SOME REMARKS ON ABSTRACT MACHINES

BY
SEYMOUR GINSBURG

Introduction. In 1954 the mathematical entity called a (sequential)
machine was found to be a valuable tool in designing sequential switching
circuits [2; 8; 9]. Since then there has been considerable mathematical activ-
ity by mathematicians and nonmathematicians relating to the analysis and
the synthesis of these machines. As was to be expected of a topic which
arose because of an engineering need, most of these results have appeared in
engineering and computing journals. Recently though, some of the papers
have appeared in mathematical journals [3; 4;5;6; 10]. Also, much of the
recent literature has dealt with questions almost exclusively of mathematical,
as contrasted with engineering, interest [1; 3; 4; 5; 6; 10; 12]. The present
paper is written in that spirit.

The Moore-Mealy (complete, sequential) machine is defined [8; 9] as a
nonempty set K (of “states”), a nonempty set D (of “inputs”), a nonempty
set F (of “outputs”), and two functions 6 (the “next state” function), and
X\ (the “output” function), § mapping K XD into K and X mapping K XD
into F. Then 8 and X are extended to sequences of inputs I + - - I (written
without commas) by

8(g1, In - - - It) = Qier
and
May, Iy -+ - Iy = Mgy, TONS(gy, 1), I - - - In),

where ¢;;1=08(g;, I;) for 1 £j<k. The properties of machines studied usually
involve sequences of inputs and sequences of outputs. The present paper
arose by observing that many facts about machines, for example, those on
submachines, could be phrased more elegantly by calling “sequences of in-
puts” and “sequences of outputs,” “inputs” and “outputs” respectively. From
this it was natural to consider both inputs and outputs as elements from
abstract semi-groups, subject of course, to certain restrictions on the next
state function and the output function under the product of inputs. This led
to the concept of an abstract “quasi-machine.” The term “quasi-machine”
was used because certain desirable properties associated with the Moore-
Mealy machines no longer held. By adding a technical condition on the out-
put semi-group, namely the left cancellation law, the lost properties were
restored. This led to the definition of an abstract “machine.” While the
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emphasis and interest here is on machines, results have been stated wherever
applicable, to the more general notion of quasi-machines.

The material is divided into seven sections, the first two and the last deal-
ing with certain relations between machines, and the remaining four with
properties about states, inputs, and outputs. The main results are in the last
five sections.

In §1, some basic concepts of machines, such as “submachines,” “strongly
connected” machines, and “stable” sets are introduced.

§2 considers properties related to composite machines, i.e., machines
obtained by using the outputs of one machine as inputs to another.

§3 deals with distinguishability and indistinguishability of states between
machines. A sample result is the following: Let {Sb/bEB} be a family of
denumerable state quasi-machines, at least one of the S; having just a finite
number of states. Suppose that for each sequence of inputs {I.-} and each
finite collection of machines {Si, ---, S,} there exists a set of states
{pj/p,-ESj, jén} such that the output of p; from Iy - - - I; is the same for
j=mn. Then there exists a set {p"/prSb, b=1, - - -, n} of states which are
pairwise indistinguishable.

§4 discusses the topic of “essentially different” inputs. Two inputs I; and
I, are said to be input-distinguishable if a state p can be found so that some
two sequences of inputs, starting with I; and I; respectively and identical
thereafter, yield different outputs. That is, the inputs I; and I, are essentially
different when measured by the accompanying outputs. It is shown (Theorem
4.1), that each machine may be reduced to one which is input-distinguished
(i.e., all inputs are pairwise input-distinguishable). A test for determining if
a free machine is input-distinguished (Theorem 4.3) is given. For a -free
machine S, with a finite number of states and finite number of generating
outputs, a “best” upper bound on the maximum number of elements in the
input alphabet in order for S to be input-distinguished is given (Theorem 4.5).

§5 is concerned with a state being output complete, that is, a state where
all the outputs are actually assumed. In particular, conditions are given
which ensure a machine having an output complete state (Theorems 5.1
and 5.3).

§6 deals with the notion of a rational state, i.e., a state where each ulti-
mately periodic sequence of inputs yields an ultimately periodic sequence of
outputs. Intuitively, this can be interpreted as meaning that the machine
does not yield “wild” sequences of outputs under “repetitive” sequences of
inputs. Relations are given between the period of the input sequence and
the period of the output sequence, in conjunction with the number of states
in the machine (Theorem 6.3).

The final section is concerned with machines which have inverses. Roughly
speaking, an inverse S* of S undoes the action performed by S. Questions on
existence, uniqueness, and “practical tests” for inverses are then answered.
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The emphasis throughout is on questions of mathematics as compared to
those of logic. As such, proofs and counterexamples have been given from an
existential point of view. Thus the axiom of choice is used freely. It is recog-
nized, however, that many of these same proofs and counterexamples can be
made more constructive if desired. For example, when dealing with machines
which have a denumerably infinite number of states, specific relations of
outputs to inputs, instead of existential ones, can be given.

In conclusion, the author wishes to thank C. C. Chang for the many
stimulating conversations which transpired during the writing of this paper.

1. Submachines. The basic notions relating to machines and submachines
are now defined. Some elementary properties are then given.

DEFINITION. A quasi-machine S is a 5-tuple (K5, Ws, Ys, 05, Ag) satisfying
the following properties.

(1) Ksis a nonempty set of “states.”

(2) Ws (the set of “outputs™) and Y (the set of “inputs”) are nonempty
semi-groups(!).

(3) 65 (the “next state” function) is a mapping of KsX ¥ into K such
that 8s(q, I[;) =8s[8s(g, I), I3] for each ¢ in K5 and each I; and I: in Vs.

(4) As (the “output” function) is a mapping of KsX Y into W such that
As(g, I1l2) =\s(g, I)hs[8s(q, I1), I.] for each g in Ksand each I and I, in Vs.

The subscript S on K5, W, etc., is omitted when S is understood.

Unless stated to the contrary, in all examples used in the sequel, only
generating sets(?) for Wg and Y are used.

Given K, W, and 7, it follows from (3) and (4) that a quasi-machine is
uniquely determined when the two functions & and A are known for each
input of a generating set of inputs and for each state. )

On numerous occasions, as when discussing distinguishability of states, it
is convenient to restrict the semi-group of outputs in a particular way.

DEFINITION. A machine S is a quasi-machine in which the semi-group of
outputs satisfies the left cancellation law(3).

For the purposes of this paper, the most important semi-groups which
satisfy the left cancellation law are the free semi-groups(*). Thus, if Wsis a
free semi-group, then S is a machine,

(}) A semi-group is a set of elements A and an operation “o” such that e o b is in 4 and
(@aob)oc=ao (boc) for every a, b, and ¢ in A. When no confusion can arise, we write ab
instead of a o b and abc instead of (aob) ocorao (boc) etc.

(3) A subset M of a semi-group S is said to generate, or be a generating set for S, if the closure
of M under the semi-group operation is S.

(%) A semi-group S is said to satisfy the left cancellation law if, for any elements g, b, and ¢
in S, ab=ac implies that b=c.

(%) Let D be an abstract set and M the set of all finite sequences of elements of D. Endow
M with the operation of concatenation. That is, if ¢1 and o3 are two sequences in M, let o102
be the sequence consisting of the elements of ¢y followed by the elements of ¢;. Then M is a semi-
group, called the free semi-group based on the alphabet D.
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DEFINITION. Let .S be a machine. Suppose that Ws and Y5 are both free
semi-groups based on the output alphabet F and the input alphabet D. If
for each state g in S and each element I of D there exists an element E of F
so that Ag(g, I) =E, then S is said to be a free machine.

Suppose that ¥ and W are two free semi-groups (based on the alphabets
D and F respectively) and that K is an abstract set. For each I in D and ¢
in K define 8(¢, I) to be an element of K and A(g, I) to be an element of F.
By extending the definition of é and A to all of Y, in the obvious manner, so as
to satisfy (3) and (4) in the definition of a quasi-machine, a free machine is
obtained. It is clear that the theory of free machines is really the theory of
the Moore-Mealy machines(®). In the sequel, free machines will be described
by defining 8 and A only on D.

We now turn to the subject of subquasi-machines,

DEFINITION. A subguasi-machine T of a quasi-machine S is a quasi-
machine such that KrCKg, Wr=Wg, Yr=Yg, 0r is 85 acting on KX Vg,
and Ar is Ag acting on K7 X Vs.

A subquasi-machine has the same set of inputs as the original quasi-
machine. The definition of a subquasi-machine T could be modified so as to
allow Yr and Wr to be subsemi-groups of Y5 and Wy respectively. Since this
generalization has not proved fruitful for the topics considered here, it has
not been used.

In dealing with subquasi-machines, it is frequently convenient to study
certain subsets of K.

DEFINITION. A nonempty set of states 4 of a quasi-machine S is said to
be stable if 6(g, I) is in A for every state ¢ in A and every input I.

It immediately follows from the definitions that in order for a subset 4
of K to serve as A =Kr for a subquasi-machine T of .S, it is necessary and
sufficient that A be stable. T is said to be the subquasi-machine associated
with 4, and 4 the stable set associated with T.

Let {AC/CEC} be a family of stable sets. Since

{6(q, n/ge U Ac} c U {s(g, /g€ 4.} S U 4,
and
{s@, n/ge U Ac} CU {sg /g€ A4} SN 4

for each input I, the set U, 4. is stable; and if N, 4, is nonempty, this set is
also stable.
Let A be an arbitrary subset of Kgand let F(4) be the family of all stable

(5) The Moore-Mealy model {8; 9] consists of the input alphabet, output alphabet, states,
and next state and output functions defined for each state and each input in the input alphabet.
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sets which contain 4. Since Ks is in F(4), F(4) is nonempty. Then the set
B, defined by B=4,erw) 4. is the smallest stable set containing 4. B may
also be described as the set containing 4 and all states of the form &(q, I),
for all ¢ in 4 and all inputs 7. B is said to be the stable set generated by A.
If A consists of the single state g, then the subquasi-machine associated with
the stable set generated by ¢ is said to be a principel subquasi-machine, in
particular, the principal subquasi-machine generated by g¢.

DEFINITION. A quasi-machine S is said to be strongly connected(®) if for
every two states ¢; and g, in .S there exists an input I so that é(q;, I) =g¢..

THEOREM 1.1. 4 subquasi-machine S 1s strongly connected if and only if the
stable set A associated with S contains no proper subset which is stable, i.e., A
s minsmum stable.

Proof. Suppose that S is a strongly connected quasi-machine and the
associated stable set 4 is not minimum stable. Let B be a stable, proper
subset of 4, ¢ an element of 4 —B and ¢, in B. Since S is strongly connected,
there exists an input I such that é(g;, 7) =g¢. Since B is stable ¢ is in B, a
contradiction. Hence 4 is minimum.

Now suppose that 4 is minimum stable. Let ¢; and g; be in 4 and let B be
the stable set generated by ¢;. Since 4 is minimum stable and B is stable,
B=A4.Thus ¢ 1s in B, i.e., 6(¢q1, I) =g, for some input I. Hence S is strongly
connected.

CoOROLLARY 1. 4 gquasi-machine S contains no proper subquasi-machine if
and only if S is strongly connected.

COROLLARY 2. For each state q in the finite state quasi-machine S, there exists
a strongly connected subquasi-machine T and an input I such that 6(q, I) is in T.

COROLLARY 3. A necessary and sufficient condition that each state in a quasi-
machine S be in @ minimum stable set is that S be the sum (") of strongly connected
(sub)quasi-machines.

Proof. In view of Theorem 1.1, only the necessity has to be shown. There-
fore let each state in .S be in a minimum stable set. Since the intersection of
two stable sets is stable if it is nonempty, two minimum stable sets are either
identical or disjoint. Let { H./a & M} be the collection of all minimum stable
sets. For each « let S, be the subquasi-machine associated with H,. By Theo-

(%) This follows the terminology of Moore [9] who defined strongly connected in terms of
sequences of inputs of the input alphabet of a free machine.

(") Let {S(a)/a &€ A} be a family of quasi-machines, all with the same input semi-group
Y and same output semi-group W respectively. Without loss of generality, it is assumed that
KswM Ksg is empty for each a5#b in 4. Define K to be Upc 4 Ks(y. Let Ys=VYand Weg=W.
Forgin Ksand I'in ¥, let As(g, I) =Asw@ (g, I) and 3s(q, I) =8s{(q, I), where g is in Ks(). Then
S is a quasi-machine and is said to be the sum of the family {S(a)/a € 4}.
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rem 1.1, each H, is sltrongly connected. Since the {H,} are a partition of K,
S is the sum of strongly connected quasi-machines {Sa/aEM}.
From Corollary 3 there follows

COROLLARY 4. 4 necessary and sufficient condition that o quasi-machine S
be the sum of strongly connected quasi-machines is that for each two states q: and
2, if there exists an input I so that 8(qy, I) =qs, then there exists an input J so
that 5(Q2, J) ={1.

COROLLARY 5. Each permutation quasi-machine(®) with a finite number of
states is the sum of strongly connected quasi-machines.

Proof. By Corollary 3, it is sufficient to show that for each state ¢ and
each input I, there exists an input I such that (¢, II,) =q. lf 8(q, I) =g, it
is sufficient to let Iy=1I. Suppose that 8(g, I) =q:#¢=¢o. For each integer
7>0 define ¢;=468(g;~1, I). Let & be the smallest integer such that ¢, =g; for
some 7 < k. The existence of k is guaranteed by S having just a finite number
of states. Suppose that qx#¢go. Then g, =08(qk—1, I) =¢;=08(qi1, I) since 1>0.
As I is a permutation, thus one to one, ¢:—1=¢:—s. This contradicts the mini-
mality property of k. Therefore gi=go. Let I;=1I - - - I(k—1 times). Then
g=>0(g, 1I). Q.E.D.

It is easily seen that Corollary S is no longer true if either the finiteness
condition is removed or if one of the inputs does not affect a permutation.

In passing, it can readily be shown that each quasi-machine is the sum of
indecomposable quasi-machines(®), the decomposition being unique to within
rearrangement of the indecomposable quasi-machines.

2. Composite quasi-machines. The notion of a composite quasi-machine
arises when the outputs of one quasi-machine are used as the inputs to an-
other quasi-machine.

DEerFINITION. Let Sy, - - -, S. be n quasi-machines. For each 1< let ¥;
be the input semi-group, W; the output semi-group, 8* the next state func-
tion, and A¢ the output function, of .S;. Suppose that W;C ¥V, for i<n—1,
The composite quasi-machine T'=S;— - - - =8, is defined as follows. The
inputs I7 of T are the inputs I} of S;and the outputs Ef of T are the outputs
E} of S,. The states g; of T are the n-tuples (¢!, - - -, ¢"), where each ¢‘is a
state of S;. 87 and AT are defined by

T 1 n T 1 n T 1 n T n

) [(9;"';9),1]=(90»"':90) and A [(q,7Q)’I]=E7
where E! = N\(¢g', IT), Ei = Ni(¢%, E™) for 1 > 1, g5 = 8Y(q?, IT), and ¢}
= 8i(g%, E-1) for i>1.

(8) A quasi-machine S is said to be a permutation quasi-machine if each input affects a per-
mutation of K.

