# Some Remarks on Domination 

by

D. Archdeacon ${ }^{1}$, J. Ellis-Monaghan ${ }^{2}$, D. Fisher ${ }^{3}$, D. Froncek ${ }^{4}$, P.C.B. Lam ${ }^{5}$ S. Seager ${ }^{6}$, B. Wei ${ }^{7}$, and R. Yuster ${ }^{8}$

We give two results on domination in graphs, including a proof of a conjecture of Favaron, Henning, Mynhart and Puech [2]. Corollary 2 was found by four separate subsets of the authors. We decided to give this joint presentation of our results. We first offer a result about bipartite graphs.

Lemma 1 Let $G$ be a bipartite graph with partite sets $(X, Y)$ whose vertices in $Y$ are of minimum degree at least 3. Then there exists a set $A \subset X$ of size at most $|X \cup Y| / 4$ such that every vertex in $Y$ is adjacent to a vertex in $A$.

Proof: The proof is by induction on $|V(G)|+|E(G)|$. The smallest graph as described in the lemma is $K_{1,3}$, for which the statement holds. This gives the start of our induction. Let $x=|X|$ and $y=|Y|$. If there exists a vertex $v$ in $Y$ of degree at least 4, then delete any edge $e$ incident to $v$. The subset $A$ of $G-e$ guaranteed by the inductive hypothesis is adjacent in $G$ to every vertex in $Y$ as desired. So we may assume that the vertices in $Y$ are all of

[^0]degree exactly 3 . If there exists a vertex $v$ in $X$ of degree at least 3 , then delete that vertex and all of its neighbors. Adding $v$ into the subset $A$ from this smaller graph yields our desired subset for $G$. So we may assume that every vertex in $X$ is of degree at most 2 . If there exists an isolated vertex $v \in X$, then again the set $A$ in $G-v$ is adjacent to every vertex in $Y$. So we may assume that every vertex in $X$ is of degree at least 1 .

We now know enough about $G$ to prove the existence of the desired subset $A$ directly. Let $X_{i}$ denote the vertices in $X$ of degree $i, i=1,2$, and let $x_{i}=\left|X_{i}\right|$. Under the conclusions of the previous paragraph, $x=x_{1}+x_{2}$, and since all vertices in $Y$ are of degree three, $3 y=x_{1}+2 x_{2}$. The desired result is a set $A \subset X$ of cardinality at most $(x+y) / 4=x_{1} / 3+5 x_{2} / 12$.

Form the graph $G^{\prime}$ from $G$ where $V\left(G^{\prime}\right)=X_{2}$, and $u v \in E\left(G^{\prime}\right)$ if and only if $u, v$ are adjacent with a common vertex in $G$. Since the maximum degree in $G$ of a vertex $x \in X$ is $2, G^{\prime}$ is of maximum degree 4. Hence, by Brooks' Theorem, $G^{\prime}$ has an independent set of size at least $x_{2} / 4$ (the possible exceptional case $G^{\prime}=K_{5}$ cannot arise by this construction). The corresponding vertices in $G$ have disjoint neighborhoods, hence they are adjacent to at least $x_{2} / 2$ different vertices in $Y$. The set $A$ uses these vertices, and for each remaining vertex in $Y$ an adjacent vertex in $X$. Now $|A| \leq x_{2} / 4+y-2 x_{2} / 4=x_{1} / 3+5 x_{2} / 12$ as desired.

A total dominating set in a graph $H$ is a subset $A$ of vertices such that every vertex in $H$ is adjacent to a vertex in $A$.

Corollary 2 Every graph $H$ of order $n$ and of minimum degree at least 3 has a total dominating set of size at most $n / 2$.

Proof: Construct a bipartite graph $G$ from $H$ as follows. Each vertex $v_{i}$ in $H$ gives two vertices $x_{i}, y_{i}$ in $G$. Each edge $v_{i} v_{j}$ in $H$ gives two edges $x_{i} y_{j}$ and $x_{j} y_{i}$ in $G$. The bipartition is $(X, Y)=\left(\left\{x_{i}\right\},\left\{y_{i}\right\}\right)$. A total dominating set $A$ in $H$ corresponds to an $A \subset X$ in $G$ adjacent to every vertex in $Y$. The result now follows by the previous lemma.

This corollary settles a conjecture of Favoron et al. [2], which also contains some history of the problem. As shown in [2] the statement in the corollary is tight. For every $n$ divisible by four there are 3-regular graphs of order $n$ having no dominating set of size less than $n / 2$. In fact, using a somewhat more complicated argument, it is possible to show [6] that any extremal graph must be 3 -regular and $n$ must be divisible by 4 . Reference [4] extends

Corollary 2 to the set of graphs of minimum degree at least 2 where no degree2 vertex is adjacent to two other degree- 2 vertices. Reference [3] shows that every connected graph on $n$ vertices and $e \geq 2$ edges and maximum degree at most 3 is totally dominated by a set of $n-e / 3$ vertices, from which Collorary 2 follows. They also examine when the bound is tight.

The result can also be phrased in terms of transversals of rank 3 hypergaphs. In this context Lemma 1 is related to work by Chvátal and McDiarmid [1]. This relation and Corollary 2 was noted by Thomasse and Yeo [5].

The advantage to our approach is studying total domination through the corresponding bipartite graph. This allows more subtle inductive steps. These techniques may have other applications to total domination.

## References

[1] V. Chvátal and C. McDiarmid, Small transversals in hypergraphs, Combinatorica 12 no. 1 (1992) 19-26.
[2] O. Favaron, M.A. Henning, C.M. Mynhart and J. Puech, Total domination in graphs of minimum degree three, J. Graph Theory 34 (2000) 9-19.
[3] D. Fisher and S. Seager, The total domination number of graphs of maximum degree 3, (manuscript).
[4] P.C.B. Lam and B. Wei, On the total domination number of graphs, (manuscript).
[5] S. Thomasse and A. Yeo, Total domination of graphs and small transversals of hypergraphs, (manuscript).
[6] R. Yuster, Graphs with minimum degree three are totally dominated by half of the vertices, (manuscript).


[^0]:    ${ }^{1}$ Department of Math. and Stat., University of Vermont, Burlington VT 05405, e-mail: dan. archdeacon@uvm.edu
    ${ }^{2}$ Department of Mathematics, St. Michael's College, Winooski Park, Colchester VT 05439, e-mail: jellis-monaghan@smcvt.edu
    ${ }^{3}$ Department of Mathematics, Univ. of Colorado at Denver, Denver, CO 80217, e-mail: dfisher@orphan.cudenver.edu
    ${ }^{4}$ Department of Math. and Stat., University of Minnesota Duluth, Duluth MN 55812, and Technical University Ostrava, 70833 Ostrava, Czech Republic, e-mail: dfroncek@d.umn.edu
    ${ }^{5}$ Department of Mathematics, Hong Kong Baptist University, Hong Kong, e-mail: cblam@hkbu.edu.hk. Partially supported by FRG, HKBU.
    ${ }^{6}$ Department of Mathematics, Mount Saint Vincent University, Halifax, NS, Canada B3M 2J2, e-mail: suzanne.seager@msvu.ca
    ${ }^{7}$ Department of Mathematics, University of Mississippi, University, MS 38677, e-mail: bwei@olemiss.edu. Partially supported by the National Natural Science Foundation of China and the Croucher Foundation of Hong Kong.
    ${ }^{8}$ Department of Mathematics, University of Haifa-Oranim, Tivon 36006, Israel, e-mail: raphy@research.haifa.ac.il

