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Some remarks on greedy algorithms* 

R.A. DeVore and V.N. Temlyakov 

Department of Mathematics, University of South Carolina, Columbia, SC 29208, USA 

Estimates are given for the rate of approximation of a function by means of greedy algo- 
rithms. The estimates apply to approximation from an arbitrary dictionary of functions. 
Three greedy algorithms are discussed: the Pure Greedy Algorithm, an Orthogonal Greedy 
Algorithm, and a Relaxed Greedy Algorithm. 

1. In troduc t ion  

There has recently been much interest in approximation by linear combinations 
of functions taken from a redundant  set 79. That  is, the elements of  79 are not  
linearly independent. Perhaps the first example of this type was considered by 
Schmidt in 1907 [6] who considered the approximation of  functions f ( x , y )  of  
two variables by bilinear forms ~-~tfl=lUi(X)Vi(y ) in L2([0,112). This problem is 
closely connected with properties of the integral operator with ke rne l f (x ,  y). 

We mention two other prominent examples of  this type of  approximation. 
In neural networks, one approximates functions of  d-variables by linear combi- 

nations of  functions from the set 

{ a ( a . x + b ) :  a E ~ a ,  b E ~ ) ,  

where a is a fixed univariate function. The functions o-(a- x + b) are planar waves. 
Usually, o- is required to have additional properties. For  example, the sigmoidal 
functions, which are used in neural networks, are monotone  non-decreasing, 
tend to 0 as x ~ - c ~ ,  and tend to 1 as x ~ oe. 

Another  example, from signal processing, uses the Gabor  functions 

ga,b(x) := eiaXe -b.,~ 

and approximates a univariate function by linear combinations of  the elements 

{ga,b(X -- C) : a, b, c E IR}. 

The common feature of  these examples is that the family of  functions used in the 
approximation process is redundant.  The redundancy leads to interesting new 
questions not treated in the classical approximation theory. In this note, we shall 

* This research was supported by the Office of Naval Research Contract N0014-91-J1343. 

© J.C. Baltzer AG, Science Publishers 



174 R.A. De Vore, V.N. Temlyakov I Greedy algorithms 

be interested in the rate of approximation possible by such redundant families. We 
shall derive estimates for the rate of approximation for certain classes of functions 
and study certain greedy algorithms which are commonly used for constructing 
approximants in this setting. Some of our results are preliminary. Our main 
desire is to focus attention on this type of approximation. 

We shall restrict our discussion in this paper to the case where approximation 
takes place in a real, separable Hilbert space H equipped with an inner product 
(., .) and the norm Ilxll :=  (x, We can formulate our approximation problem 
in the following general way. We say a set of functions 79 from H is a dictionary 
if each g E 79 has norm one (llgll = 1) and 

gE79  implies - -gE79.  

1.1. Best approximation using at most m dictionary elements 

We let E,n (D) denote the collection of all functions in H which can be expressed 
as a linear combination of at most m elements of 79. Thus each function 
s E ~m :=  Y]~m(79) can be written in the form 

s = ~ c g g ,  A c V ,  I A l < m ,  (1.1) 
gEA 

with the Cg E I~. In some cases, it may be possible to write an element from Em (79) in 
the form (i.1) in more than one way. The space E,, is not linear: the sum of two 
functions from Em is generally not in E,,. 

For a function f E H, we define its approximation error 

crm(f) := ~r,,(f, 79) := inf tlf - sll. (1.2) 
s E ~r~ 

We shall be interested in estimates for a,, (from above and below). 
In order to orient our discussion, we begin with the case when 79 = / 7  = {+hk}~=~ 

where {hk}k~ is an orthonormal basis for H. (We say 79 is given by an orthonormal 
basis; the inclusion of both -I-hk in 79 is for later notational eonvenience.) In 
this case, much is already known about the above approximation problem. Any 
e lement f  E H has the orthogonal expansion 

:= 
J 

and 

iiSll  - - i < s ,  h .>l 
J 

It follows that a best approximation Sm toS from ~m(~) is obtained as follows, 
We order the coelcients ( f ,  hs) according to the absolute value of their size and we 
choose A := st,,, as a set of m indices j for which I ( i ,  hj) l is largest. Then, 

,,o = E<S,h,>h  
jEA 
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is a best approximation t o f  from Era(B) and 

cs,(f) 2 = liT - Smll 2 = ~ I(f ,  hj)l 2. 
jCA 

The set Am and the approximant Sm are not unique because of possible ties in the 
ordering of the coefficients. Of course Crm(f) is always uniquely defined. 