(*) A quasi-machine is said to be indecomposable if it is not the sum of at least two sub-
quasi-machines.
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Both S§1—(S;—S;) and (S1—S,)—S; are isomorphic(’®) in the obvious
manner, to S;—S5,—35;. Because of this, the parentheses are omitted. Similar
remarks hold for four or more quasi-machines.

Clearly S;— - - - =3, is a machine if and only if S, is a machine.

If, for each 2 <#, S;is a free machine, then so is S;— - - - —S,. The con-
verse is not true.

DEeFINITION. Let .S and T be two quasi-machines. Then g is said to be a
box function of (S, T) if (i) WsC Yr, and (ii) g maps Kg into Ky such that
glds(g, I)]=0r[g(g), Ns(g, I)] for each state ¢ and each input I of S.

Given the box functions g; of (S;, Siy1), 1=2=2n—1, a subquasi-machine
H(gy, - -+, ga1) of S1— - -+ >S5, is determined in a natural way.
H(g, - - -, ga) is the quasi-machine obtained from the stable set of states

A4 = {(ql, ¢, g/ € St and ¢ = gia(¢*Y) for i > 1}.
To see that this set is stable let p=(g?, - - -, ¢*) be in 4 and let I be any
input of S]_—) L _*Sn. Then B(P, I)=(Qé, ) q:)‘)7 where El:)‘l(ql’ I)'

Ei=\i(g}, E-Y) fori>1, gg=28'(q!, I), and g3 =8'(¢*, E*1) for i>1. Let E°=1.
Then for each 2>1,

Y i, 1 1 'Y -1 =] —1 —1
G=238(,E )=20[gialg )N (¢ ,E )]
-1, -1

=giald (g , EH)], since g;—; is a box function of (S;_;, S),

—1

= gi-1(go ).
Thus (g3, - - -, g3) isin 4, i.e., 4 is stable.
To see if g is a box function it is sufficient to check g for all the inputs of a
generating sets of inputs. More precisely

LemMA 2.1. Let S and T be two quasi-machines and H a generating set for
Ys. If () WsC Yr and (ii) g is a function mapping Kg into Kr such that
gl8s(g, )] =0r[g(q), Ns(g, I)] for each state q and each I, in H, then g is a
box function of (S, T).

Proof. Let I, and I; be in H. Then

glos(q, IIx)] = glos(3s(g, 1), 12)]
= 3r(gldsg, In)], Aslés(e, 1), I»))
= 52(57(g(9), Ms(g, In], As[ds(g, 1), I.])
= 37(g(g), Ns(g, IAs[os(q, 1), I2))
= 8rlg(g), Ns(g, IT9)].

(1) Two quasi-machines S and T are said to be isomorphic if Yg= Y7, Ws=Wr, and there
exists a one to one function f of Kg onto Kr so that for each input I and each state ¢ in S,
flsstq, IY]=5z[f(g), I} and Aslg, I) =xz[f(g), I]. If S and T are not isomorphic to each other,
then they are said to be nonisomorphic.
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Continuing by induction we see that g and & interchange(™) for any finite se-
quence of inputs I; - - - I,, each I; in H, As H generates Vg, g and § inter-
change for all 7 in Vg,

To each box function g of (S, T) there is associated a “box decomposition”
of S in the following sense. A box decomposition of S is a decomposition of
Ks(1?) into a family J={Ax/REH]} of classes such that whenever states p;
and p, are in the same class of J and whenever I; and I, in Yg are such that
Ns(p1, I1) =Ns(p2, I2), then 8s5(p1, I) and ds(ps, 1) are in the same class of J.
The box decomposition associated with the box function g is the family
J= {Aq/qu(Ks)}, where 4,= {p/pEKs, g(p)=g}; that is, p; and p, are
in the same class if and only if g(p1) =g(ps). It is obvious that J as just de-
scribed is a box decomposition.

As a partial converse to the above we have

TaeorEM 2.1. If S is a free machine, then for each box decomposition
J={A4,/hEH]} of S there is at least one free machine T and one box Sfunction
g of (S, T) such that the box decomposition of S associated with g is J.

Proof. Let Ky =H and Ws= Yp=Wr. Let ¢ be in K. Then q is in exactly
one class of J, say 4. Define g(g) to be k. Now let I be an element of the out-
put alphabet F of S and let % be an element of Kr. If there exists a state
goin A and an input E in the input alphabet D of S such that Ag(go, Eo) =1,
then let 6r(h, I) =h*, where g[8s5(qo, Eo) | =£*, i.e., 8s(go, Eo) is in 4s*. If no
such state go in 44 and input E, exist, define dr(k, I) to be k. Since J is a
box decomposition, ér(k, I) is uniquely defined. For each % in H and each
I'in F, let 6r(h, I)=1. Since Y7 and Wy are free semi-groups (both based
on the alphabet F) with elements of F mapped on elements of F under Ar,
T is a free machine. By construction, g and § interchange on F. By Lemma
2.1, g is a box function. It is obvious that the box decomposition associated
with gis J. Q.E.D.

It is easy to find examples showing that Theorem 2.1 is no longer true if
the condition that S be a free machine is removed.

If there exists a box function g of (S, T) then certain properties in one of
the two quasi-machines, S and 7, imply certain properties in the other.
Several results of this nature are listed in the following theorem, the proof
of which, being straightforward, is omitted.

THEOREM 2.2. (a) If g is an onto box function of (S, T) and if S is strongly
connected, then T is strongly connected.

(b) If gis an onto box function of (S, T) and if q in K is connected to each

(1) 1f glése, IY]=sr[glq), Aslq, I], then g and 5 are said to interchange (for I).
(**) By decomposition of a set P is meant a family of nonempty disjoint sets whose set
union is P.
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state 1n K g (i.e., for each p in K there exists I, so that 8s(q, I,) =p), then g(q)
is connected to each state in Kor.

(c) If g is a one to one box function of (S, T), if Yr=Ws and S is output
complete(®), and if T is strongly connected; then S is strongly connected.

(d) If g is a box function of (S, T), 3sf Ws= Yr, if 4 is a stable set of S, and
if S is output complete at each state q in A ; then g(A) is a stable set of T.

3. Distinguishability of states. In this section we shall be dealing with the
notion of “distinguishability” and “indistinguishability” between states in
a set of quasi-machines. We shall assume that each quasi-machine in a set of
quasi-machines has the same semi-group Y of inputs and the same semi-
group W of outputs.

DEFINITION. State ¢ in a quasi-machine S is said to be distinguishable
from state ¢ in a quasi-machine T if there exists an input [ such that As(q, I)
#=Ar(g, I). If g and § are not distinguishable, they are said to be tndistinguish-
able. A quasi-machine S is said to be distinguished if each two distinct states
in S are distinguishable.

The following result, in the case of free machines, is implied in [9].

LeMMA 3.1. If state q n machine S is indistinguishable from state q§ in
machine T, then for every input E, 6s(q, E) is indistinguishable from 6r(g, E).

Proof. Let I be an input. Since ¢ and ¢ are indistinguishable, As(g, E)
=Ar(g, E) and

)‘S(qy E))‘S [5S(<I’ E)y I] = >‘S(4) EI) = )‘T(Q_, EI) = )‘T(q‘y E))‘T [6T(g—) E): I]'

Since S and T are machines, W satisfies the left cancellation law. Thus
Ns[8s(q, E), I]=\r[82(g, E), I]. Consequently 8s(¢g, E) is indistinguishable
from 6r(g, E).

Lemma 3.1 is no longer true if the word “machine” is replaced by “quasi-
machine.”

ExaMPLE 3.1. Let K5 = {gl, Q2}. Let Ysand Ws be generated by I; and 1,
subject to the relations .[1]2=I111 and 1211=I2I2. Let 6s(qk, I,) =k, )\S(Qh I.)
—_—I,', and )\s(Qz, Il) =Ij, where 'l:, j, k= 1, 2, 1«7£j Let K§=Ks, 6§(q., Ik) ={j,
\s(q1, I.) =1, and X5(ge, I;) =1I;, where again 1, j, k=1, 2, 5j. Then ¢ in
S is indistinguishable from g; in S. This follows from the fact that the output
from ¢, in S and S under any sequence of elements of Y, beginning with I, is
I, ---I;, i=1, 2. However ¢i=10g(q;, I)) in S is distinguishable from g,
=8r(q, I) in T.

DEFINITION. Two quasi-machines S and T are said to be equivalent if for
each state ¢, in S there exists a state ¢, in T which is indistinguishable from ¢,

(1%) See §5 for the definition of output complete.
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and conversely, for each state ¢, in T there exists ¢, in S which is indistin-
guishable from g..

It is a well known (but unpublished) result that to each free machine S
there corresponds a unique (up to isomorphism), distinguished machine which
is equivalent to S. Using Lemma 3.1, this result is now extended to machines.

TrEOREM 3.1. To each machine S there corresponds a unique (up to iso-
morphism), distinguished machine which is equivalent to S.

Proof. Let Yr=Ys and Wr=W;. For states ¢, and ¢, in S, write ¢1Rg,
if g1 and ¢: are indistinguishable. Then R is an equivalence relation decompos-
ing K5 into a set of equivalence classes Kr. Denote by [¢] the equivalence
class containing g. Let NMr([q], I) =Xs(g, I) and 8+([q], I) = [8s(q, I)] where ¢
is an element of [g]. Since the elements of [¢] are indistinguishable, Ay is
uniquely defined. By Lemma 3.1, &7 is uniquely defined. In view of Lemma
3.1, Ar and &7 satisfy properties (3) and (4) of a quasi-machine since A\g and
ds satisfy these properties. Thus T is a machine. It is obvious that T is
equivalent to S.

Now suppose that S* and T are two distinguished machines, each equiva-
lent to S. For ¢* a state in $*, let ¢ be a state in .S which is indistinguishable
from ¢*, and =/(¢*) the unique state in § which is indistinguishable from g,
thus from ¢*. Since S* and T are distinguished, f is a one to one mapping of
Ks* onto Kr. Using Lemma 3.1, it is seen that S* and T are isomorphic.
Q.E.D.

Theorem 3.1 cannot be extended to hold for quasi-machines. For example,
the two quasi-machines given in Example 3.1 are distinguished, equivalent to
each other, but nonisomorphic. Because of this, whenever the notion of equiv-
alence appears, it is usually necessary to assume that the quasi-machines
involved are actually machines.

Theorem 3.1 cannot be extended to hold for quasi-machines even if the
uniqueness condition is dropped. In other words, it is not true that to each
quasi-machine there corresponds at least one distinguished, equivalent ma-
chine. This is a fundamental difference between machines and quasi-ma-
chines.

ExampLE 3.2. Let W be the semi-group generated by the set of nine ele-
ments {Oi/i§9} subject to the three relations

(1) 0104= 0803, 0205= 0903, and 0305 = 0307.

Let ¥ be the semi-group generated by the two elements I; and I, subject
to the relation I11;=I.1,.

Let Ks= {ql, a1y 92, @3, 94 G5, s, gh}. The output function As is defined by
As(gs, Is) = 01, As(gq, In) =0y, As(qy, I1) =As(qu, o) =As(@, I1) =Ns(Gi, 1) =0;,
Ns(gar 11) =Ns(qu, T2) =04, Ns(gs, Ih) =Ns(gs, T2) =05, Ns(gz, 1) =Ns(qs, I2) = O,
As(gs, It) =Ns(gs, I2) =01, As(gs, [1) =05, and As(gr, I)) = 0. The next state
function 65 is defined by 5s(ge, 11)=g1, 6s(g7, Il)=ql, 6s(g;, Il)=5s(g1, Iz)
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= 85(ge, ) = 8s(ge, I2) = 0s(qs, [1) = 8s(qa, In) = @2, 0s(q1, Ir) = 9s(q1, I2)
=85(gs, 11) = 85(gs, I2) =8s(gs, In) = 85(gs, I2) =gs, 8s(gs, 12) =44, and 8s(gr, I2)
=g;. It is readily verified that S is a quasi-machine.

Suppose that T is a distinguished quasi-machine which is equivalent to S.
Since S has seven distinguishable states (only ¢; and g are indistinguishable),
the states of T may be labelled ¢; to ¢+, with ¢; in T indistinguishable from g¢;
in S, for :<7. Thus Ar(gs, I) =Ns(gi, I) for all ¢;in K7 and all I in V. Consider
the next state function 7. First note that

2) if 0.0, = O.E, where x, y, =9, £73, then O, =E.
[Thus left cancellation occurs in certain cases.] Now
0605 = )\1(42, 1111)

= Ar(ge, TONr[67(g2, I1), I1)

= OsE,
whence E = 0. Since gq; is the only state ¢z such that Ar(gz, I1) = Os, 8r(gz, I1)
=g,. Using the same procedure it is seen that dr agrees with &5 for (g2, I),
(g3, I), (g1, I), (gs, 1), (gs, I2), and (qz, 1), where I =1, or I,. Furthermore,

dr(qs, I1) =d8r(gs, I) =qu since ¢ and ¢ in S are combined to form ¢; in 7.
Consider 8r(q1, I1). It is easily seen that 8r(g1, I1) is either g; or ¢;, say gs. Then

d1(gs, 1)) = 8v[67(ge, In), I1]
dr(qr, I) = g

1l

Since I1I;=1.1,,
87(ge, II1) = 81(qs, IoI2)
= 8r[81(gs, I2), I)
51‘(94, 12) = qa2.

This is a contradiction. Another contradiction, using gy, arises if it is assumed
that 87(qi, I1) is go- Hence T cannot be a quasi-machine.

Therefore S is a quasi-machine for which there is no equivalent, distin-
guished, quasi-machine.

In the proof of Theorem 9 of [9] the following result, applied to a free
machine, is used.(")

LemMa 3.2. If S and T are two nonisomorphic, strongly connected, distin-
guished machines, then each state g of S is distinguishable from each state § of T.

The proof of Lemma 3.2 follows immediately from Lemma 3.1 and the
hypothesis.

(%) Communicated to the author by Moore.
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NotaTiON. For a nonempty set H let J(H)(J,(H)) be the set of all strongly
connected (finite state) distinguished machines such that K CH.

The question arises as to when a state is distinguishable from each state
of each machine in J(H)(J;(H)). The answer is given by

THEOREM 3.2. (a) Let S be a distinguished machine with KsCTH. A state
q1 of machine S is distinguishable from each state of each machine in J(H) of
and only if q1 1s contained in no strongly connected submachine of S.

(b) Let S be a distinguished, finite state machine with KsCTH. A state .
of S is distinguishable from each state of each machine in J;(H) if and only if
q1 1s contained 1n no strongly connected submachine of S.

Proof. (a) The necessity being obvious, only the sufficiency shall be shown.
Therefore suppose that ¢, is contained in no strongly connected submachine
of S and that ¢; is indistinguishable from state § of machine T in J(H). Since
¢ i1s contained in no strongly connected submachine of S, there exists state
g2 in S and an input E, such that 85(¢i, E¢) =¢: but for no input E is 85(¢s, E)
=¢q1. Let §a=07(d1, Eo). By Lemma 3.1, ¢, and §. are indistinguishable. Since
T is strongly connected, there exists E; such that 8r(d., Ei)=d. Let g¢s
=05{gs, E1). Then ¢; and §,, thus g3 and ¢, are indistinguishable. Since S is
distinguished ¢;=¢s. Thus ¢1 = 65(gs, E1) =¢: contradicting the selection of ga.
Hence the result.

