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SOME REMARKS ON HILBERT–SPEISER AND
LEOPOLDT FIELDS OF GIVEN TYPE

BY

JAMES E. CARTER (Charleston, SC)

Abstract. Let p be a rational prime, G a group of order p, and K a number field
containing a primitive pth root of unity. We show that every tamely ramified Galois
extension of K with Galois group isomorphic to G has a normal integral basis if and only
if for every Galois extension L/K with Galois group isomorphic to G, the ring of integers
OL in L is free as a module over the associated order AL/K . We also give examples, some
of which show that this result can still hold without the assumption that K contains a
primitive pth root of unity.

1. Introduction. Throughout the present article p is a rational prime,
the ring of integers in a number field F is denoted by OF , and Cl(OF )
denotes the ideal class group of F of order hF . If F is a finite extension of
the p-adic numbers Qp, then OF denotes the valuation ring in F , and ON

denotes the integral closure of OF in a finite extension N/F of F .

Now let G be a finite group and let K be a number field. If L/K is a
Galois extension with Galois group G then OL is a module over the integral
group ring OKG by way of the Galois action of G on L. If OL is free as an
OKG-module, necessarily of rank one, we say L/K has a normal integral
basis. It is well known that L/K has such a basis only if L/K is tame, that
is, at most tamely ramified. If L/K is not tame, we can still ask for a freeness
result. To do this we consider the associated order AL/K contained in the
K-algebra KG. It consists of all elements α of KG such that αOL ⊆ OL.
Of course OKG ⊆ AL/K and, as is well known, L/K is tame if and only if
OKG = AL/K . Moreover, for L/K tame or otherwise, it may happen that
OL is a free AL/K-module.
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Let us now consider all finite abelian extensions of K. If for each such
extension L/K, OL is free as a module over AL/K , then we call K a Leopoldt
field. In [10] Leopoldt showed that the rational field Q is such a field. A
simplified version of the proof of this result can be found in [11]. Note that
if K is a Leopoldt field then it has the property that for any finite abelian
group G and any tame Galois extension L/K with Galois group G, OL is a
free OKG-module. Thus we recover the famous result of Hilbert and Speiser:
Every tame finite abelian extension of Q has a normal integral basis. Any
number field sharing this property with Q is called a Hilbert–Speiser field.
From [7] we know that Q is the only such field. In other words, we have the
following theorem.

Theorem 1.1. Let K be a number field. Then K is a Hilbert–Speiser
field if and only if K is a Leopoldt field.

Evidently, freeness for all tame finite abelian extensions is enough to
guarantee freeness for all finite abelian extensions. This result suggests a
conjecture regarding a restricted case of its statement which we next ex-
plain.

Let G be a finite abelian group. A number field K is called a Leopoldt field
of type G if OL is a free AL/K-module whenever L/K is a Galois extension
with Galois group isomorphic to G. If K satisfies the condition that all of
its tame Galois extensions with Galois group isomorphic to G have a normal
integral basis, then we call K a Hilbert–Speiser field of type G. These fields
have been studied, for instance, in [3], [4], [8], [9] and [15].

Conjecture 1.1. Let G be a finite abelian group and let K be a number
field. Then K is a Hilbert–Speiser field of type G if and only if K is a Leopoldt
field of type G.

We will provide some limited evidence in support of Conjecture 1.1 in
the form of the following theorem and some examples in Section 4.

Theorem 1.2. If G is a finite group of order p and K is a number field
which contains a primitive pth root of unity , then K is a Hilbert–Speiser field
of type G if and only if K is a Leopoldt field of type G.

The nontrivial implication of Theorem 1.1 follows from the fact that Q

is a Leopoldt field, and the fact proved in [7] that Q is the only Hilbert–
Speiser field. Using results of [7], the following result is proved in [8] (see [8,
Proposition 1]).

Proposition 1.1. Let G be a group of order p and let K be a number
field containing a primitive pth root of unity. If p ≥ 5 then K is not a
Hilbert–Speiser field of type G.
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It follows from Proposition 1.1 that Theorem 1.2 is true for all p such
that p ≥ 5. In what follows we will show that it is true in the remaining two
cases as well.

2. Realizable classes. Let G be a finite group and let K be any num-
ber field. Let L/K vary over all tame Galois extensions of K with Galois
group isomorphic to G. Then the class of OL in the locally free class group
Cl(OKG) varies over a subset R(OKG) of realizable classes of Cl(OKG).
In [14] it is shown that when G is abelian then R(OKG) is a subgroup
of Cl(OKG). Hence, for a finite abelian group G we deduce that K is a
Hilbert–Speiser field of type G if and only if R(OKG) is the trivial sub-
group of Cl(OKG).

Now suppose G is an elementary abelian group and K is any number
field. In [13], R(OKG) is determined in terms of the kernel of a certain map
defined on Cl(OKG). When G has order 2 or 3 this result is the following
proposition, which is Theorem 1 of [3].