We turn now to the question of what can be said about the rate of decrease of 
Crm(f). Of course to say anything about the decrease of Crm(f) we need to assume 
something about f .  Typical results in approximation theory of this type relate 
the rate of approximation to the smoothness of a function. 

For a general dictionary 79, and for any 7- > 0, we define the class of functions 

~(79, M):= { f  E H : f  =~-~CkWk WkED, I A i < c ~ a n d  y'  lckl <<_MY}, 
kEA k~A 

(1.3) 

and we define A~(79, M) as the closure (in H)  of A°(79, M).  Furthermore, we define 
A,(79) as the union of the classes A~(79,M) over all M > 0. F o r f  E A,(79), we 
define the "semi-norm" 

l f l~(~)  

as the smallest M such t h a t f  E A,(79,M). In the case that 79 = B is given by an 
orthonormal basis {hk}~=l, t h e n f  E A,(B) if and only if 

 i(S, hk)r 
k 

is finite and this last expression equals Ifl.~(B). 
In this case, we can characterize certain approximation orders by the spaces .4,.. 

The first result of this type was the result of Stechkin [7] 

f E A,(B) ~ ~mi /2cr , , ( f ,B  < oo. 
m 

m = l  

A slight modification of Stechkin's proof gives the following generalization (see 
section 2). 

Theorem 1.1 
In the case 79 = B is given by an orthonormal basis {hk}~= 1 for H,  for each a > 0, 
and 7- := (o~ + I/2) -l ,  we have 

oo 

~[rn%%(f  B)] T 1 , - - < o o  , , f E A r ( B ) .  (1.4) 
r n  

m = l  

Thus, theorem 1.1 provides a characterization of functions with an approxi- 
mation order like O(rn-~). We mention two interesting examples of this theorem. 
If B is given by an orthonormal wavelet basis in L2(IR), then theorem 1.1 is a 
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special case of  (1.3) in [3] and the class ,~[r(B) coincides with the Besov space 
B~(L,(II~)). I f  B is given by the Fourier  basis e ikx, k E Z, in L2('lr), then theorem 
1.1 characterizes approximat ion  order  for a function f by absolute summabil i ty  
of  a power of  its Fourier  coefficients. For  example, when a = 1/2, T = 1, the 
class .41 (B) is the class of  functions whose Fourier  series converges absolutely. 

As a special case of  theorem 1.1, we have for 79 = B the estimate 

ffm(f79) ~ Clfl~(z~) m-~, T := (c~ + 1/2) -1. (1.5) 

It is very interesting to note that  the estimate (1.5) actually holds for a general 
dict ionary provided a > 1/2 (equivalently 7-< 1). In the case a = 1/2 (7- = 1) 
this was proved by Maurey (see [8]) and an iterative a lgor i thm was given by 
Jones [4]. The case a > 1/2 is easily derived f rom the case c~ = 1/2 (see section 
3). For  a < 1/2 (1 < 7- < 2) there seems to be no obvious analogue of  (1.5). 

1.2. Greedy algorithms 

In the case that  79 = B, a best m-term approximat ion  Sm is generated by the 
following "'greedy" algorithm. We describe this a lgori thm for a general dict ionary 
79 (in which case it does not  generally generate a best approximation) .  I f f  E H, we 
let g = g( f )  E 79 be an element f rom 79 which maximizes (f ,g}.  We shall assume 
for simplicity that  such a maximizer exists; if not,  suitable modifications are neces- 
sary in the algorithms that  follow. We define 

a ( f )  := a ( f  ,79) := ( f  ,g)g (1.6) 

and 

R ( f  ) := R ( f  , 79) : = f -  G( f  ). 

Pure Greedy Algorithm 
We define Ro(f)  := Ro(f,79) : = f  and Go(f) := 0. Then,  for each m _> 1, we 
inductively define 

Gin(f ) :  = Gm(f  , 79) := Gm-l ( f )  + 
(1.7) 

Rm(f) : = R,,(f ,  79) : = f  - am(f )  = R(Rm_, ( f)) .  