(b) An analogous argument yields the proof of (b).

Via personal correspondence, Moore has conjectured the validity of the
next result for the case when S is a free machine.

TuHEOREM 3.3. Let L be a set of distinguished, finite state machines, each
KCH, containing J,(H). Furthermore, suppose that for every two nonisomor phic

machines S and T in L, every state of .S is distinguishable from every state of T.
Then L=J,(H).

Proof. Suppose that S is a machine in L which is not strongly connected.
By hypothesis, K5 is finite. Since each finite stable set contains a minimum
stable set, by Theorem 1.1 .S contains a strongly connected, thus proper, sub-
machine 7. By hypothesis, T is in L. Then .S and T are two nonisomorphic
machines, but not all the states of .S are distinguishable from all the states
of 7, a contradiction. Thus no such machine Sis in L, i.e., L= J,;(H).

If the machines in L are permitted to have an infinite number of states,
then Theorem 3.3, with J,(H) replaced by J(H), is no longer true. For let .S
be any distinguished machine, with KsCH, containing no strongly con-
nected submachine and let L=J(H)U{S}. By Lemmas 3.1 and 3.2, for two
nonisomorphic machines T and T3 in L, each state of T} is distinguishable
from each state of T%.

NoraTiON. Given two quasi-machines S and T, by S< T is meant that
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for each state ¢ in S and each input E, there exists state § in T" (depending
on ¢ and E) such that As(g, E) =Ar(q, E).

ExaMPLE 3.3. An example is now given of an infinite state distinguished
machine S and a finite state distinguished machine 7 having the property
that S=T and T<S. Let I, and I, generate the inputs. For machine S let
05(qn, 1) =qua for n>1, ds(qu, I1) = q1, 85(qn, I2) =q: and As(gs, I,) =0 for all #,
As(gn, I2)=0 for n£2, and As(gs, I»)=1. For machine T, let &r(qs, I5)
=0or(q1, I1) = dr(qy, I2) =qu, dr(qs, 1) =2, M(ge, I2) =1, Me(q1, 1) =Mr(qs, I)
=>\T(Q2, Il) =0.

Observe that ¢; in S is indistinguishable from ¢, in 7. It is shown below
that such states always exist when T'<.S, S has only a finite number of states,
and T has a denumerable number of states.

THEOREM 3.4. Let k be a positive integer and for each positive integer j=<k
let A; be a denumerable set of states of the quasi-machine S; and let H; be the
stable subset of S; generated by A ;. Suppose that for every sequence {I ,-} of inputs
there exists a set of states {q/q’ in A; i<k} such that \(¢, I - - - I.)
=Au{q™, I+ I;) for all j, m X k and all 1. Then there exists a set
{ pi/piin H;, jék} of states which are pairwise indistinguishable.

Proof. Since each A4; is denumerable, the set of all k-tuples
(qt---q - - .gk)/giEAj} is denumerable and may be relabelled as
P ph/i=1,2, .- } Suppose that the conclusion of the theorem is

false. Then there exists an input F; and integers s(1) and #(1) so that
)x,m(pi“), F) # Ny (P, Fy), and for each integer >1 there exists an input
F: and integers s(i) and t(3) so that A,o(8eoy(PX®, Fi--- Fi), F)
?5)\3(,')(8;(;)(1);(1), F1 <. F,'_l), F,) This is so since 6,(?1, F1 o F,'_l) is in
H;. Applying the hypothesis to the sequence of inputs {F;} , there exists an
integer, say #, such that \;(p4, F1 - - - F)) =\a(p}, F1 - - - Fy) for all 7, thus
N(pl, Fi---F)=N\(p2, Fo---F,) for j, m <k If n>1, then
N@i(ph, Fr- -« Faly), Fu) =Nu(8u(p2, F1 - - - Fa.1), F.), contradicting the
manner in which F, was selected. If n=1, then \;(¢], F)) =\.(p7, F1) for
i, m =k, another contradiction. Hence the result.

REMARKS. (1) What has actually been proved in Theorem 3.4 is the
slightly stronger result that, under the given hypothesis, there exists a set
of states {pi/p’ in Aj, j<k} and an input E such that the states in
{8;(p7, E)/j<k} are pairwise indistinguishable.

(2) It is easy to find examples showing that if either the denumerability
condition or the sequence {I;} assumption is removed, then Theorem 3.4 is
no longer true.

COROLLARY 1. Let k be a positive integer and for each positive integer j<k
let A; be a finite set of states of the quasi-machine S;. Let H; be the stable subset
of S; generated by A;. Suppose that for every input E there exists a set of states
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{g"/q" in 4;, jgk} such that M(¢’, E) =Nn(q™, E) for all j, m=k. Then there
exists a set {p"/ p!in Hj, j§k} of states which are pairwise indistinguishable.

Proof. Let {I:} be any sequence of inputs. Two cases arise.

(a) Suppose that {I.-} is a finite sequence, with I, the last I;. Then there
exists {q7/¢'CA;, j<k} such that Nj(g/, I - - - I) =Au(g™, I - - I)) for all
Fom=Zk ThusAN(¢/, I, - - - L.)=No(¢?, Iy - - - I;) for all j, m<k and all 1=¢.

(b) Suppose that {Ii} is an infinite sequence. For each integer ¢ there
exists y;={ql/q} in 4,, j<k} such that Nj(¢}, I - - - I)=N;(g" I, - - - I.)
for all j, m Zk. Since the sets 4; are finite there are only a finite number of
distinct elements in the sequence {'y.-}. Hence one of them, say v,= {qﬁ/j}
occurs an infinite number of times in the sequence {v.}. It follows that
N, I - - - IL)=N\ulq? I, - - - I,) for all j, m<k and all s.

Hence the hypothesis of Theorem 3.4 is satisfied in either case whence
the conclusion.

Suppose that S) and S, are two quasi-machines such that S, has a finite
number of states and S; =S, Letting 4, consist of just one state (any one)
of S; and 4,=Kg,, there follows from Corollary 1

COROLLARY 2. If S1 £ 5: and S has a finite number of states, then there exist
states ¢, of Sy and g, of S, which are indistinguishable.

It is not difficult to see that Corollary 2 is no longer true if S is allowed
to have an infinite number of states.

A generalization of Theorem 3.4 to an infinite family of quasi-machines is
as follows:

THEOREM 3.5. Let {Sb/ bEB} be a family of quasi-machines, and for each b
in B let Ay be a denumerable family of states of S,. Let H, be the stable subset of
Sy generated by A, and let one of the Hy, say H,,, contain just a finite number,
n, of states. Suppose that for each sequence of inputs { I;} and each n or fewer
of the Ay, say D!, - - -, D", there exists a set {p/pEAbo} U{d"/d"EDi,jgr} of
r+1 states such that \j(d7, Iy - - - Iy =Noo(p, I + + - I,) for all j<r and all i.
Then there exists a set { PP/ PPE Hy, bEB} of states which are pairwise indis-
tinguishable.

Proof. Let the # states of Hy, be {g./i<n}. For each g let G; be the family
of all sets H, which contain a state indistinguishable from ¢;. Assume that
the conclusion of the theorem is false. Then for each ¢ <# there exists an H,,
say H,;, such that each state in H,(, is distinguishable from ¢, i.e., H,
is not in G;. Now the n+1 or fewer sets {Hbo, Aery, -+ ¢, A,(,,)} satisfies the
hypothesis of Theorem 3.4. Hence there exists a set {q., pi/q, in Hj,, p; in
H,, 1= n} of states which are pairwise indistinguishable. Since ¢, and p, are
indistinguishable, H,, is in G,. But this is a contradiction. Thus the theorem
is true.
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In an analogous manner, using Corollary 1 of Theorem 3.4 instead of
Theorem 3.4 itself, it is seen that

THEOREM 3.6. Let {Sb/ bEB} be a family of quasi-machines, and for each
b in B let A, be a finite family of states of Sy. Let Hy be the stable subset of Sy
generated by Ay and let one of the Hy, say Hy,, contain just a finite number, n, of
states. Suppose that for each input E and each n or fewer of the Ay, say D, - - -+,
Dr, there exists a set {p/pEAbo} U{d?‘/d"EDi, j<r} of r+1 states such that
Ni(dl, EY=N(p, E) for all jSr. Then there exists a set {p”/p”EHb, bEB} of
states which are pairwise indistinguishable.

REMARKS. (1) The conclusion of Theorem 3.5 is no longer true if every
H, is allowed to have an infinite number of states. In fact, it is not even true
if one replaces the finiteness condition with the hypothesis that for each
sequence of inputs {I;} there exists a set {g®/g® in 4, bEB} such that
Noy(g®, Ii - - - L) =N (q%, I - + - I,) for all by and b, in B and all ¢. This is
shown by the following example.

ExaMpPLE 3.4. For each positive integer m let R,, consist of all sequences,
each term of which is either 1 or 2, of length m. Let {g5}\JUn., {¢}/sER,}
be the set of states of Si. For each integer 1> 1 let

{ip/e ERii;i=1,2,-++,i—1} U U {g/oc € Ra}
m=i—1

be the set of states of .S;. Clearly the number of each machine is denumerable.
Let the inputs be generated by I' and I2. For each machine .S;, the functions
8; and \; are defined as follows. For e =ma; - - - a;_; and j<i—1 let §;(;p%, IY)
= bl and 8(;ph, I =,p, if a;=1, 8:(;p}, I') =9, and §,(;p;, I?) =t if
a,-=2, )\,;(jpf,, Il)=dlag ce e a,‘_ll, and 7\.-(,-p‘,, Iz)=a1az <. aj_12. When
oc=aas - - - @iy let 8;(apl, TN =¢, and 8:(;aph, IP)=iph if aia=1,
8: (i1t IY) = i1ph and 8:(iaplh, 1D =¢b if @1 =2, Ni(iaph, IV =a:1 - - - ai2l,
and N(i1ph, I?) =a;y - - - @;_52. Finally, let 8:(¢}, I')=¢%, 8:(¢, I?) =g'2,
A(gh, IY) =al, and Ni(¢h, 1) =02.

To show that the hypothesis pertaining to the sequence {I;} of inputs
holds, it is obviously sufficient to show that it holds when the sequence is
infinite and each I; is either I' or I%. Accordingly, let {1} be any infinite
sequence of inputs, each I; being either I' or I%. Consider the set consisting

of g5 and all 1pt}, where ¢(:) =a, - - - a;, with ¢;=1if I;=1' and a;=2 if
I;=1I2 The output from each of these states under I - - + I, for all m, is
the same, namely o(1), ¢(2), - - -, o(m). Thus the hypothesis is satisfied.

To see that there is no set {g:/g: in S:} of states which are pairwise in-
distinguishable, first note that S; (as well as each of the other machines)
is distinguished. Now assume that {g:/¢: in S:} is a set of pairwise indistin-
quishable states. Obviously ¢17¢;. Suppose that g1 =g, where g=a; - * * @nm.

Since ¢™*? is indistinguishable from ¢ for each 7=5b; + - * bnbmi1 - =+, Gmi2
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must be one of the ;p7%%, where jSm-+1 and y=¢; - - - cmy1. Hence there
exists an input, either I! or I%, say I, such that 8,42(;py, I)=;p,. Then
Mns2(iPy, II)=EE for some output E, whereas A\i(qy, [I) =013 with o;5%0,.
Thus ¢1 and gm42 are distinguishable.

(2) The above example also shows that the condition that one of the
Hy be finite cannot be relaxed to the extent that one of the A4; be finite.
[Let Hy=Ks, and 4;= {gs}.]

(3) The machines S; constructed in Example 3.4 possess the property of
having an infinite number of generating outputs. The machines may be modi-
fied so as to have but a finite number of generating outputs. A brief sketch
doing this is now given.

ExaMpLE 3.5. Let B be the set of all irrational numbers s, 0<x<1. In
binary form let each x in B be x=(.go21 + - - a; - - - ), each a;=0 or 1. For
x and y in B write xRy if 2% — 27y is a rational number for some 7, =0, +1,
+2,---. Clearly R is an equivalence relation, decomposing B into an
infinite number of equivalence classes {Ba}. Let {B;/i=1,2,---} be a
denumerably infinite number of these equivalence classes. For each i let
x¢=(.afa] - - - a} - - - ) be an element of B;. Since x; is irrational, its sequence
of a cannot be ultimately periodic.

To define the machine S let the states of 5, be {g3} UUg.; {g1/e€ERA},
R, being as in Example 3.4. The elements of K53, are arranged into a sequence
{p:}, with g the first element, followed by the elements of {g}/sER,} ar-
ranged in any order; and in general, the elements of {q},/O'ER;} are to be
followed by the elements of {q‘},/oER,-H} arranged in any order. Let E,=1!
and for each ¢>1 let E;=E; ;I'. Associate gy with p; and a} with 8,(ps, E;).
Continuing by induction, suppose that each a}, i<k, j=1, 2, - - - is associ-
ated with a state g;. Let $4; be the first state in {p;} which is not associated
with any a}. Associate ag*' with i1 and af*! with 8,(Pesr, Eo) fori=1,2, - - -.
It is easily seen that this association establishes a one to one, onto, cor-
respondence, p; with b;, between the set of p, and the set of 4. Define \,(¢%, I)
=b; if and only if &:(¢}, I) =p;, I=1' or I2.

The machines S;, ¢>1, are now constructed in the obvious manner from
Si as S was constructed from S;. It is readily seen that (1) for each sequence
of inputs {I;} there exists a set {¢;/g; in S;} such that A;(g;, I - - - I.)
=Melgs, I1 - - - I,) for all j, k, and 4; (2) there is no set {gi/d: in S;} of states
which are pairwise indistinguishable; and (3) the outputs are generated by
two outputs, 0 and 1.

4. Input-distinguishability. In the previous section we discussed the dis-
crimination between states by considering the outputs obtained from identical
wnputs. In this section we discuss the discrimination between inputs by con-
sidering the outputs obtained from identical states.

DEeFINITION. Two inputs I; and I; of a quasi-machine S are said to be
input-indistinguishable if N(g, I,) =\(q, I,) and X(q, I.]) =\(q, I.I) for each
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state ¢ and each input /. Otherwise I; and I, are said to be input-distinguish-
able. A quasi-machine is said to be input-distinguished if each two distinct
inputs are input-distinguishable.

In case S is a machine with # (finite) states and M is a generating set for
V, I, and I, are input-indistinguishable if and only if for each state ¢ and
each sequence 4,, - - -, 4.1 of inputs from M, A(g, I:)=N(g, I.) and
Mg, AL - - - An1) =N(q, 1241+ - - An_y). This follows from the following
result, which is an obvious modification of Theorem 6 of [9] “Two states
¢1 and ¢; in a machine with » (finite) states and generating set M for Y, are
distinguishable if and only if there exists a sequence Ay, - - - , A, of inputs
from M so that AN(qi, A1+ + A1) #N (g2, A1 - - - Aur).”

The property of being input-distinguished does not carry over to sub-
quasi-machines. Thus .S may be input-distinguished and contain a subquasi-
machine which is not input-distinguished. If .S is not input-distinguished, then
no subquasi-machine is input-distinguished.