Proposition 2.1. Let G be a group of order 2 or 3. Then

R(OKG) = Cl′(OKG)

where Cl′(OKG) is the kernel of the map ε∗ : Cl(OKG) → Cl(OK) which is
induced by the augmentation map ε : OKG → OK .

From now on Cp is a group of order p. Let K be a number field and let M

be the maximal OK-order in KCp. The inclusion map OKCp → M induces
a map from Cl(OKCp) onto the locally free class group Cl(M) giving rise
to the well-known exact sequence

(1) 0 → D(OKCp) → Cl(OKCp) → Cl(M) → 0.

The following result due to C. Greither is presented on pp. 268–269 of [3].
We slightly modify its statement and proof here in order to adapt them to
our present needs.

Proposition 2.2. Let K be a number field which contains a primitive
pth root of unity. If p equals 2 or 3 then there is an exact sequence

0 → D(OKCp) → R(OKCp) →
p−1⊕

i=1

Cl(OK) → 0.

Proof. Since K contains a primitive pth root of unity we have Cl(M) ≃⊕p
i=1 Cl(OK). From this and (1) we obtain an exact sequence

(2) 0 → D(OKCp) → Cl(OKCp) →
p⊕

i=1

Cl(OK) → 0.
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Also, in the notation of Proposition 2.1, there is an exact sequence

(3) 0 → Cl′(OKCp) → Cl(OKCp) → Cl(OK) → 0.

Finally, we have the exact sequence

(4) 0 →
p−1⊕

i=1

Cl(OK) →
p⊕

i=1

Cl(OK) → Cl(OK) → 0

where the maps are the appropriate inclusion and projection maps. The
sequences (2), (3), and (4) yield the following diagram:

(5)

0 0

↓ ↓
Cl′(OKCp)

⊕p−1
i=1 Cl(OK)

↓ ↓
0 → D(OKCp) → Cl(OKCp) → ⊕p

i=1 Cl(OK) → 0

↓ ↓
Cl(OK) = Cl(OK)

↓ ↓
0 0

One easily verifies that (5) is commutative. Hence there is a unique map

α : Cl′(OKCp) → ⊕p−1
i=1 Cl(OK) completing the diagram. Applying the

snake lemma to the two vertical exact sequences and maps between them
gives an exact sequence

0 → ker(α) → D(OKCp) → 0 → coker(α) → 0.

Hence, α is surjective with kernel D(OKCp). Finally, if p = 2 or p = 3 we
have Cl′(OKCp) = R(OKCp) by Proposition 2.1.

Corollary 2.1 (cf. [8, Proposition 2]). Let K be a number field which
contains a primitive pth root of unity. If p equals 2 or 3 then the following
are equivalent :

(i) K is a Hilbert–Speiser field of type Cp.
(ii) hK = 1 and D(OKCp) is trivial.
(iii) Cl(OKCp) is trivial.

Proof. This is an immediate consequence of Proposition 2.2 and (2).

3. Main result. Let G be a finite abelian group and K a number field,
or a finite extension of the field of p-adic numbers Qp. Let L/K be a Galois
extension with Galois group G. Many authors have considered the problem
of determining when OL is free as a module over AL/K , or, in the global case,
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at least locally free over AL/K . In addition to the references already cited,
see, for instance, [5] and [12] and the appropriate references listed in these
papers. Some of these results lead to a proof of the following proposition.

Proposition 3.1. Let K be a number field which contains a primitive
pth root of unity. Suppose L/K is a Galois extension with Galois group Cp.
If p equals 2 or 3 then OL is a locally free AL/K-module.

Proof. If p = 2 then OL is a locally free AL/K-module by [5, Theorems
2.1 and 17.3].

To finish the proof we consider the following situation. Let M be a finite
extension of the field of 3-adic numbers Q3, and assume M contains a prim-
itive cube root of unity. Let p be the prime ideal of M with corresponding
valuation ring OM . Let N/M be a Galois extension with Galois group C3

and assume p ramifies in N/M . The proposition will follow if we can show
that the integral closure ON of OM in N is a free AN/M -module. To this
end let e be the absolute ramification index of M , and let t be the rami-
fication number of N/M . Since M contains a primitive cube root of unity
we have e = 2e1 for some positive rational integer e1. It is well known that
1 ≤ t ≤ 3e1. If t ≡ 0 (mod3) (resp. 1 ≤ t < 3e1 − 1 and t 6≡ 0 (mod3)), then
ON is a free AN/M -module by part a (resp. part b) of the theorem appearing
on p. 1333 of [2]. Finally, if t = 3e1 − 1 then ON is a free AN/M -module by
[1, Theorem 1].

We can now prove our main result.