It is clear that  in the case of  the o r thonormal  basis 79 = B then Gin(f) = Sin(f) 
and Rm(f)  = f - Sm(f) and 

trm(f,B) = I l f - G m ( f ) l l  = Ilem(f)ll. 

The above algori thm is greedy in the sense that  at each i teration it approximates  
the residual Rm(f) as best possible by a single funct ion f rom D. Of  course, for 
a general dictionary 79 (i.e. when 79 is not  given by an o r thonormal  basis), the 
function am(f) will generally not  be the best m-term approx imaton  f rom Era(79)- 
We refer the reader to the paper  o f  Davis et al. [5] for an interesting s tudy of  the 
Pure Greedy Algori thm. 



R.A. De Vore, V.N. Temlyakov / Greedy algorithms 177 

It is interesting therefore to ask what rate of approximation is achievable by 
specific numerical algorithms such as the Greedy Algorithm. We shall prove in 
section 3 that for a general dictionary D, the Pure Greedy Algorithm provides 
the following estimate: 

IIf- Gm(f)ll <-lfl.4,(v)m -~/6. (1.8) 

We see here that the estimate (1.8) is not as good as the estimate (1.5) and it remains 
an open question whether (1.8) can be improved. 

On the other hand, we shall show that the Greedy Algorithm will not provide 
the estimate (1.5) when c~ > 1/2. We show for example in section 4, that there 
is a dictionary D = B t_l {+g} with B given by an orthonormal basis and g one addi- 
tional function from H, such that the function f = ah~ + bh2 (with appropriately 
chosen a, b) will not be approximated with error better than O(rn-m). 

There are modifications of the Greedy Algorithm with favorable approximation 
properties. We mention two of these: the Greedy Algorithm with Relaxation, and 
the Orthogonal Greedy Algorithm. 

There are several variants of relaxed greedy algorithms. One can find some 
variants of relaxed greedy algorithms and their application for different dictionaries 
in [1] and [2]. We shall consider the following. 

Relaxed Greedy Algorithm 
We define R~o(f) := R~o(f,D) : = f  and Gro(f) := G ; ( f , D )  := 0. For m = 1, we 
define G (f) := := G~(f) and R~(f) := R~(f,D) := Rl(f) .  Let, as 
before, for a function h E H, g = g(h) denote a function from D which maximizes 
(h, g). Then, for each rn _> 2, we inductively define 

Grin(f) := G~m(f ,D) := ( 1 - 1 ) G ~ _ l ( f ) + l g ( R r m _ , ( f ) ) ,  

Rr ( f  ) := R~m(f , V) : = f  - G~m(f ). 

As was pointed out to us by Andrew Barron, it was shown in [2] that for any 
function f E A1 (D), the Relaxed Greedy Algorithm provides the approximation 
order 

tlf- G~,(f)ll <_ C m-~/2, m = 1,2, . . . .  

For a proof of this see section 3. Thus, the Relaxed Greedy Algorithm gives a con- 
structive proof of the estimate (1.5) in the case a = 1/2. We should also mention 
that an estimate of the form O(m -min{1/2'l-l/p}) for approximation in Lp was 
given in [2]. 

The Pure Greedy Algorithm chooses functions gj := G(Rj(f)), j = 1 , . . .  ,m 
to use in approximating f .  One of the deficiencies of the Greedy Algorithm 
is that it does not provide the best approximation from the span of g~,...,gm. 
We can modify the Greedy Algorithm as follows to remove this deficiency. 
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If  H0 is a finite-dimensional subspace of H, we let PHo be the orthogonal 
projector from H onto H 0. That is, PHo (f)  is the best approximation t o f  from H 0. 

Orthogonal Greedy Algorithm 
We define Rg(f )  := Rg(f,'D) : = f  and G~(f) := Gg(f,D) := O. Then for each 
m _> 1, we inductively define 

Hm :=H, , , ( f ) :=  span{g( R ; ( f  ) ), . . . ,g( R°m_l ( f  ) ) } , 
G°,,(f) :=G°(f ,D)  := en,,,(f), 
R ° ( f )  :=R°,( f ,  7)) : = f  - G°,(f). 

Thus, the distinction between the Orthogonal Greedy Algorithm and the Greedy 
Algorithm is that the Orthogonal Greedy Algorithm takes the best approxima- 
tion from the functions G(R~(f)) , . . . ,G(R°,_I( f))  generated at each iteration. 
The first step of  the Orthogonal Greedy Algorithm is the same as the Pure 
Greedy Algorithm. 