Suppose that S, T, and S—T are quasi-machines. If both S and T are
input-distinguished, then so is S—7. To see this, let I; and 7 be any two
inputs of S—7T, thus of S. Since S is input-distinguished, there exists a state
P of § so that Ey=As(p, I) #As(p, I:) = E,. Since T is input-distinguished,
there exists a state ¢ in T so that

)\S-T[(P; Q); I] = )\T<qy El) = >\T(Q7 EZ) = )\SoT[(P’ Q)J 12]

Thus S—7T is input-distinguished. It is not difficult to find examples showing
that S—7 is not input-distinguished if either S or T is not input-distin-
guished. On the other hand, if S—7T is input-distinguished, then it is easily
seen that S is also input-distinguished.
Suppose that for each state ¢, A(g, J1) =N(g, I2) and 8(q, I) and (g, I>)
are indistinguishable states. Then
>‘(Qa III) )\((1, Il))‘[a(q! 11)7 I]
= Mg, I9)A[8(g, I2), I}

= >\(97 121))

It

so that I; and I, are input-indistinguishable. The converse is not true, that
is, if I, and I, are input-indistinguishable, it is not necessarily true that
8(q, I) and &(g, I,) are indistinguishable states.

ExaMpLE 4.1. Let Kg= {ql, qz qg}, Y be the free semi-group generated
by I and I;, and W the semi-group generated by O, and O, subject to the
relations (i) 010;=0,0;, and (ii) 0:0,= 0,0;. Let 8(g1, I1) =¢2, 8(q1, I2) =gs,
8(g2, I) =q2, and 8(gs, I) =gs for any I. Let X(q1, I) =01, N(g2, 1) =01, and
(g, I)=0, for I=1I; or I,. Then I, and I, are input-indistinguishable but
6(q1, I) and 6(q, I») are distinguishable states.

The converse is true in case S is a machine, namely
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LemMA 4.1. If S is a machine and I, and I, are input-indistinguishable,
then for each state q, 6(q, I\) and 8(q, I,) are indistinguishable states. Hence if S
is distinguished, then 6(q, I,) = 8(q, I.) for each state q.

Proof. Since N(g, I.]) =N\(q, I.I) we get
Mg, TM[8(g, I2), I] = Mg, 1)
= Mg, I.I)
= Mg, IA[s8(q, I2), I].
As N(g, I,) =\(gq, I,) and S is a machine, N[8(q, 1)), I]=\[d(q, I.), I] for each
input I. Thus 8(q, I;) and 8(g, 1) are indistinguishable states.

CoROLLARY 1. If S is a machine, if I and I, are input-indistinguishable,
and if q1 and q. are indistinguishable states; then 8(q:, I;) and 3(qs, I,) are
indistinguishable states.

COROLLARY 2. Let S be a machine. If I and I, are input-indistinguishable
and if I3 and I, are input-indistinguishable, then so are I Iz and I.1,.

Proof. Since I; and I, are input-indistinguishable, XN(¢g, I,) =\(gq, I»). By
Lemma 4.1, §(g, I1) and (g, I.) are indistinguishable states. Thus

)‘[B(Q7 Il): I3] = )‘[6(Qa 12)) I3]
= A[a(% 12), 14]7

since I3 and I, are input-indistinguishable. Then

Mg, Ins) = Ng, IA[s(g, 1), 1]
= Mg, I)A[8(g, I2), 1]
= Ng, I.1,).
Since 8(q, I,) and 8(g, I.) are indistinguishable states and .S is a machine,

8(g, II;) =6[8(q, I), Is] and 8[d(q, I;), I.]=08(q, I.I,) are indistinguishable
states by Corollary 1. Then

Mg, IiI:I) = Ngq, IiI)AN[8(q, I.13), I]
= Mg, oI [8(g, I.14), 1]
= >\(q, 12141)
Hence I;1; and I,I, are input-indistinguishable.
ReMARKs. (1) If S is a machine, and if both I; and I, and I 175 and I,I,
are input-indistinguishable, it is not necessarily true that I; and I, are input-
indistinguishable.

ExaMpLE 4.2. S is to be the free machine defined as follows. Let Kg
=1{q1, ¢} and let {1}, I, I, I} and { E,, E;} be the input and output alpha-
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bets respectively. Let 6(q1, I:) =¢. and Nq1, [;)=E; for 1=1, 2, 4, and let
8(q2, I;) =qz and N(qe, I;) =E, for j=1, 2, 3, 4. Let 8(q1, I3) =¢q: and N(q1, I3)
=FE,. Then I, and I,, and I1; and I:[4, are input-indistinguishable. But I;
and I, are not input-indistinguishable since A(g1, I3) #N(q1, 14).

(2) Observe in Example 4.2 that for no state g is either &(g, [1) =¢: or
8(g, I:) =q1. This is no accident due to the particular example chosen. For
let S be a machine such that I and I, and I1I; and I,]4, are input-indistin-
guishable. If, for each state g, there exists a state § so that either 6(¢, I,) =¢
or 6(q, I:) =g¢, then I3 and I, are input-indistinguishable. For let ¢ be any state
of S and ¢ such that, say, ¢=46(g, I1). To see that I; and I, are input-
indistinguishable, it is sufficient to show that (a) A{(g, I3) =\(g, I.), and
(b) Ngq, IsI)=A(g, I.I) for all inputs I. Since I,I; and I.I, are input-
indistinguishable, N(G, Ii.I3) =\(g, I.l,). Thus

Mg, IDA(G, In), Is] = Mg, I)N6(g, I»), 1.].

As I, and I, are input-indistinguishable, N(g, I1) =N(§, I.). Since S is a
machine, Wy satisfies the left cancellation law. Thus A[8(¢, I.), Is]
=\[8(g, I.), I.]. By Corollary 1, §(¢, I,) and (¢, I.) are indistinguishable
states. Thus A (g, I:) =\(q, I). As to (b), repeating the above procedure, from
NG, I.IsI) =\(G, I.I.I) there follows N[8(¢, I1), IsI]=\[8(g, I.), I.I], whence
Mg, II)=N(gq, I.I). Therefore (a) and (b) are satisfied, so that I5 and I, are
input-indistinguishable.

(3) If Sis a machine and if both I; and Iy, and Iif; and I.[4, are input-
indistinguishable, it is not necessarily true, as simple examples show, that
I, and I, are input-indistinguishable. Reasonable conditions on S which will
guarantee that I; and I, are input-indistinguishable are not known.

The counterpart to Theorem 3.1 is

THEOREM 4.1. To each machine S there corresponds an input-distinguished
machine T with the following properties:

(1) KS=KT and W,g= WT.

(2) There exists a homomorphism k of Ys onto Yr such that As(q, I)
=\r(q, k()] for all inputs I in Ys and each stale q.

(3) If S is distinguished, then any input-distinguished machine T* satisfy-
ing conclusions (1) and (2) is widely isomorphic(*®) to T

Proof. For each pair of inputs I, and I, of S write I, =1, if I, and I; are
input-indistinguishable. Clearly “=" is an equivalence relation on Ks. De-
note the equivalence class containing I by I~. Define I7I7 to be [ 1],
where I; and I, are arbitrarily elements of I+ and I; respectively. In view of

(15) Two quasi-machines S and T are said to be widely isomorphic if there exists an iso-
morphism k of Vs onto Yr, an isomorphism g of Ws onto Wr, and a one to one mapping f of
Ks onto Kr such that flss(g, )]=sz[f(g), kI)] and grs(g, D1=x2{f(@, r(D] for each state
gand each input I. The term “isomorphic” is reserved for the case when Ys= Y7, Ws=Wr, and
g and k are the identity mappings.
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Corollary 2, I I; is independent of the I; in It and I, in I3 chosen. Clearly
the set of I~ form a semi-group, which we denote by V7.

Define Ar(g, ) to be As(g, I) for some arbitrary [ in I~ Since the inputs
I and I~ are input-indistinguishable, As(g, I) is independent of the I selected
from I~. For each state g, let ¢~ be the set of states of K5 which are indistin-
guishable from ¢, and let p, be a definite element of ¢~. Define ér(g, I™) to be
pe, where I'is in I~ and ¢*=305(g, I). By Lemma 4.1, 8-(¢q, I™) is independent
of the I selected from I-.

To prove that T is a quasi-machine (thus machine) it is sufficient to show
that conditions (3) and (4) in the definition of a quasi-machine hold. As to
(3), 8z(q, ITIT) = 8p(g, [I1I:]7) is an element of 8s(g, I,I2)~. Also, dr(q, IT) is
in Ss(q, Il)_. Thus 61 [ET(q, Il_), Iz;—] isin 53(65(% Il), Iz)—. Since 53 [65((], I]), Ig]
=8s(q, I;I1) and the element p, of ¢~ is unique, dr(g, I I7) = 87 [6r(q, IT), IT].
As to (4),

Ar(g, ITIF) = Nr(g, [111s]7)
= As(g, I112)
As(g, IAslds(g, Th), I}
Ar(q, IT)Ns[87(q, IT), I.), since 8s(q, I,) and
8r(g, IT) are indistinguishable states,
= >‘T(qy II_)AT[aT(Q) Il—); 12_]

Define the function k by k(1) =I. T is obviously input-distinguished and
k satisfies condition (2) of the conclusion.

Now suppose that S is a distinguished machine and that 7* is an input-
distinguished machine satisfying (1) and (2) of the theorem, by the function
k*. Let ¢ in K¢ correspond with ¢ in Ky* and E in Wy with E in Wp. Let

I, and E, be any two elements of I and consider k*(I;) and k*(E;). Since &*
is a homomorphism of Y5 onto Yr*, for each state ¢,

Mg, B*(1)] = As(q, 1)
= 7\5(% El)
= Ar[g, B*(EV)];

i

I

and, for each I in Vg,
Mg, B*(I)E*(D)] = As(g, 1)
= As(q, EI)
Ar[g, R(EDRX(D)).
Since T* is input-distinguished, k*(I1) =k*(E,). Defining h(I7) =k*(I,), we
see that % is a uniquely defined function of ¥r onto Yr*. Suppose that

It I5. Then I, and I, are input-distinguishable by definition of Iy. If, for
some ¢, As(q, I1) #Ns(g, I2), then Ar[g, B(IT)]|=Nr[q, A(I7)]. If for some ¢
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and some I,\s(gq, LI) #\s(g, I.I), then Ne*[q, R(IT)R(I7) | 5% \e* [q, R(I5)R(I) ].
Thus # is one to one. Since k* is a homomorphism of Vg onto Ve,

R(ITIT) = h([ILI:]7) = k*(IL02) = B*I)ET,) = kID)R(IT).

Thus % is an isomorphism of ¥r onto Yze.

To show that T and T¥* are widely isomorphic, it is sufficient to show that
q=0r(q, IT)=08r[q, R(IT)]=¢; for each ¢ and each Ir. Then Ar(g, IT)
=Xr*[g, R(IT)] and

Ar(g, IT)Ar[8(g, IT), I7] = Nz(g, ITI7)

Are(g, R(IT)R(I7))
= Arelg, RUT) o [37+(g, RUID)), R(I7)].
Hence Mz [87(q, IT), I=] =\r*[6r2(q, R(IT)), R(I7)] for each I=. Then
As(qu, I) = Nrlgy, I7) = Aro(gz, (I7)) = Nr(g2, I7) = As(ga, I).

Since S is distinguished, g1 =¢.. Q.E.D.

In general, it is not true that a free machine S in Theorem 4.1 gives rise
to a free machine T. In order for a free machine S to yield a free machine
T it is necessary and sufficient that whenever I, - - - I, =I# - - - I where
each I; and IF are in the input alphabet, that I;=I¥, thus that I, =TI} for
each <.

By an obvious modification of Theorem 4.1, the following result about
free machines is seen to hold.

i

THEOREM 4.2. To each free machine .S there corresponds a free machine T
with the following properties:

(1) KS=KT and W,g= Wr.

(2) There exists a homomorphism k of Ys onto Yr such that Ns(q, I)
=Arlq, k()] for all inputs I in Ys and each state q.

(3) Each two elements of the input alphabet Dy of Yy are input-distinguished.

(4) If S is distinguished, then any free machine T* satisfying (1), (2), and
(3) is widely isomorphic to T.

For a free machine, the question arises of determining a number k having
the property that if all inputs of length %k or less are pairwise input-distin-
guishable, then the machine is input-distinguished. One such value for % is
now given.

THEOREM 4.3(1%). Let S be a free machine with n (finite) states. Let
E= D wwms (Bl (m—r))(n)/(n—12)"), where ri=ry if w is even and

(1) The idea in Theorem 4.3 of using the 2n-tuples of states to prove the existence of a
bound % on the length of inputs to determine whether or not S is input-distinguished is due to
C. C. Chang. He attained a value of n?". The lowering of k by considering permutations of the
distinguishable states is due to the author.
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rni=re—1 if w is odd. If every two distinct sequences I, « - - I, and E; - - - Ey
of elements from the input alphabet are input-distinguishable, then S is input-
distinguished.

Proof. The following symbolism is used in the argument. The letters a
and « (with or without a subscript or superscript) are 2n-tuples of, respec-
tively, states and outputs of S. Thusa=(p1, - -+, pa.) and a=(0y, - - -, Oz),
where each p, is a state and each O; an output. Let 8(a) =(p1, P3, - - - , Panr),
c@) = (p2y D+ D), bla) = (O, Os -+, Opa), and c(a)
=(0q, Oy, + + +, Oy,). Let mi(a) and n:(a) be the number of distinct states in
b(a) and c(a) respectively. Given two inputs I and E let

5((1, I; E) = (5(171) I): 6(P27 E): B(ﬁi‘h I): B(P'h E)y MY 5(1’2", E))
and
A(a: I’ E) = ()‘(Ph I): )\(Pz, E)’ >‘(P3’ I)a )‘(P‘h E), Tty )‘(P%: E))

Since S is a free machine, two sequences of inputs from the input alphabet
D of different lengths are input-distinguishable. It will now be shown that two
distinct sequences of elements from D of the same length are input-distin-
guishable, thus proving the theorem. To this end, let 7 be the smallest integer
such that two distinct sequences I - - - I, and E; - - - E,, of elements from
D are input-indistinguishable. By hypothesis, 2 <m. It will now be shown
that

(*) there exist two distinct sequences of elements from D, of the same
length <m, which are input-indistinguishable.

This will affect a contradiction, thus proving the theorem. Accordingly,
let

1 1 1
a = (qu q1, 42, 42, * * * 5 (n, qn) = (Ply Tty P2n)’

where g1, ¢z, - -, ¢a are the n states of S. For each positive integer 1 <m, let
1 T i+1 i+1
a '—_B(aa-[iyEi):(Pl ?""PW')
and
(X’ —_ A(a“, I.‘, El) — (0‘1, I O;n)-

To prove that (*) holds it is sufficient to show that either (*) holds or else

(**) there exist two values of ¢, say s and ¢, such that a®*=a".

For suppose that (**) holds. Let T =1,++-1I,40,---I. and
E=E, - -E,E,+ -+ E, Itis to be understood that =1, - - - I,, and
E=E,- - E,if s=1. Two cases arise.