Proof of Theorem 1.2. As already noted, Theorem 1.2 is true if p ≥ 5
by Proposition 1.1. Now suppose either p = 2 or p = 3. Let K be a number
field containing a primitive pth root of unity and assume K is a Hilbert–
Speiser field of type Cp. Let L/K be any Galois extension with Galois group
isomorphic to Cp. By Proposition 3.1, OL is a locally free AL/K-module.
Since Cl(OKCp) is trivial by Corollary 2.1 and maps onto Cl(AL/K) by
[6, 49.25(iii)], it follows that Cl(AL/K) is trivial. So the class of OL in
Cl(AL/K) is trivial, which shows that OL is a free AL/K-module. Hence,
K is a Leopoldt field of type Cp. Since the other implication of Theorem 1.2
is clear this concludes the proof.

4. Examples

Example 4.1. Among all imaginary quadratic fields there are exactly
three Hilbert–Speiser fields of type C2 by [3, Corollary 3]. They are the
fields Q(

√
m) where m ∈ {−1,−3,−7}. Hence, by Theorem 1.2 these fields

are Leopoldt fields of type C2 as well. The fact that among all imaginary
quadratic fields these fields are precisely the Leopoldt fields of type C2 is
also proved in [15].
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Example 4.2. Let Z be the ring of rational integers and let m ∈ Z with
m > 1 and square free. Let εm be the fundamental unit of the real quadratic
field Q(

√
m). Then either εm = a + b

√
m or εm = (a + b

√
m)/2 where

a, b ∈ Z, and the greatest common divisor (2, ab) is 1. By [3, Corollary 4],
Q(

√
m) is a Hilbert–Speiser field of type C2 exactly when its class number

equals 1 and one of the following holds: (i) m ≡ 1 (mod8); (ii) m ≡ 5 (mod8)
and εm 6∈ Z[

√
m]; (iii) m ≡ 2 or 3 (mod4) and (2, b) = 1. For 1 < m < 100

such that the class number of Q(
√

m) is 1 we find: m satisfies (i) if m ∈
{17, 33, 41, 57, 73, 89, 97}; m satisfies (ii) if m ∈ {5, 13, 21, 29, 37, 53, 61, 69,
77, 93}; m satisfies (iii) if m ∈ {2, 3, 7, 11, 19, 23, 31, 43, 47, 59, 67, 71, 83}.
Hence, for these values of m, Q(

√
m) is a Leopoldt field of type C2 by

Theorem 1.2.

Example 4.3. Among all quadratic fields there are exactly twelve Hil-
bert–Speiser fields of type C3 by [4, Corollary 5] or [9, 5.3]. They are the fields
Q(

√
m) where m ∈ {−11,−3,−2,−1, 2, 3, 5, 6, 17, 33, 41, 89}. By Theorem

1.2 the field Q(
√
−3) is a Leopoldt field of type C3. We next show that the

remaining eleven fields are also Leopoldt fields of type C3.

Let ω be a primitive cube root of unity and assume K is a number field
satisfying ω 6∈ K. After some routine changes, the proof of the p = 3 case
of Proposition 2.2 becomes the argument on p. 268 of [3]. As shown there,
that argument gives the exact sequences

(6) 0 → D(OKC3) → Cl(OKC3) → Cl(OK) ⊕ Cl(OK(ω)) → 0

and

(7) 0 → D(OKC3) → R(OKC3) → Cl(OK(ω)) → 0.

Now suppose K is one of our eleven remaining fields. Since K is a Hilbert–
Speiser field of type C3 we see from (7) that hK(ω) = 1 and D(OKC3) is
trivial. Hence, Cl(OKC3) ≃ Cl(OK) by (6). Since hK = 1 it follows that
Cl(OKC3) is trivial. So if K is one of our eleven remaining fields and L/K
is any Galois extension with Galois group isomorphic to C3,then Cl(AL/K)
is trivial by [6, 49.25(iii)]. Therefore, the example will be complete once we
prove the following proposition.

Proposition 4.1. Let K be a quadratic field and let L/K be a Galois
extension with Galois group isomorphic to C3. Then OL is a locally free
AL/K-module.

Proof. The proof is similar to the proof of the p = 3 case of Proposition
3.1. Let M be a quadratic extension of the field of 3-adic numbers Q3, and
let e be the absolute ramification index of M . Let p be the prime ideal of M
with corresponding valuation ring OM . Let N/M be a Galois extension with
Galois group isomorphic to C3. Let ON be the integral closure of OM in N .
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Assume p ramifies in N/M and let t be the ramification number of N/M .
We know that 1 ≤ t ≤ 3e/2. If e = 1 then t = 1. Hence, ON is a free
AN/M -module by [1, Theorem 1]. If e = 2 then t ∈ {1, 2, 3}. If t = 3 (resp.
t = 1) then ON is a free AN/M -module by part a (resp. part b) of the theorem
appearing on p. 1333 of [2]. If t = 2 then ON is a free AN/M -module by [1,
Theorem 1].
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