We prove in section 3 that the Orthogonal Greedy Algorithm satisfies the 
estimate 

llf - G°,,(f ,D)II <- Ifl.4,(v) m-v2, (1.9) 

which is the same as (1.5) for the case a = 1/2. 

2. P r o o f  o f  t h e o r e m  1.1 

For the sake of completeness of our discussion in this paper, we begin with the 
case when D = B is given by an orthonormal basis {hk}k~=l for H and prove 
theorem 1.1. We shall use the following lemma about numerical sequences. 

Lemma 2.1 
If (ak)~-i is a non-increasing sequence of nonnegative numbers and 

2 or,, := y'~'~=,, ak 2, then for any 0 < 7- < 2 and a := 1/7- - 1/2, we have 

cl t~=la~m)<-km =, [m'~Crm]~" <_c2{y~a~J\,,, = 1 / (2.1) 

with the constants cl, c2 > 0 depending only on 7-. 

Proof 
We have 

a2m <_ a2m_ 1 ~ m -1/2 
2),2 

ak ~ m-l/2Crm . 
\k=m 
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Raising this inequality to the power -r, summing, and using the fact that 
- r / 2  = a'r - 1, we derive the left inequality in (2.1). In the other direction, we have 

cr2.,= I ~ a  2} < ~2ka~k < 

because an g2-norm does not exceed an gT-norm. It follows that 

O0 O0 O0 O0 O0 

2m~ro'~m < ~ 2 mar ~ 2kr/2ar2k < C  ~ 2kc~r2kr/2ar2k = C  ~_j 2 kar2k, 
m= 1 m=l k=m k= 1 k=l 

where for the last inequality we reversed the order of summation and for the last 
equality we used the relation ar+'r /2  = 1. The right inequality in (2.1) now 
follows from the monotonicity of the sequences (O'm) and (am). [] 

Proof of theorem 1.1 
Let f E H and let 0 c, hk> be its coefficients with respect to the orthonormal basis 
B = {hk}~=l- We let (ak) be the decreasing rearrangement of  the sequence 
(l(f, hk)l). The numbers cr m as defined in lemma 2.t are the same as Crm_l(f,B ), 
m = 1,2 . . . .  Thus theorem 1.1 follows from lemma 2.1. [] 

3. U p p e r  b o u n d s  for  a p p r o x i m a t i o n  by general  d i c t i o n a r i e s  

We shall next discuss approximation from a general dictionary 79. We begin with 
a discussion of the approximation properties of the Relaxed Greedy Algorithm. 
The result we give below in theorem 3.2 is known and can be found for example 
in the papers of Jones [4] in a different form. We begin with the following elemen- 
tary lemma about numerical sequences. 

Lemma 3.1 
If A > 0 and (am) is a sequence of  nonnegative numbers satisfying a I < A and 

2 A 
- - - a m - I  + m = 2, 3, (3.1) am < am-i m -~  ' " '" 

then 

A 
am < - - .  (3.2) 

m 

Proof 
The proof  is by induction. Suppose we have 

A 
am-1 ~-~ - -  m - 1  
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for some m > 2. Then from our assumption (3.1), we have 

A ( 2 )  A ( 1  l t _ l )  h 
a m < - -  1 - = A  - - - m -  1 +m--~ (m 1)m ~-2--<--m 

I f f  E .A~(79, I), t h e n f  = ~-]FJgJ, for some gj E 79 and with ~ / [c j l  <_ 1. Since the 
functions gj all have norm one, it follows that 

[If l[ < Z leJll]g/11 < 1. 
J 

Since the functions g c 79 have norm one, it follows that G] ( f )  = G~ ( f )  also has 
norm at most one. By induction, we find that [IGr(f)[[ < 1, m > 1. [] 

Theorem 3.2 
For the Relaxed Greedy Algorithm we have for e a c h f  E A1 (79, 1), the estimate 

2 
[ I f - G ~ , ( f ) [ [  _<----~_~_, m > 1. (3.3) 

x/rn 

Proof 
We use the abbreviated notation rm := G~,(f)  and gm := g(R,~_l( f)) .  From the 
definition of  r.,, we have 

[If-rml[2 = [[ f  --  rm-~[[2 + 2 ( f - r " - l ' r m - ' m  -gin) + ml---~ [Ir,.-1- g,,[[2. (3.4) 

The last term on the right hand side of (3.4) does not exceed 4/m 2. For the middle 
term, we have 

( f  - r,,_l, rm-l - gin) = in f ( f  - rm-~, rm-, - g) gE.o 

= inf ( f - r , , _ l , r r , _ l - ¢ )  
CeA~ if'J) 

< ( f  - r m _ l , r m _  I - f )  

= - l l f -  rm-1 iI 2. 