(a) Suppose that T and E are distinct sequences. Since I and E are input-

indistinguishable,

b[)‘(aly I} E)] = C[)‘(al) I) E)] = (Oly 03, cr oty OQn—l)
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and

b[Ma', T4, EA)] = c[\(a', 14, E4)] = (0}, 03, - - -, Otu-v),
where 4 is an arbitrary input (not necessarily in D), 0;=0!0% - - - 07,
Of=0.U4, and b[\(a*, 4, A)|=(U%, UL, ---, UA_). From the fact

that S is a free machine and D is the input alphabet, it follows that O
=(0};., for each j<m and each ¢<n. Since a*=at,

bD‘(a’17 7: E)] = (617 637 T )62n—1) = C[)\(al7 7) _E_)]

and

b[\(a!, T4, EA)] = (01,04, - - -, Oms) = c[A(a', T4, E4)],

where 0,=0} - - - 0;7'0! - - - OP and 04 =0,;U2. Thus I and E satisfy (*).
(b) Suppose that T and E are not distinct. Since I and E are distinct,
Iy+-+I,y and E,--- E,; are distinct. Then M =1, --1I,; and
N = E; .- E,; are distinct sequences of elements from D. Clearly
b[\a', M, N)]=c[\(a!, M, N)].Since T=E, I, - - - [,_.1,=E, - - - E,_;. Now
bla') =c(a?). Thus b(a*) =c(a?). Since a* =a, it follows that b(a?) =c(e¢*). Thus

b[A(a}, MA, NA)] = c[\(a!, MA, N4)],

where A is an arbitrary input (not necessarily in D). Thus M and N satisfy (*).

We now demonstrate that either (*) or (**) holds. Consider the sequence
{ai};gm. Two elements af and a’ of the sequence are distinct if and only if
either b(a%) and b(a?) or ¢(a?) and c(a’) are distinct. Clearly

(***) if two states p} and p are identical, where d and ¢ have the same
parity, then pi*' and p.*! are identical.

Thus n(a*) and n.(a?) are nonincreasing, strictly positive, functions of .
For 2<j<2n, let a(j)=n!/(n—n)NY(n!/(n—-r)"), where ri=r,=37/2 if j is
even and ri=ry—1=(j—1)/2 if j is odd. Then k= D 2, a(j). Given j, it
follows from (***) that there exists at most one pair (n;, #2) of numbers,
with #n;+#,=7, such that n;(a?) =n; and n:(a?) =n, for some a?. For 255 <2n,
let 6(7) be the number of distinct integers ¢z such that #;(a?) +#.(a?) =j. Clearly
m= D ;%,0(j). Since k<m, there exists at least one integer j so that a(j)
<6(j). Let w be the largest such integer j. Let (n¥, ny) be the unique pair
associated with w. Let 1Y =7 =w/2 if wis even, and r{=r;—1=(w—1)/2 if
w is odd. Without loss of generality we may assume that »y <3 since other-
wise we may interchange the role of #¥ and #§ in what follows. If n{=n3 or
nP=n¥—1, then (n?, ny)=(r}, rd). If n{+ni is even and =y <nz, then
nP<rP=rf<n¥ If n¥+ny is odd and #y <ny—1, then ny <r{=r5—1<ny—1.
In both cases,
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n! n!

(n— n))! (n — np)!

=[nn—1) - (n—m+ D] [nn—1) - (= n+1)]
=n =1 =+ D[ =m) - (2= s+ 1]
_S_[n(n—l)'--(n—nif-}-l)]z[(n—-nf)---(n—rlw—l-l)]
-[(n—nu;)~--(n—r';+1)],sincenl:+n';=r‘f-{-r';,
n! n!
(n =D (= D!

= a(w).

1

Due to (***) and elementary permutation theory, the maximum number of
distinct af for which #:(a%) =#7 and n:(a?) =n3 is (nl/(n—n)N(n!/ (n—n)}).
Since

n! n!

<
(n — n9)! (n—a)! ~ o) < 0(w),
there exist two values of 7, say s and ¢, such that a*=a?, i.e., (**) holds. Thus
the theorem is proved.
It is known that the value for k given in Theorem 4.3 is not the best
possible. For example, «(2#) can be lowered from (n!)(#!) to n! by observing
that the 2u-tuples can be replaced by the unordered #-tuples of pairs

[, P, - - ) (Bhaey, P50 . In fact, at any stage, the 2n-tuples can be re-
placed by the two unordered n-tuples [(p}, 2%), - - -, (Phu-1, D)) and
[(B%, %), * - -, (Dhns Dou=1) ]. It is not known if the value of % obtained by this

refinement is the smallest possible.

Another bound for 2, which in certain circumstances is better than that
given in Theorem 4.3, is now given.

THEOREM 4.4. Let S be a distinguished, free machine. Let K s = {ql, S ,qr}.
For each i, let n; be the number of states in the principal submachine generated
by q.. Let k=(ny - - - n.)% If every two sequences I, « - + I, and E, - - - Ey of
elements from the input alphabet are input-distinguishable, then S is input-
distinguished.

The proof is an obvious modification of Theorem 4.3.

The line of reasoning given in Theorems 4.3 and 4.4 is now applied to
yield the following lemma.

LeEMMA 4.2, Let m and n be positive integers. Let S be a free machine with n
states and m elements in the output alphabet F. Suppose that C is a subset of the
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input alphabet and that C contains v elements, where (mPn)"<r*. Then there
exists two inputs AyAq - - - Ay and B1By - - - By, each A; and B; in C, which
are input-indistinguishable.

Proof. Let K ={p,/i<n}. To each input I=1, - - - Iy, each I, in C, asso-
ciate the n-tuple of triples

Tr = ((?1; q1, El)) (?27 q2, Ez)a oty (Pm qn, En)))

where, for each 1<%, ¢,=8(p;, I) and E;=\(p, I). It is clear that there are
at most (m*n)" distinct such n-tuples since there are m elements in F and =
in K. As there are r*> (m*n)" such inputs I, two of the associated #-tuples,
say 17 and 7 are identical. Then I and I* are input-indistinguishable. This
is so since A(p, I) =N(p, I'*) for each state p in S; and N(p, [A) =\(p, [*4)
for each state p in S as 8(p, I) =0(p, I*). Q.E.D.

Using the above lemma we are now able to prove a result which places
bounds on the number of states, number of elements in the input alphabet,
and number of elements in the output alphabet of a free machine S in order
for S to be input-distinguished.

THEOREM 4.5. Let n, r, and m be given positive integers. Let S be a free
machine with n states, r elements in the input alphabet, and m elements in the
output alphabet. If m»<r, then S is not input-distinguished. If r <m», then
there exists a free, inpul-distinguished, machine with n states, r elements in the
input alphabet, and m elements in the output alphabet.

Proof. Let S be a free machine with m” <r. Since 1<#/m", for some
integer k, n" <r¥/mn*, ie., (mFn)» <r*. By Lemma 4.2, there exists two se-
quences A; - - - Ay and By - - « By of elements from the input alphabet which
are input-indistinguishable. Consequently, .S is not input-distinguished.

Now suppose that » Sm". Let K be a set of n elements, say K = {Pi/i <n},
and F a set of m elements, say F={U;/i<m}. Let T be a set of r distinct
n-tuples of the form

T = ((Pla j4N El)) (P27 P2 E2)) t (Pn, Pny En))>
where each E; is in F. T exists since r <m" To each 7 in T associate a
symbol I, and let D={I./r&T}. For each i<#, define 8(p;, I,)=p; and
\(p;, I,) = E., where (p;, i, E:) is the ith coordinate in 7. This defines a free
machine V with » states, » elements in the input alphabet, and » elements
in the output alphabet.

Let 4, - - - A, and B; - - - B, be two distinct sequences of elements from
D. Suppose that 4, is the first 4, such that 4, B,, but A;= B, for i <t. Then
A:=1I, and B,=1,, with ¢7. For some integer, say j, the jth coordinate
(p;, p;» E;) of o differs from the jth coordinate (p;, p;, £F) of 7. Then E; = E}.
From this it follows that A(p;, 41 - + - 4,) #=N(p;, By - - - B,). Therefore V is
input-distinguished.
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The next result, in conjunction with Theorem 4.2, asserts that when con-
sidering free machines with a finite number of elements in the output alpha-
bet, only a finite number of elements in the input alphabet is “actually
needed.”

THEOREM 4.6. Let m and n be two positive integers. Let S be a free machine
with n states and m elements in the output alphabet. Then every set of (mn)*+1
elements in the input alphabet contains two which are input-indistinguishable.
Furthermore, if m=2, there ts a distinguished, free machine with n states, m
elements in the output alphabet, and (mn)" pairwise input-distinguishable ele-
ments in the input alphabet.

Proof. The first part of the theorem follows from Lemma 4.2 with k=1,
As to the second part, suppose that #» and m = 2 are given positive integers.
Let K be a set of # elements, say K = {pi/ién}, and F a set of m elements,
say F= { U,-/iém}. Let T be the set of all (mn)" distinct n-tuples of the form

T= ((Ply qi El): (P% g, E2): R (pny gn, En)):

where for each i< #, ¢;is in K and E; in F. To each 7 in T associate a symbol
I, and let D={I,/rET}. Define 8(p;, I.)=g; and N(p;, I,)=E,, where
(p:, g, E;) is the sth coordinate in 7. This defines a free machine V with »
states and (mn)" and m elements in the input and output alphabets respec-
tively.

Finally, let I, and I, be two distinct inputs in D. Let ¢ be the smallest
integer such that the sth coordinate (., ¢;, E:) in ¢ is not identical with the
7th coordinate (p., §:, A:) in 7. Two cases arise.

(i) Hf E;=A;, then N(ps, I,) =N(ps, Ir).

(ii) If E;=A;, then ¢;#J;. As shown above, there exists I, in D so that
Mai, 1) #=N(G:, 1), Thus N(ps, I.1,) #N(ps, I.1,). In either case we are forced
to conclude that I, and 7, are input-distinguishable. Thus each two elements
of D are input-distinguishable. Q.E.D.

It is noted in passing that the analogue to Theorem 4.6 for the case where
the number of inputs and the number of outputs are given, is not true.
Namely, it is not true that a distinguished, input-distinguished, free machine,
with # inputs and m outputs, has a finite number of states, depending solely
on the integers m and #. For the free machine S, in Example 3.5 is a distin-
guished, input-distinguished, machine, witu two elements in the input and
two elements in the output alphabet respectively, and an infinite number of
states.

5. Output complete states. We now consider states which yield all pos-
sible outputs.

DEFINITION. A state ¢ of the quasi-machine S is said to be output complete
if for each output E there exists an input I so that X(p, I) =E. If each state
of S is output complete, then .S is said to be output complete.
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If 4 is a generating set for W and if for each state ¢ in S and each element
E in A there exists an input [ so that A(¢g, I) =E, then S is output complete.

Given positive integers m, 1, and 7, there are only a finite number of non-
isomorphic free machines having » states, m elements in the input alphabet,
and 7 elements in the output alphabet. Thus there are only a finite number of
distinguishable states in these machines. For each of these states p, either p
is output complete or else there is a smallest integer 2(p) and a sequence
E%, - . ., B}, of generating outputs with the property that A(p, I1 - - « Txw)
=FE? . . . B, is false for every sequence Iy, - - -, Iy of generating inputs.
Let k(m, n, r) be the largest of the numbers k(p). The number k(m, %, #) then
has the following property. Given any free machine S of # states, with m
and r elements in the input and output alphabets respectively, a state p in

S is output complete if and only if, for each sequence Ey, - + +, Egm,n,n of
generating outputs, there exists a sequence Iy, - -+, Tkm,n.n Of generating
inputs such that A(p, It - + * Tignin) =E1 * * * Etmn.n- There is no known

explicit formula for k(m, %, r) (in terms of m, n, and r, of course). In fact,
there is no known upper bound for k(m, =, 7).

If S—7T is a quasi-machine, and if p in S and ¢ in T are both output com-
plete states; then, as is easily seen, (p, ¢) is output complete in S—T. Thus,
if S—T exists, and if both S and T are output complete, then S—7T is output
complete. The obvious generalization to S;— - - -+ =5, holds.

If Ty and T are subquasi-machines of S; and S, respectively and if $1—S,
exists, then T,—7; is a subquasi-machine of S;—S.. The obvious converse
does not hold. What is true, however, is the following easily proved result.
“Suppose that S; is output complete, S1—.S; exists, and Wg,=Vs,. If 4 is a
subquasi-machine of Sy —S,, then Fy = {p/(p, ¢9) € K4} and F,
= {g/(p, g)EKA} are stable subsets of S; and S, respectively.”

A property of quasi-machines which shall be of interest to us in connection
with output complete states is now given.

DEFINITION. A quasi-machine S is said to have property Q if whenever
Mg, I) = E:E,, with E; and E, in W, there exists I; and I, so that I =11,
7\(q, Il) =E1, and )\[5(q, Il), Iz]=E2.

A simple induction argument shows that if S has property Q and if
Maq, I)=E, - - + E,, with each E; in W, then there exists I, I3, - - -, I+ such
that N(gs, 1) =E;, where ¢;=28(qi-1, [:-1) for 24,

If S is a machine, then in order for S to have property Q it is sufficient
that whenever \(q, I) = E1E,, with E; and E,in W, I and I in ¥ can be found
so that I'=1I,I, and A(q, I;) = E,. This is so since

Mg, IiI5) = \g, I)A[8(g, I)), I:]
= El)‘[‘s(q, Il); I2] = ElEz,

whence N [8(q, 1), I.] =E..
It is obvious that each free machine has property Q. Also, if S and T both
have property Q, then so does S—T.
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Suppose that S has property Q. Furthermore, suppose that p is an output
complete state, and I an input with the following property. For any input I,
if M(p, I) =\(p, I,) then ¢=408(p, Is) =8(p, I). Then ¢ is also output complete.
For let E be any output and let Eq=A(p, Io). As p is output complete, there
exists an input I such that A(p, I) = EoE. Since S has property Q,I=1I,I. such
that N(p, I) = Eo and A[8(p, I.), I,] =E. In view of the hypothesis on S and
the fact that A(p, To) =N(p, I1), it occurs that ¢=48(p, 1) =6(p, I;). Thus
A(g, I:) = E, so that ¢ is output complete.

Suppose that .S is a free machine with the input alphabet D and the out-
put alphabet F both having the same number (finite) of elements. Then
(1) p being an output complete state, and (2) X being one to one at p, are
equivalent statements; and each implies that the principal submachine T,
generated by p is output complete. The equivalence of (1) and (2) is obvious
since D and F have the same finite number of elements. If (1), thus (2) holds,
then for any two inputs I and Io, whenever N(p, I) =\(p, I,), I=1I,, so that
o(p, I) =0(p, Io). Hence 6(p, I) is output complete, i.e., T, is output complete.

The following auxiliary concept is now introduced(1”).

DEerinNITION. A subquasi-machine T of .S is said to have property P if the
following condition holds. For each state ¢ in 7, if E is an output such that
Mg, I)=E is false for every input I, if ¢ in S and I can be found so that
0(q, I) =g; then \(¢, H) = OE is false for all inputs H, where O=X\(q, I).

LemMMA 5.1, Let S be a quasi-machine, p a state which is output complete, and
T the principal subgquasi-machine generated by p. If T has property P, then T is
output complete.

