q*, £)]=£
for each g in Ks, each g* in Ks', each sequence 7i • • • Ij, j^n of elements Ii
from A, and each sequence £ = £i • • • Ek, k^n of elements Ei from B. Then
S and S* are inverses of each other.

Proof. In view of Theorem 7.6 it is sufficient to show that

g[Ss(g, 70] = 8S'[g(q), Xs(g, 70]    and    h[8S'(q*, Ei)] = 8s[h(q*), \S'(q*, Ei)]

for each h in A and £i in B. Because of the symmetry of the situation, it is
sufficient to show the former equality. Let g and h be fixed.

Let £2 • • • £n be any sequence of n — 1 elements from B. Since Xs maps
A onto B, there exists 72 in A such that Xs[5s(g, 70, 72] =£2. Similarly there
exists 73 in A such that Xs[8s(8s(g, 70, 72), 73]=£3. Thus Xs[8s(g, 70, 7273]
= £2£3. Continuing in the obvious manner we see that there exists
72, • • • , 7n in A such that Xs[5s(g, 70, 72 • • • 7„] =£2 • • • En.

Now let 7 = 72 • • • In be any sequence of length n — 1 of inputs of A.



1960] SOME REMARKS ON ABSTRACT MACHINES 443

Repeating the inequalities in Theorem 7.2weget7x7=7xXs*(gJ\Xs[Ss (q, 7X),7]),
where g* = 5s*[g(g), Xs(q, Ii)]- By the left cancellation law and hypothesis

\s<q?, \s[8s(q, Tx), I]) = T = Xs*(g[8s(q, h)], *s[5s(q, Ii), i]).

Thus q* and g[8s(q, Ii)] are indistinguishable by Xs[Ss(g, Ii), I]. In the
previous paragraph we showed that when T varies over all sequences of length
re—1 of elements from A, Xs[Ss(g, Ii), i] varies over all sequences of length
re —1 of elements from B. Now B is a generating set for all elements of Ys-
Repeating the proof given in Theorem 6 of [9] we see that in a machine (as
defined here) with n states, two states are distinguishable if and only if they
are distinguishable by some sequence of generating inputs of length re —1.
Thus q* and g [8s(q, Ii) ] are indistinguishable. Since S* is distinguished

Ss*[g(q), Xs(q, TO] = ?i* = g[8s(q, Ii)]. Q.E.D.
Remarks. (1) The most important application of Theorem 7.7 is when

5 and S* are free machines and A and B are input and output alphabets
respectively of S.

(2) Theorem 7.7 is no longer true if the hypothesis on the length of the
sequences Tx • • • T,- is changed from re to re —1.

Example 7.2. Let 5 and 5* be the free machines defined as follows: Let
w5;3, Ks = Ks*={qi/i^n}, ,4=7?= {0, l}, g(qi) = h(qi) = qit Xsfe, U) = U
fori^re —l,Xs(g», 0) = l,Xs(gn, l)=0,Xs*=Xs, 8s(qi, U) =g,+xfor 2^i^n — 1,
8s(qn, U)=q2, 8s(qi, 0)=g3, 5s(gx, l)=g2, Ss(g.-, U) = 8S'(qi, U) for *>1,
8s*(gi, 0)=g3, and 8s*(qi, 1) =ffi, where f/ = 0, 1. Then the hypothesis of
Theorem 7.7 holds for sequences of inputs of A and of B of length re—1, but
not of length re (consider the sequence of length re consisting of all l's, starting
at qi). S and S*, of course, are not inverses.

Turning briefly to properties preserved by inverse machines we have

Theorem 7.8. If S* is a distinguished quasi-machine which is an inverse
of S and if S is strongly connected, then S* is strongly connected.

Proof. Let q* and q* be any two states in S*. Let q = h(q*) and qi — h(q*).
Since 5 is strongly connected there exists an input 7 in 5 such that 8s(q, I)
= qi. As S* is distinguished, gh(q*) =g(q) =q* and gh(qt)=qt- Then

gi* = g[8s(q, D]
— f>s*[g(q), Xs(q, I)], since S* is an inverse of S,

= 8s'[q*, Xs(q, I)].

Consequently S* is strongly connected. Q.E.D.
Theorem 7.9 is a generalization of a result of [ll]. The theorem is no

longer true if S* is not distinguished.
Another result, easily proved by the reader, is
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Theorem 7.9. Let S* be an inverse of the quasi-machine S. If A is a stable
set of S, then g(A) is stable and the quasi-machine associated with g(A)
VJUT (gh)n[g(A)](21) is an inverse of the quasi-machine associated with
A^JUi (hg)n(A). If S is distinguished and A is any set of states of S, then the
subquasi-machine generated by g(A) is an inverse of the subquasi-machine gen-
erated by A ; furthermore, g(A) is stable if and only if A is stable.
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