Here, to derive the second inequality we use the fact that 4~ = ~ ckgk with gk E 79, 
c k > 0, and ~ c k = 1. Returning to (3.4), we obtain 

( 2 )  4 
11 / -  rml[ 2 < 1 - 117 - -  rm_ 1 II 2 + m--- 5 . 

Thus the theorem follows from lemma 3.1 with A = 4 and am := liT - r,,,ll 2. [] 

Remark 
The Relaxed Greedy Algorithm is not homogeneous.  We can make it homogeneous 
by changing the definition for m > 2 as follows: 

G ~ ( f )  := ( 1 - 1 ) G ~ _ l ( f ) - ~  []fl]'a~(V) 
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For  this modification, we can prove (3.3) with the right hand side multiplied by 

Ilfll ,( ). 
With this last theorem, we can prove now a general estimate for the error in 

approximation of  f unc t i ons f  E A~(79), 7- < 1. 

Theorem 3.3 
I f f  E .At(79), ~- _< 1, then for a := 1/~- - 1/2, we have 

o-re(f, 79) < cl f[~(v)m -~, m = 1 ,2 , . . . ,  

where c depends on 7- if 7- is small. 

(3.5) 

P r o o f  
It is enough to prove (3.5) for func t ions f  which are a finite s u m f  = ~ jcj&, & E 79, 
with  jlcjl <__ MT-. Indeed, these functions are dense in J1.~(79, M)  (by the defini- 
tion of  A~(79, M )). It is also enough to prove (3.5) for m = 2n even. Without  loss 
of  generality we can assume that the cj are positive and nonincreasing. We let 
sl := ~ )~ ic jg j  and Rl : = f  -- sl = ~j>,,cjgj. Now, 

! 'j lcjl M~ T 7" c. < _< - -  
n 

Hence cj <_ Mn -1/7-, j > n. It follows that 

~-"ct-~c 7- < M1-7-nl-1/7- ~ ' c  ~. < Mnl-l/7-. Z c j = z _ ,  j J -  ~ J -  
j>n j>n i>n 

Hence, Rl is in .3,1 (79, Mnl-1/r). According to theorem 3.2, there is a function s2 
which is a linear combination of  at most n of  the g E 79 such that 

[ I f -  + sz)ll = IIR, - s211 _< 2Mnl-Urn-1/2 = 2Mn-~, 

and (3.5) follows. [] 

We now turn our analysis to the approximation properties of  the Pure Greedy 
Algorithm and the Orthogonal  Greedy Algorithm. 

We shall need the following simple known lemma. 

Lemma 3.4 
Let {am}m°°=l be a sequence of  non-negative numbers satisfying the inequalities 

al <_ A, am+ l < am(1 - am/A), m = 1,2, . . . .  

Then we have for each m 

a m < A / m .  

Proof 
The proof  is by induction on m. For  m = 1 the statement is true by assumption. We 
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assume am < A/m and prove that a,,+l < A/(m + 1). If  a,,+l = 0 this statement 
is obvious. Assume therefore that am+l > 0. Then, we have 

-1 am+ 1 > a~nl(1 - -am~A)  -1 > aml(1 + a m / A  ) =a~n I A-A -1 > (mq- 1)A -1, 

which implies a,,,+l < A/(m + 1) . [] 

We want next to estimate the decrease in error provided by one step of  the Pure 
Greedy Algorithm. Let 79 be an arbitrary dictionary. I f f  C H and 

P(f) := ( f ,g(f)) / l t f l l ,  (3.6) 

where as before g(f)  E 79 satisfies 

( f  ,g( f  )) = sup ( f  ,g). 
gE~9 

Then, 

R ( f )  2 = t l f  - a ( f ) l [  2 = ]lfll2( 1 - p ( f ) 2 ) .  (3.7) 

The larger p(f)  is, the better the decrease of  the error in the step of the Pure Greedy 
Algorithm. The following lemma estimates p(f)  from below. 