Proof. It is sufficient to show that for each input 4, ¢=38(p, 4) is output
complete. Therefore suppose the contrary, that is, suppose that E is an out-
put such that X(g, I) = E is false for every input I. Let O=X(p, A). Since T
has property P, A(p, H) = OE is false for every input H. However, this con-
tradicts p being output complete. Hence there exists an input I so that
Mg, I) =E, i.e., ¢ is output complete.

CoOROLLARY 1. Let S have property Q. Suppose that for each state g in S and
each two inputs Iy and Iy, 8(q, I) = 8(q, I.) whenever N(q, I) =\(q, I,). Then S
has property P.

Proof. Suppose that for a given state ¢, a given output E, and all inputs 7.
Mg, I) =E is false. Let ¢ and 4 be such that 8(, 4) =¢ and let N\(g, 4) =O.
Suppose that H exists satisfying A(g, H) =OE. Since S has property Q, H
= H\H, such that N\(¢, H;) =0 and \[8(q, H1), Hy]=E. As \(q, Hy) =\(q, 4),
it results that 6(g, Hy) =48(¢, 4) =q. Thus \(g, H,) = E which contradicts the
selection of ¢ and E. Hence S has property P.

(') The author is indebted to C. C. Chang for isolating and pointing out that property P
would suffice in subsequent applications, instead of a more restrictive condition originally given
by the author.
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From Corollary 1 there immediately follows

COROLLARY 2. Let S be a free machine such that for each state q, N 1s one to
one on the input alphabet. Then S has property P.

THEOREM 5.1. Let S be a quasi-machine with o denumerable number of
states and having property P. If, for each sequence { E,,} of outputs, there exists
a state q and a sequence {I,.} of inputs such that N(q, I, - - - I,)=Ey - - - E, for
each inleger n; then there exists a subquasi-machine which is output complete.
Thus, under these conditions, if S is strongly connected, then S is output complete.

Proof. In view of Lemma 5.1 it is sufficient to show the existence of a
state p which is output complete. Therefore, suppose that there is no state p
which is output complete. Let the distinct states of .S be go, g1, - - - . There
exists an output E; such that \(gs, I) = E, is false for each input I. Let ¢.q,
be the first ¢ such that A(g, 4:) = E; for some input 4,. In view of the hypoth-
esis, gaqy exists. Obviously a(1) >0. Let p:=0(gaqy, 41). Since p, is not out-
put complete, there exists an output E; such that N(p,, I) =E, is false for
every input I. By property P there is no input I such that Mgaq), 1) =L E..

Now suppose that for 2<7=#n, E; and ¢aq—1) are defined satisfyving the
following three properties:

(1) a(i—1)=zi—1and a(j—1)>a(j—2) for 3Sj<n;

(2) N(Gati—vy, I)=E; - - - E; is false for every input I; and

(3) Ga(i-p is the first ¢ for which there exists an input I such that A (g, I)
=F - E;L

Define gany to be the first ¢ for which there exists an input, call it 4,,
satisfying N(g, A,) =E; - - - E,. By the hypothesis pertaining to sequences of
outputs, the element ga.wy exists. From (2) and (3), a(n)>a(rn—1)=n—1.
Let pay1=08(qawy, 4x)- Since p..1 is not output complete, there exists an out-
put E,u1 such that N(pay1, I) = Eqyy is false for every input 7. By property P,
NGatny, I)=E; + + + E.y1 1s false for every input I. Thus (1)—(3) are true for
n-+1. By induction, (1)-(3) are true for every integer #.

By construction {En} is a sequence of outputs. By hypothesis there exists

a sequence of inputs {I,,} and a state ¢ of S such that Xg, Iy - - I.)
=FE; - - - E, for each n. Being a state of .S, ¢ is one of the g¢;, say ¢.. Then
Nqm, It + =+ Tmy1) =E; + - + Enpy. But gamsn is the first element such that
Mg, I) = Ei- -+ Eny1 for some input I; and a(m + 1) > m. Thus
NGm, It -+ * Ing)) =Ei + - Eny1 is false. From this contradiction it follows

that the assumption of no state being output complete is false.

COROLLARY. Let {S(i)/i=1, 2, - -} be a denumerable collection of de-
numerable state quasi-machines, all having the same input semi-group and same
output semi-group respectively. Suppose that each quasi-machine S(1) has prop-
erty P. If for each sequence { E.} of outputs, there exists S(3), a state ¢* in S(3),
and a sequence {I.} of inputs such that Nscy(q*, I - + - I) =E; - - - E, for each
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integer n; then there exisis a subquasi-machine of one of the S(i) which is output
complete.

The above corollary follows from the fact that the sum of the S(z) satisfies
the hypothesis of Theorem 5.1, whence the conclusion.

If the quasi-machine in Theorem 5.1 has just a finite number, say k, of
states, then the proof shows that after at most & steps, no g.xy will exist. The
hypothesis pertaining to sequences {E,,} of outputs and sequences {I,,} of
inputs may be modified by only requiring that for each output E there exists
a state ¢ and input 7 so that X(g, ) = E. In conjunction with the Corollary to
Theorem 5.1, we thus get

THEOREM 5.2. Let {S(i)/i= 1,2, -, n} be a finite collection of finite state
quasi-machines, all having the same input semi-group and same output semi-
group respectively. Suppose that each S(i) has property P. If, for each output E
there exists a quasi-machine S(i), a state q* in S(i), and an input I such that
Asen(g?, I) = E; then there exists a subquasi-machine of one of the S(i) which is
output complete.

Theorem 5.2 is no longer true if “finite collection of finite state” is replaced
by “infinite collection of finite state,”

Turning to a “practical” condition for determining when a state in a free
machine is output complete we first prove

LeMmma 5.2. Let S have property Q. Let T be a subquasi-machine, and M a
generating set for W, with the following property:

(P’") For each state g in T, if an element E of M s such that N(q, I)=E is
false for every input I, if state § in S and input I can be found so that 6(g, I) =gq;
then N(J, H) =OE 1is false for all inputs H, where O=X\(q, I). Then T has prop-
erty P.

Proof. Let ¢ be in T and E=E\F, - - - E,, each E; being in M, such that
A(g, I) = E is false for every output I. Let p in S and 4 an input be such that
8(p, A)=gq. Suppose that there exists an input H so that A(p, H)=OE,
where O=\(p, A). By property P’, k> 1. Two possibilities exist.

(1) Suppose that there is an input I so that A(qg, I) = E;. Let ¢ be the
largest integer such that an input, call it 7, can be found so that A(g, T)
=E; - - - E,. By assumption, t <k. Let g1=8(q, T). In view of the maximality
property of ¢, for no input I does Mgy, I) = E.1. Since S has property Q,
H=HH, or H=H\HH;, according as t=%k—1 or t <k—1, such that A(p, H))
=0EF, - - - E; and Mp, HiH;) =0F:E, - - - E;y. This contradicts T having
property P’ since 8(p, AT)=q: and \(p, AT)=OF,E, - - - E,.

(2) Suppose that for no input I does N(g, I) =E,. Since S has property
Q, H=H\H,H;,such that\(p, H)) = O and N(p, HyH,) = OFE,. This contradicts
T having property P’'.
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In either case we are led to a contradiction. Thus, for no input H is
A(p, H)=OE, where O=\(p, 4), i.e., T has property P.

THEOREM 5.3. Let S be a free machine and let p be a state satisfying the fol-
lowing conditions:

(1) For each sequence E,, - - -, E,, of length n or less, of elements of the
output alphabet F, there exists a sequence Iy, - - -, I, of elements of the input
alphabet D such that N(p, I, - + - I.)y=E; - - - E,.

(2) The principal submachine T, generated by p has n states and satisfies
property P’.

Then T, is output complete. Thus, under these conditions, if S is strongly
connected, then S is output complete.

Proof. By Lemma 5.2, T, has property P.

The conclusion of the theorem is obviously true when 7z=1. Therefore
suppose that n>1. Let P; be the statement that for any sequence Ey, - - - , E;
of elements of F, of length 7, there exists a sequence Iy, - - -, I; of elements of
D such that N(p, I, - - - I;)=E, - - - E,;. By hypothesis, P; is true for each
7 =mn. Suppose that P; is true for all j<k, where n<k. Let Ey, - - -, Ezyq be
any sequence of elements of F, of length k41, and let §=68(p, I, - - - I.),
where Iy, - - -, Iz is some sequence of inputs such that N(p, Iy - .- I})
=E,; - - - Es. Suppose that N(g, I) = E4, is false for every I in D,

(a) If §=p, then from the hypothesis, A(§, I) = E; for some I in D. Thus
g#=p.

(b) Suppose that §#p. It is readily seen that if a free machine has »
states, if §#p, and if there exists an input I so that 8(p, I) =g, then there
exists a sequence I - - - I,,7Sn—1, of elements of D such that (p, T, - - - T,)
=q. Let \N(p, T, - - - T,)=E, - - - E,. By (2) there is no input I such that
Ap, N=E, -+ - E,Er;1. This contradicts (1) since E; - - - E,Eryq is of
length <n.

Hence, both (a) and (b) lead to contradictions. Thus there exists an ele-
ment ;. in D such that N(g, Tx41) = Ex41, whence

Np, I+ - - Lileyr) = N, I+ - - IONG, Lxy1) = Ei - - » ExErq1.

Consequently Py, is true, so that, by induction, # is output complete. The
theorem then follows from Lemma 5.1.

The theorem is no longer true if either condition (2) is removed, or if =
is replaced by n—1 condition (1).

Using the previous result we obtain:

COROLLARY 1. Let S be a free machine having property P, and let Ks
= {qi/i= 1, - -+, n}. For each i let m; be the number of states in the principal
submachine generated by §., the notation being that m, Em;. If for each sequence
Ay, - - -, Ay of elements of the output alphabet F, k=1+ 37 (mi—1), there
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exists a state ¢ and an input I so that N(q, ) =A14; - - - Ay, then there exists
a submachine of S which is output complete.

Proof. Suppose that the conclusion is false. Then there exists a state g
and an output E; of F so that A(qo, I) = E, is false for every input I. Label the
remaining states ¢i, ¢z, * * * , gn—1- Repeating the proof of Theorem 5.1 for
each 1= 1, we obtain states ga(;y and p.,1, and output E;yq, so that NP1, 1)
=E;,, is false for every input I. Now p.4; is in the principal submachine
generated by g.¢;y. By hypothesis and Theorem 5.3, such an output E;;; can
be found so that E.u=A"A4A5" - . - AL, where s(G+1) Smaw—1 and
each 4}*' is in F. The process in Theorem 5.1 must terminate with E,,,
where r<n—1. Then E\E; - - - E,y; is of length at most 14+ D 27! (m;—1)
elements of F, and for no pair (¢, I) doesN(¢q, I)=E, - - - E,;1. Hence a state
p, thus a submachine, exists which is output complete.

Since m;<#n always holds, there follows

COROLLARY 2. Let S be a free machine having n (finite) states and satisfying

property P. If for each sequence A\, - - -, Ay of elements of the output alphabet
F, B £ (n— 1)2+ 1, there exists a state ¢ and an input I so that N(g, I)
=414, « - - Ai; then there exists a submachine which is output complete.

It is not known if (#—1)2+1 is the best possible bound.

In passing we prove a result on a state being sequence output complete, a
state g being defined as sequence output complete if for each sequence {E;} of
outputs there exists a sequence {I;} of inputs so that N(g, Iy - - - I))
=F, .- E;forall 7.

An application of the following known result [7, p. 81] will be used in
Theorem 5.4 below.

“Let {D;} be an infinite sequence of finite, nonempty, pairwise disjoint
sets. Let G be a graph with the following two properties:

(1) The nodes of G are the elements in the set Uy D,.

(2) Each element of D,,, is joined with at least one element of D,.

Then there exists an infinite sequence {P,-} of nodes, P; in D;, such that
each P;P, is an edge of G.”

THEOREM 5.4. Let S have property Q and let g1 be an output complete state
of S. Suppose that for each output E and each state p in the principal subquasi-
machine generated by qi, the set

L(p, E) = {8(p, D/Np, I) = E for some input I}
is finite (possibly empty). Then q1 is sequence output complete.

Proof. Let { E;} be any sequence of outputs. Let ;= {@:} and

C, = {S(ql, I)/\(¢q1, I) = E; for some input I}.
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By hypothesis, Co=L(g:, E;) is finite and nonempty. We now define C;
recursively. Suppose that for each 2 <j=<s, the finite, nonempty set C; is
defined so that

C; = {B(q, I)/ for some ¢ in C;_; and some input 7, A(¢, I} = E,-_,} .

Let

Coyr = {8(g, I)/for some ¢ in C, and some input I, X(¢, I) = E}.
As ¢iis output complete, there exists an input H so that N(q1, H) = E:E, - - - E,.
Since S has property Q, inputs Hy, H,, - - -, H, can be found so that

H=H, - - - H, and Xg;, H;)=E,; for :<s, where ¢;11=0(¢;, H;). Thus each
g:isin Ci,s0that g,41is in Copa, i.e., Coyris nonempty. Now Copy=Ugec, L(g, E,).
Since C, and each L(q, E,) is finite, Cyy, is finite.

For each integer s and each element ¢ in C, associate the symbol ¢°. Let
D,= {q*/q in Cs}. Clearly the D, are pairwise disjoint. Let G be the abstract
graph defined as follows. The nodes of G are the set U;® D,. Anedgee(g®, i, 4)
isin G if ¢ i1s in C,, g« =8(q, 4), and (g, 4) =E.. Applying the result cited
above, there exists an infinite sequence {e,} of edges, with e,=(g?, g1}, I..).
For n=1, guy1=0(qn, I.) and N(gn, In) =E,. Thus N(gy, I, - - - I,)=E, - - - E;
for all 4, i.e., g1 is sequence output complete.

COROLLARY 1. Let S be a finite state quasi-machine having property Q. Then
each state which is output complete is sequence output complete.

COROLLARY 2. Let S be a free machine with a finite number of elements in the
input alphabet. Then each state in S which is output complete is also sequence
output complete.

Theorem 5.4 is no longer true if the condition that for each output E and
each state p in the principal subquasi-machine generated by g¢;, the set
L(p, E) is finite is removed.

ExaMpPLE 5.1. Let S be the free machine S defined as follows. Let K=
{po}\U{g:s/i, i=1}. Let ¥ and W be generated by the input alphabet
D= {I"/n; 1} and output alphabet F= {0, 1} respectively. Since W is de-
numerably infinite, W= {r./n21}, with 7,=0 and 72=1. Define 8(po, I")
=qu1, 8(po, I =¢2.1, N(Po, I') =0, and A(po, I*)=1. For I in D, k=1, 2, and
i=1, let 8(qe.:, I) =gqr,ir1 and N(gk,i;, I)=0. For =3 suppose that 7, is a
sequence of m(n) elements of F, say 7,=UiUj; - - - Upm. Let 8(po, I")
=qn.1, Mpo, I") = U7, and N(gn,i, I") = Uy, for i=m(n)—1. For I in D and
i=1, let 8(¢s.i, I) =@n,it1, and N(gn,:, I) =0 for those (¢»,i, I) not already de-
fined. Clearly p¢ is output complete For each n let E,=1. There is no se-
quence of inputs {I.} so that A(po, I - + - I.) =E; - - - E, for all n. Hence
po is not sequence output complete.
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6. Rational states. It is common knowledge that in a finite state Moore-
Mealy machine ultimately periodic sequences(!®) of inputs applied to a state
yield ultimately periodic sequence of outputs. We now consider this property
for states of a quasi-machine.