Lemma 3.5 
I f f  E .Ai (79, M), then 

P(f) >_ Ilfll/M. (3.8) 

Proof 
It is sufficient to prove (3.8) f o r f  E A~(D, M) since the general result follows from 
this by taking limits. We can w r i t e f  = ~ Ckgk where this sum has a finite number 
of terms and gk E D and ~ I ckl < M. Hence, 

Ilfl12 = ( f  , f )  = ( f  , Z ckgk) = E ck(f 'gk) < Mp( f  )llfll, 

and (3.8) follows. [] 

Theorem 3.6 
Let D be an arbitrary dictionary in H. Then for e a c h f  E A1(79) we have 

l l f -  Gm(f ,D)[I < If  tAt(D) m-~/6" 

P r o o f  
It is enough to prove the theorem f o r f  E .A1(79, 1); the general result then follows 
by rescaling. We shall use the abbreviated notation fm := Rm(f) for the residual. 
Let 

am := Ilfmll 2 = [[f-am(f,D)[[ z, m = 0 , 1 , . . . ,  f0 : = f  
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and define the sequence (bin) by 

b0 := 1, bm+~ := bm + P(fm)llfmll, m = O, 1, . . . .  

Since f,,+~ :=f,,  - P(fm)Ilfmllg(f , . ) ,  we obtain by induction that 

fm Ec41(D,b,, ,)  , m = O ,  1, . . . ,  

and consequently we have the following relations for m = O, I , . . .  

am+ I = am(1 -- p(fm)2), 

b,,,+, = b m -t- p( fm)a~ 2, 

p(f,,,) >_ a]/267,, I. 

The last two relations give 

b,,+, = bin(1 + p(fm)a~2bm l) < bin(1 + p(fm)2). 

Combining this inequality with (3.9) we find 

a,,,+,b,,,+, <_ a,,,bm(1 - p(fm),), 

which in turn implies for all m 

ambm< aobo = il/II z _< 1. 

Further, using (3.9) and (3.11) we get 

am+, = am(1 - p(fm) 2) <_ am(1 - am/b2m). 

Since bm <_ b,,,+l, this gives 

- 2  am+lbm+l <_ ambT,,2(1 - ambmZ). 

Applying lemma 3.4 to the s e q u e n c e  (umbra 2) we obtain 

ambm 2 < m -1. 

The relations (3.13) and (3.14) imply 

a 3 = (ambm)2ambm 2 < m -1. 

In other words, 

which proves the theorem. 

1/2 II/o, II = am <-- m-l~6, 

1 8 3  

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

The next theorem estimates the error in approximation by the Orthogonal 
Greedy Algorithm. 

O 
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Theorem 3 . 7  

Let 7) be an arbitrary dictionary in H. Then for e a c h f  E .A1 (D, M ) we have 

I l f -  G°m(f, 7))ll -< Mm-1/2. 

Proof 
The proof of this theorem is similar to the proof of theorem 3.6 but technically even 
simpler. We can again assume that M = 1. We le t f  ° := R°( f )  be the residual in the 
Orthogonal Greedy Algorithm. Then, from the definition of Orthogonal Greedy 
Algorithm, we have 

Ilf°+lll _< llf °, - G~(f°,/~)ll . (3.15) 

From (3.7), we obtain 

lifO+, Ii = ~ ilfOmll2(1 _ p(fO)2). (3.16) 

By the definition of the Orthogonal Greedy Algorithm, G°( f )  = Pn.,f and hence 
f o  = f  _ GO(f) is orthogonal to G°(f) .  Using this as in the proof of lemma 3.5, 
we obtain 

[[foll 2 = (f°m,f) <_ p(f°)llf°ll. 
Hence, 

p(fO ) >__ IlfOll. 

Using this inequality in (3.16), we find 

Ilf°+~H 2 ~ Hf°,H2(1 -I l f°H2).  

In order to complete the proof it remains to apply lemma 3.4 with A = 1 and 
am = [[fo[]2. [] 

4. A lower estimate for the Pure Greedy Algor i thm 

In this section we shall give an example which shows that replacing a dictionary 
B given by an orthogonal basis by a nonorthogonal redundant dictionary 7) 
may damage the efficiency of the Pure Greedy Algorithm. The dictionary D in 
our example differs from dictionary/3 by the addition of the two elements ±g  
for a certain suitably chosen g. 

Let {hk}~=l be an orthonormal basis in a Hilbert space H and let/3 = {-I-hk}~°=l 
be the corresponding dictionary. Consider the following element 

g "= A h  1 -[- A h  2 -4- a A  ~-~(k(k + 1))-l/2hk 
k>_3 
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with 

A :=  (33/89)  I/2 a n d  a :=  (23/11) l/z. 

Then ,  tlgll = 1. We define the d ic t ionary  D = B t0 {-t-g}. 

Theorem 4.1 
F o r  the func t ion  

f =  h: +ha, 

which  is in each space A,(D), 0 < ~- < 2, we have 

I I f -  Gm(f)ll  _> m -V2, m >_ 4. (4.1) 

Proof 
We shall examine  the steps o f  the Pure  Greedy  A l g o r i t h m  appl ied  to the func t ion  
f = hi + h2. We  shall use the abbrevia ted  n o t a t i o n f ,  := Rm(f) : = f  - G,,(f) for  
the residual  at  step m. 

The first step. We have 

( f , g )  = 2A > 1, I ( / ,hk)]  < 1, 

This  implies  

and  

Gi ( f ,  D) = (f,  g)g, 

k =  1,2, . . . .  

fi = f -  (f ,g)g = (1 - 2A2)(h: + h2) - 2aA 2 Z ( k ( k  + 1))-V2hk. 
k>3 

The second step. We have  

( f l , g )  = 0 ,  ( f : ,hk)  = (I - 2 A 2 ) ,  

C o m p a r i n g  (f~, hi) and  I(J], h3)l we get 

I(fl ,h3)l  = (23 /89) (33 /23)  t/2 > 23/89  = 1 - 2A 2 = (ft,hl). 

This  implies  tha t  the second a p p r o x i m a t i o n  GI ( f t ,  D) is ( f l ,  h3)h3 and  

f2 = f l  - (fa, h3)h3 = (1 - 2A2)(h,  + h2) - 2aA 2 Z ( k ( k  + l))-1/2hk. 
k_>4 

k = 1,2, ( f l ,h3)  = -aA23-:/2. 
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The third step. We have 

(f2,g) = -( f l ,h3)(h3,g)  = (A/2)(23/89), 

( J ~ , h l )  = ( J ~ , h 2 )  = 1 - 2 A  2 = 2 3 / 8 9 ,  

(f2, h4) = - a A  25-1/2 = _(23/89)(99/115)  1/2. 

Therefore,  the third approximat ion  should be (fz,hl)hl or (f2, h2)h2. Let us take 
the first of  these so that  

f3 =f2 - (f2,hl)hl. 

The fourth step. It is clear that  for all k ¢ 1 we have 

(f3,hk) = (f2,hk). 

This equality and the calculations f rom step 3 show that  it is sufficient to compare  
(f3, h2) and (f3, g) • We have 

(f3,g) = (f2,g) - (f2,h~)(h~,g) = - (23/89) (A/2) .  

This means that  

f4 = f 3  - (J3, h2)h2 = - 2 a A  2 Z ( k ( k  + 1))-X/2hk • (4.2) 
k>4 

The m-th step (m > 4). We prove by induct ion that  for all m > 4 we have 

fm = -2aA2 Z ( k (  k + 1))-'/2hk. (4.3) 
k>m 

For  m = 4 this relation follows f rom (4.2). We assume we have proved (4.3) for 
some m and derive that  (4.3) also holds true for m + 1. To  find fr~+l, we have 
only to compare  the two inner products:  (fro, hm) and (fro,g). We have 

[(fm, hm)[ = 2aA2(m(m + 1)) -1/2 

and 

Since 

we have that  

l(f.,,g)l = 2a2A3 Z ( k (  k + 1)) -1 = 2a2A3m-1. 
k>>.m 

(l(fm,g)l/l(fm, hm)l) 2 = (aA)2(1 + 1/m) < 345/356 < 1, 

](fm,g)l < I(fm, hm)l, m >_ 4. 

This proves (4.3) with m replaced by m + 1. 
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F r o m  (4.3), we  o b t a i n  

[ I f -  Gm(T,D)II = [If, nil = 2aA2m-'/2 > m-I~2, m > 4 .  
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