DEFINITION. A state g of a quasi-machine .S is said to be rational if for
each ultimately periodic sequence {In} of inputs, A(q, {I,,})(“’) is an ulti-
mately periodic sequence of outputs.

It is easily seen that if p is a rational state of a machine and ¢ is indis-
tinguishable from ¢, then ¢ is rational. Also, if S—T exists, if p is a rational
state of S and ¢ a rational state of T'; then (p, ¢) is a rational state of S—T.

Given a state ¢ and an ultimately periodic sequence {I,,} of inputs, in
checking to see if ¢ is rational, it is sufficient to assume that {In} is an infinite
sequence. This observation will tacitly be used in the sequel.

When checking to determine if a state is rational, we need only consider
those ultimately periodic infinite sequences consisting of elements from a
generating set for V. Specifically we have the following result whose proof,
being quite straightforward (and messy), is omitted.

THEOREM 6.1. Let S be o quasi-machine, M a generating subset of Y, and q
a gwen state of S. If N (g, {I n}) s ultimately periodic for every ultimately peri-
odic infinite sequence {I n} of elements of M, then q is a rational state.

The next result gives a sufficient condition for a state to be rational.

THEOREM 6.2. Let q be a given state with the property that for every ultimately
periodic infinite sequence {[ l-} and every positive integer v, the corresponding
sequence of sitates {q,} contains an element, say p,, which occurs at least r
times. Then q is rational.

Proof. Let ¢ be the given state and {I.} an ultimately periodic infinite
sequence of inputs. Then for some integers m and mq, Inym=1I, for all n=m,.
By hypothesis, {gi} contains an element p,, where r = (mo+m)(mo+m—1),
which occurs 7 times. Let the subscripts ¢ of ¢; for which p,=¢; be a(1),
a(2), - - -, a(r). Since {I,} is ultimately periodic and I'nyn=1I, for all #=m,,
there are at most mo+m —1 different I, in {Ii}. Hence there exists a finite
sequence of strictly increasing integers si, S3, * * * , Smo+m 50 that (Gacso,s Laesy)
=(Qacs;» lasp). Note that a(s;))2mo for i2m,. Thus there are at least
m—+1 a(s;) with a(s;) Zmo. Consequently there exist two integers # and ¢, in

(') A sequence {I;} of elements of an abstract set 4 is said to be ultimately periodic if
either the sequence is finite or else the sequence is infinite and there exist integers # and m,
s0 that Inm=1I, for all n 2 me. m is said to be a period of the sequence {I;}.

() Let S be a quasi-machine and {I.} a sequence of elements of ¥. By g, {L}) is
meant the sequence {)\(qi, I) }, where qi=¢ and for {22, g;=28(gi—1, I;-1). The sequence {q,.}
is called the corresponding sequence of {I,}.
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{s:}, mo=a(t) <a(ty), so that a(t:) —a(h) is divisible by m, i.e., a(t) ~a(t)
=um. It is now readily seen that

(qa(l1)+f7 Iﬂ(¢1)+i) = (qa(t1)+um+i; Ia(t1)+um+1,')

for all=0. ThusA(g;, I;) =N(@jtum, Lj+un) for all jSa(t:). Therefore X(g;, {Ij})
is an ultimately periodic sequence so that g is a rational state.

COROLLARY 1. Let q be a given state with the property that for each ultimately
periodic sequence {1}, the corresponding sequence of states {q:} contains just
a finite number of different elements. Then g is rational.

This follows from the fact that if {qi}, the corresponding sequence of the
ultimately periodic infinite sequence {Ii}, contains just a finite number of
different elements, one of them occurs infinitely often.

COROLLARY 2. A quasi-machine with the property that every principal sub-
quasi-machine has only a finite number of states has each state rational. In
particular, a quasi-machine with a finite number of states has each state rational.

ReMARKS. (1) The hypothesis of Theorem 6.2 may be weakened to merely
require an element p,, where r = (mo+m)(mo+m—1), mo and m being asso-
ciated with the ultimately periodic infinite sequence {Ii} as denoted in the
proof.

(2) The hypothesis of Theorem 6.2 cannot be weakened to merely require
that {¢;} contain an element which occurs twice.

(3) There exist distinguished, denumerable state, free machines, each
state rational, with the property that for each ultimately periodic infinite
sequence {I;} and each state g, the elements of the associated sequence {qi}
are all different. The example we have in mind is rather complicated and so is
omitted.

Suppose that g is a rational state of the quasi-machine S, S having an
infinite number of states. There need be no relation between the period of the
ultimately periodic infinite input sequence {I,,} and the period of the resulting
output sequence {En} That is, for a given rational state ¢, one might find a
set of ultimately periodic infinite input sequences {If,} of period m, with the
resulting output sequences {Ef,} of period m;, such that {m,-/j} is an un-
bounded set. The last statement is no longer true if the principal subquasi-
machine generated by ¢ is finite, as the next theorm indicates.

THEOREM 6.3. Let p be a state in the quasi-machine S and suppose that the
principal subquasi-machine T, generated by p has at most n (finite) states. Let
{I ,-} be an ultimately periodic input sequence, with mo and m two positive
integers such that Ij.m=1; for all jZmq. Then there exist positive integers m
and ms, with () my<me+n—1m, (i) mySmn, and (iii) mi+me<mo+mn,
such that Eyym,= Ey, for all B Zm,, where N(p, {I,-} )= {E,} . Furthermore, given
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positive integers mo, m, and n, for each of the inequalities (i), (ii), and (iii),
there exists a case where the equality sign holds.

Proof. To see the first part let p, T, mq, m, {I,- , and {E,} be as in the
hypothesis. Consider the finite sequence {(p;, I.)}mo<i<mo+mn, where
pr1=p and p;=08(p;—1, I;1) for 1> 1. Since T, has at most # states and there
are exactly mn+1 terms in the finite sequence, one of the p; occurs as part
of a term at least m+1 times. Let the indices at which this $; occurs as part
of a term in the finite sequence be a(1), a(2), - - +, a(r), r=m-+1. Then two
of the indices, say a(u#) and a(v) differ by an integral multiple of m, i.e.,
a(v) =a{u)+-wm, w a positive integer. As the sequence {I,-} becomes periodic,
of period m, at the m, term, L, =Iawy. Thus (o), Lawy) = (Patwys Law), and
as is easily seen, for kZa(u) =m, and my=wm, Eiim,= Ex. This implies that
mi+meSmo+mn. Since a(v) and a(u) are both elements of the set
{i/miSi<mo+mn},

me = wm = a(v) — a(u) £ mo + mn — my = mn.

Now the smallest value that w can assume is 1 and the largest that ¢(v) can
assume is mo+mn. Thus

a(u) S mo+mn —m=mg+ (n — Dm.

The last statement of the theorem will now be demonstrated by two
examples. Accordingly, let mq, m and » be given positive integers.

(I) Let S be the free machine with the # states ¢y, * - -, ¢, which is
defined as follows. The set {A./i<m+1} is the input alphabet and
{B;/i<n+1} is the output alphabet. For i<# and j<m, let 0(giy 4;) =gq..
If j=m or m+1, let d(q;, 4;) =¢iy1 when ¢ <z and 8(¢;, 4;) =¢; when i=n,
For i=n, let N(p:, I;) =B, when j=<m and A(p;, I,) =B,y when j=m-+1.

Let r be the non-negative integer <= for which m¢—1=9yn-+r7, y being an
integer; and let p=ga_rp1 if r=1 and p=¢g; if r=0. Let {Ij} be the infinite
sequence whose first mo—1 terms are 4, the remaining terms being the
periodic sequence whose periodic part is 4y, Ay, - -+, Am. Then I, =1, for
j=m,. Let A(p, {I,-})= {E,} As is easily seen, {E,} is the sequence whose
first mo—1 terms are B,,i, the remaining terms being the periodic sequence
whose periodic part is m consecutive By’s, followed by m consecutive By's, - - -,
followed by m consecutive B,'s. Then my =mo, me=mn, and m;+my=mo+mn,
that is, the equality sign holds for both (ii) and (iii).

(II) Let S be the free machine which is defined as in (I) with the follow-
ing changes: 8(¢n, Im) =¢n and N(gs, I;) =En;1 for i<z and jSm. Let {Ij},
7, and p be as in (I). Let \(p, {I;})= {E;}. Then {E,} is the sequence
whose first mo—1+m(n—1) terms are B, the remaining terms being B,.
Then mi=mo+(n—1)m and m,=1. Thus the equality sign holds for (i).
Q.E.D.
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7. Inverses. We now consider the situation of one machine “undoing”
the work of another.

DEFINITION. A semi-inverse S* of a quasi-machine S is a quasi-machine
such that (1) Wg= Yg*; (2) Ws*= Vs; (3) for each state ¢ in S there exists a
state g(g) in S* such that As*[g(q), As(g, I)] =1 for all inputs I of S; and (4)
for each state ¢* in S* there exists a state k(g*) in S such that
As[k(g*), Ns*(¢*, E)]=E for all inputs E of S*.

From the symmetry of the definition, it is clear that .S is a semi-inverse
of §* whenever S* is a semi-inverse of S. That is, S and S* are semi-inverses
of each other.

LEMMA 7.1. Let S and S* be semi-inverses of each other. Then the following
Statements are true:

(a) hg(q) is indistinguishable from q and gh(q*) is indistinguishable from q*.

(b) If S* is distinguished, then gh(q*) =q*, g maps Ksonto Kg*, and h is a
one to one function of Kg* into Kg. If S is also distinguished, then g and h are
tnverse functions.

(c) Aslg, As*(g(@), E)]|=E and As*[q*, Ns(h(q*), I) | =1 for all inputs I in
S and E in S*.

(d) For fixed q, Ns is a one to one function of Vg onto Ws.

(e) If S is a machine, then so is S*.

Proof. (a) Due to symmetry it is sufficient to show that ¢ and hg(q) are
indistinguishable. For any input I of S,

As(q, I) = ns(hg(g), As*[g(g), As(g, D]) = As(hg(q), I).

Since [ is arbitrary, ¢ and kg(q) are indistinguishable.

(b) Suppose that S* is distinguished. By (a), gh(¢*) is indistinguishable
from ¢*, thus gh(g*)=g*. Since glh(g*)]=q*, g is onto. If h(g*) =h(g}),
then ¢* =gh(g*) =gh(q}) =4f. Thus % is one to one. If S is also distinguished,
then g and % are inverse functions by virtue of gh(¢g*) =¢* and hg(q) =4.

(c) Obviously it is sufficient to show that As[g, As*(g(g), E)]=E. Since ¢
and hg(g) are indistinguishable,

Aslg, As*(g(9), E)] = Aslhg(q), As*(g(g), E)] = E.

(d) That \g is one to one follows from Ags*[g(q), As(g, I)]=1. By (c), for
E in Ws, As[q, As*(g(q), E)]=E. Hence \s is onto.
{e) Suppose that S is a machine and that I,[,=I,1;, where I;, I,, and
I; are in Vg Let ¢ be a fixed state of S. Then
)‘S(Q'l Il))‘s[as(q7 Il): 12] = )‘S(Qy 1112) = )‘S(q’ 1113)
= As(g, IDAs[8s(q, In), Is).
Since S is a machine, As[8s(g, I.), I.]=N\s[8s(q, I1), I;]. As S has a semi-
inverse, Ag is one to one. Thus I;=1,, i.e., S* is a machine.
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LeMMA 7.2. Let p in S and q in T be two indistinguishable states. If S* and
T* are semi-inverses of S and T respectively, then gs(p) and gr(q) are indistin-
guishable states.

Proof. For arbitrary E in W, consider Ag*[gs(p), E] and Ar*[gr(q), E].
Since p and ¢ are indistinguishable and As is one to one onto, there exists /
in Y so that As(p, I) = E=Xr(g, I). Then Ag*[gs(p), Ns(p, I) | =\s*[gs(p), E]
=I=Mr*[gr(q), \r(g, I) ] =Xr*[gr(¢), E]. This proves the lemma.

Lemma 7.2 is now applied in the following result:

TuEOREM 7.1. If S* is a semi-inverse of the quasi-machine S, then S is a
semi-inverse of S if and only if S is equivalent to S*.

Proof. Let S and S* be semi-inverses of each other under g and 5.

Suppose that S is equivalent to S*. For each state § in S let d(§) be a
state in S* which is equivalent to §; and for each state ¢* in S* let f(¢*) be
a state in .S which is equivalent to ¢*. For ¢ in S let g(¢) =fg(¢) and for § in
S let #(§) =hd(g). Then

As[2(9), Ms(g, D] = Ns[fe(@), Ns(g, D]
= As*[g(q), Ms(g, I)], as g(g) and fg(g) are indistinguishable,
=1
Also

As[h(@), Ns(@, E)] = As[hd(R), \5(d, E)]
= As[#d(q), A\s*(d(§), E)], as § and d(g) are indistinguishable,
= E.

Thus S and § are semi-inverses of each other.

Now suppose that S and S are semi-inverses of each other under z and #.
Let ¢* be an arbitrary state of S*. Then k(¢g*) is in S. By Lemma 7.2, gh(q*)
and gh(g*) are indistinguishable states. By Lemma 7.1(a), ¢* and ghk(g*),
thus ¢* and gh(¢*) are indistinguishable. In a similar fashion it is seen that
to each state § in S, there corresponds gk(g) in S* indistinguishable from .
Thus S and § are equivalent.

In order to obtain “structure” results, i.e., results involving the next state
function, the following notion is introduced.

DEFINITION. S* is said to be an inverse(?®) of S if (¢)S* is a semi-inverse
of S, and (ii) g[8s(g, I)]=0s"[g(q), As—(g, I)] for each g and I in S.

THEOREM 7.2. If S* is a distinguished machine which is a semi-inverse of S,
then S* is an inverse of S.

Proof. It is necessary to show that g[8s(g, I) ] =8s*[g(q), Ns(g, I)] for each

(*) Inverses were first introduced in [11] for special machines.
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state ¢ and each input [ of S. For all inputs I; of S,

11 = xs+g(g), Aslg, 11y)]
= As*[2(9), As(q, DAs(ds(g, 1), In)]
= Ae'[g(9), As(g, DINs(g, Aslos(g, 1), I,])
= I s*(g, Nslés(q, D, I.]),

where ¢f =8s*[g(g), As(q, I)]. Since S* is a machine, the left cancellation law
holds for Y. Thus

As(glos(q, D], Aslos(g, D, 1)) = I = Ns*[gd, Ns(s(g, 1), 10)].
As S* is distinguished and Iy, thus As[8s(q, I), I,] is arbitrary,

glos(g, D] = ¢ = ds[g(g), As(g, I)]. Q.E.D.

The theorem is no longer valid if S* is not distinguished.

ExampLE 7.1. Let S and S* be the free machines defined as follows. Let
Ks={q}. Let I generate both Ws and Vs. Let Ks*={q}, ¢}, and 85(¢}, I)
=g*, where 7, j=1, 2, 254. Then S* and § are semi-inverses but S* is not an
inverse of S.

The above example also shows that being an inverse is not invariant
under equivalence. For S is an inverse of S, S* is equivalent to S, but §* is
not an inverse of .S. What is true, however, is the following result, which is a
consequence of Theorem 7.2,

COROLLARY. If S* and S are semi-inverses of each other, if T* is a distin-
guished machine which is equivalent to S*, and if T is a distinguished machine
which is equivalent to S; then T* and T are inverses of each other.

When S and its inverse S* are both distinguished quasi-machines, then
the relation between S and S* may be reversed, namely:

THEOREM 7.3. If S and S* are both distinguished quasi-machines, and if S*
is an inverse of S, then S is an inverse of S*.

Proof. It is necessary to show that k[8s*(¢*, E)]=28s[h(g*), Ns*(¢*, E)].
Let ¢g="h(g*) and I =Ns*(g*, E). Then g(g) =¢* since S* is distinguished, and
E=\g(k(g*), I). Since S* is an inverse of S, g[ds(g, I)]=0s"[g(q), As(g, ) ].
Thus kg[8s(g, I)]=h(8s*[g(g), As(g, D). Since S is distinguished,

hg[as(q! I)] = 55(9; I) = 5S[h(q*)r )\S'(q*, E)] = h[5S‘(¢I*, E)]
Turning to “uniqueness” of inverses we have

THEOREM 7.4. If S* and S are both distinguished quasi-machines which are
inverses of S, then S* and S are isomorphic to each other.

Proof. Let g and / be the functions relating S and S. Since S* is distin-
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guished, g is a one to one function of Ks* onto K3 Let § be in Kz and
¢*=gh(q). Then gh(g) =q and k(¢*) =hg[k(g)] is indistinguishable from %(g).
Since S is distinguished, by Lemma 7.1(e) ¢=gk(g) =gh(¢*). Thus gh maps
K s* one to one on K3. Next

E = \s[h(g"), As*(¢*, E)]

il

As[hgh(g*), Ns(gh(g*), E)|
= As[k(g®), \5(gh(g*), E)],

the last equality occurring since Agh(g*) is indistinguishable from k(g*).
Since Ag is one to one, As*(¢*, E) =A5(gk(q*), E). Thus the outputs from ¢*
and gh(g*) are identical. To complete the proof it is necessary to show that
the next state functions correspond under gk, ie., 05[gh(g*), E]
=gh[8s*(¢*, E)]. Let g=h(g*) and I=Ns*(¢*, E). Then

55(2h(g*), E] = 55[2(9), Ns(g, D]
= g[8s(g, I)], since S is an inverse of .S.

Since 8s(g, I) and kg[ds(q, I)] are indistinguishable and S is distinguished,

ghl6s(g(9), As(g, I))], since S* is an inverse of S,
ghlos(gh(g®), E]
ghl6s+(g*, E)], since S* is distinguished.
Thus 83[gh(¢*), E]=gh[ds*(¢*, E)], whence the theorem.

The theorem is not true if inverse is replaced by semi-inverse. For let S
and S be as in Example 3.1. Then S and S are two nonisomorphic semi-
inverses of S.

A characterization of those quasi-machines which have an inverse is now
given.

THEOREM 7.5. A necessary and sufficient condition that a quasi-machine S
possess an inverse S* is thot for each state q, Ns be a one to one function of Yg
onto Ws.

Proof. The necessity being obvious, only the sufficiency shall be shown.
Therefore assume that As is a one to one function for each state ¢. To each
g in K associate in a one to one manner, a symbol ¢*=g(g). Denote by Kg*
the set of all such ¢*. Let % be the inverse function of g, let Wg*= ¥, and
let Vgr=Ws. For each ¢* in Kg* and each E in Vg, define Ag*{g*, E)} to be
I and 85°(g*, E) to be g(8s[k(g*), A\s*(¢*, E)]), where As[i(¢*), I]=E. In
view of the assumption on Ag, 8s5*(¢*, E) is uniquely defined.

It is now to be shown that S* is an abstract quasi-machine. This is to be
done by verifying properties (3) and (4) in the definition of a quasi-machine.
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From the method of construction, it is obvious that if S* is a quasi-machine,
then it is an inverse of S.

Let ¢* be in Ks* and E, any element of Vs*. Let ¢=%k(¢*) and As(g, 11)
= E;. Clearly I, is uniquely defined. For any E; in Ys* let I, be such that
E,=\s[ds(q, 1), I.]. Since S is a quasi-machine

E\E; = \s(q, IDs[bs(g, 1), ]

= As(g, I.12).
Thus
)\s'(q*, E1E2), = 1112.
(a) Now
bs0lg*, EiE.] = g(6sh(g¥), As*(q*, E1Es)])
= 8[53(11: 1112)]
= g(slos(g, I1), L2]);
and

3s5+[05°(g*, En), Es] = 85 [g(3s[A(g*), Ns(g*, EV]), Eol
= 55'[g(85[q’ Il]): E2]
= 3(55[}’3[55(9, Il)]r >\S'(g[55(q, Il)]; E2)])
3(53[58(‘1, Il)) 12])
Thus 8s*[q*, E1E;] =8s*[85°(¢*, E1), E:], that is, property (3) in the definition
of a quasi-machine holds.

(b) )\,s' [g*, ElEz] =11I2 and

As(g*, EDAs+[0s+(q*, Er), E2] = I\s[g(8s[A(g*), Ns*(g*; EV)]), Er]
= Inglg(slg, 1)), Ez] = Iuls.

Thus Ag*[g*, E:E:]=Ns*(¢*, E)As*[8s°(g*, Eu), E,], that is, property (4) in
the definition of a quasi-machine holds.

This completes the proof.

In certain cases, the property of a quasi-machine S having an inverse may
be deduced from the behavior of As on a generating set of inputs. Specifically
we have

1

COROLLARY 1. Let A be a generating set for Ys and B a generating set for
W such that each E in Wy is the product, in a unique way, of elements in B.
If for each state q, \s is a one to one function of A onto B, then S has an inverse
S*.

Proof. Let g be a state of Sand E an element of Ws. Let E=EE; - - - E,,
where each E, is in B. Define ¢; to be g and let /; in 4 be such that As(qi, I1)
=E;. I, exists since Ag maps A onto B. Let ga=0s(q1, I1). For each i=5j<n
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suppose that ¢; and I, are defined so that ANg(g., I;) =E;. Let g;11=105(g;, 1)
and let I;5, be such that As(g;41, {;41) = E;41. In this way I; becomes defined
for each ¢<n. Let I=1, - - - I,. There is no difficulty in seeing that As(g, I)
=E. Thus A\g maps Ygonto Ws. Now suppose that T is such that As(q, T) = E.
LetT=1, - -1, eachI,in A. Define §; to be ¢q. Then E=E, - - - E,, where
E1=>\S(q-1, 71) and for 1;2, Ei=)\s(g-i, Ti), with g_i=6s(q—,‘_1, 7,‘_1). In view of
the uniqueness property, m=n and E;=E; for each E,. Since Ag maps 4
one to one onto B, I;=1; for each 4. Thus I =1, that is Ag maps Y one to
one onto Ws. Thus, from Theorem 7.5, S has an inverse S*. Q.E.D.

COROLLARY 2. Let S be a free machine. If for each state q, As maps the input
alphabet one to one onto the output alphabet, then S has an inverse S*.

In order to check that two quasi-machines S and S* are inverses of each
other, it is sufficient to verify the basic laws over a set of generating inputs
and generating outputs. More precisely we have

THEOREM 7.6. Let S and S* be two quasi-machines with YVs=Wgs+ and
Ws=Yg. Let g be a one to one function of Ks tnto Kg* and I a one to one func-
tron of Kg*into K. Suppose that A is a generating set of inpuis of Ysand B a
generating set of ouputs of Ws such that glds(q, I)]=208s"[g(q), As(q, I)],
hl8sr(g*, E)] = 8s[h(g*), Nsr(g*, E)], Aslele), Nslg, D] =1, and
Aslk(q), Ns*(¢*, E)}=E for each I in A, E in B, q in Ks, and ¢* in Kg*. Then
S and S* are inverses of each other.

Proof. We first show that

*) glos(g, D] = 8s°[g(g), As(g, D]

for each input 7 in V. Denote by C, the set of all finite sequences I - - - I;
j=mn of inputs I, in 4. Since 4 is a generating set for Y5, Ys=U C,. Thus
it is sufficient to show that (*) holds for each I in C,, n=1, 2, - - - . By as-
sumption (*) is true for I in Ci. Suppose that (*) is true for I in Ci, k<.
For I'in Cpyy— C,, I=UI;, where Uis in C, and I, in C;. Then

glos(q, )] = glos(q, UL
= gl[8s(8s(g, U), 11)]
85*[g(6s(q, U)), As(8s(q, U), I.)], since (*) holds for Ci,
8s[65+{ g(g), Ms(g, U)}, As(8s(q, U), I.)], since (*) holds for C,,
8s°[8(9), Ns(q, UDNs(8s(g, U), I)]
ds+[g(9), As(g, UI)]
= bs*[2(9), Ms(g, D)].

Thus (*) holds for I in C,41, so that, by induction, (*) holds for each C,.
Suppose that As*[g(q), As(g, U)]= U for some U in some Cn. Let 7 be

N
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the smallest integer such that there exists I;:-- 7, for which
As*[g(g), Ns(g, I - - - L)% - - - I,. Then n=2. Let I=0I1, - 1,
Hence As*[g(g), As(g, I)]=1. Now

As*[g(), Asg, In - - - I)]
= As*lg(g), Ns(g, I14)]
= As+[g(9), Ms(g, DAs(s(g, 1), 1)}
= \s*[g(@), Ns(g, DINs*{8s[g(9), As(g, D], Asos(q, 1), L]}
= D\s{g(3s(g, 1), As[os(g, 1), L]}
=, =1I; I,

This is a contradiction. Therefore As*[g(q), As(g, U)]=U for all Uin ¥g.
In a similar fashion it can be shown that

h[as‘(q*) E)] = 6S[h(q*)y )‘S'(q*’ E)]
and

As[#(q¥), As*(¢*, E)] = E for each E in Vg

Consequently, all the laws for .S and S* to be inverses of each other are
satisfied.

One application of Theorem 7.6 occurs when S and S* are free machines.
Then one only has to check the basic laws for the elements in the input
alphabet D and the output alphabet F.

THEOREM 7.7. Let S and S* be two distinguished machines, each of n (finite)
states. Let Yg=Wg* and YVg=Wg. Let g be a one to one function of Kg into
Kg* and h a one to one function of Kg* into Ks. Suppose that A 1s a generating
set of inputs of Ys and B a generating set of inputs of YVs* such that As maps A
onto B, Ng* maps B onto A, \s*[g(q), Ns(q, I) 1 =1, and As[h(g), A\s*(¢*, E)|=E
for each q in Kg, each ¢* in Kg*, each sequence Iy - - - I;, j<n of elements I;
from A, and each sequence E=E, - - - E,, k=n of elements E; from B. Then
S and S* are inverses of each other.

Proof. In view of Theorem 7.6 it is sufficient to show that
g[as(q’ Il)] = 65‘[g(4): >‘S(q) Il)] and h[ﬁs‘(q*: El)] = 6S[h(q*)) AS'(Q*) El)]

for each I; in 4 and E, in B. Because of the symmetry of the situation, it is
sufficient to show the former equality. Let ¢ and I, be fixed.

Let E; - - - E, be any sequence of #—1 elements from B. Since Ag maps
A onto B, there exists I, in 4 such that As[ds(q, I1), I:] = E;. Similarly there
exists Ia in 4 such that )\s[as(as(q, I]), 12), Ia]‘—‘Ea. Thus )\S[és(q, ]1), I:z[‘g]
= E,E;. Continuing in the obvious manner we see that there exists
I, - -+, I, in 4 such that \s[8s(¢q, 1), Iy - - - I.]=E; - - - E,.

Now let I'=1I, - - - I, be any sequence of length »—1 of inputs of 4.
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Repeating the inequalities in Theorem 7.2 weget I ] = I\ s*(g¥, A5 [8s (g, 11), I ]),
where g} =85*[2(¢), Ns(g, I1) ]. By the left cancellation law and hypothesis

)\S‘(ka, AS[‘Ss(q: Il), I]) =1= AS'(g[BS(q: 11)]7 )‘5[65(4) Il)a I])

Thus ¢f and g[8s(g, I,)] are indistinguishable by As[ds(g, I1), I]. In the
previous paragraph we showed that when I varies over all sequences of length
n—1 of elements from A, Ag[8s(g, I1), I] varies over all sequences of length
n—1 of elements from B. Now B is a generating set for all elements of Y.
Repeating the proof given in Theorem 6 of [9] we see that in a machine (as
defined here) with #» states, two states are distinguishable if and only if they
are distinguishable by some sequence of generating inputs of length n—1.
Thus ¢f and g[8s(g, I,) ] are indistinguishable. Since S* is distinguished

55'[3(Q), >\s(¢1, Il)] = 91* = 8[53(% Il)]- Q'E‘D'

REMARKS. (1) The most important application of Theorem 7.7 is when
S and S* are free machines and 4 and B are input and output alphabets
respectively of S.

(2) Theorem 7.7 is no longer true if the hypothesis on the length of the
sequences Iy - - + I; is changed from # to n—1.

ExampLE 7.2. Let S and S* be the free machines defined as follows: Let
n23, Ks=Kg={g/i<n}, A=B={0, 1}, glg)=h(g:) =g:, Ns(gs, U)=U
fori=n—1,As5(¢n, 0) =1,A5(¢n, 1) =0,A5* =g, 05(q;, U) =qiafor2=isn—1,
35(gny U)=¢qs, 8s(q1, 0)=gs, 8s(q1, 1) =g, 8s(¢i;, U)=0s5"(qi;, U) for i>1,
0s*(q1, 0)=gqs, and 68s*(q1, 1) =¢q, where U=0, 1. Then the hypothesis of
Theorem 7.7 holds for sequences of inputs of 4 and of B of length n—1, but
not of length # (consider the sequence of length # consisting of all 1’s, starting
at ¢1). S and S¥*, of course, are not inverses.

Turning briefly to properties preserved by inverse machines we have

THEOREM 7.8. If S* is a distinguished quasi-machine which is an inverse
of S and if S is strongly connected, then S* is strongly connected.

Proof. Let ¢* and ¢} be any two states in S*. Let ¢="7k(g*) and q:=A(q}).
Since S is strongly connected there exists an input I in S such that és(g, I)
=gq,. As S* is distinguished, gh(g*) =g(q) =¢* and gh{q}) =4f. Then

gt = glés(g, D))
8s*(g(q), As(q, I)], since S* is an inverse of S,
= 55‘[4*, )‘S((b I)]
Consequently S* is strongly connected. Q.E.D.
Theorem 7.9 is a generalization of a result of [11]. The theorem is no

longer true if S* is not distinguished.
Another result, easily proved by the reader, is

i
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THEOREM 7.9. Let S* be an inverse of the quasi-machine S. If A is a stable
set of S, them g(A) 1s stable and the quasi-machine associated with g(A4)
UF (gh)[g(4)](®Y) is an inverse of the quasi-machine associated with
AJUY (hg)n(A). If S is distinguished and A is any set of states of S, then the
subquasi-machine generated by g(A) is an inverse of the subquasi-machine gen-
erated by A ; furthermore, g(A) is stable if and only if A is stable.
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