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SOME REMARKS ON INDICES
OF HOLOMORPHIC VECTOR FIELDS

Marco Brunella

Abstract
One can associate several residue-type indices to a singular point
of a two-dimensional holomorphic vector field. Some of these in-
dices depend also on the choice of a separatrix at the singular
point. We establish some relations between them, especially when
the singular point is a generalized curve and the separatrix is the
maximal one. These local results have global consequences, for ex-
ample concerning the construction of logarithmic forms defining a
given holomorphic foliation.

Let v be a holomorphic vector field defined on a neighborhood of
0 ∈ C2 and having there an isolated singularity. Baum and Bott have
associated to such a singular point two types of indices [BB], defined
through residues of suitable meromorphic 2-forms. One of these indices
is simply the Poincaré-Hopf index of v at 0, and so it is an integer posi-
tive number which gives the multiplicity of the singular point. The other
one has a more subtle meaning, and we shall call it the Baum-Bott index ,
BB(v, 0).

Let S be a separatrix of v at 0, i.e. a holomorphic curve invariant by v
and containing 0 (there are always separatrices, see [CS]). Camacho and
Sad, and later Lins Neto and Suwa, have defined an index CS(v, S, 0)
which, roughly speaking, represents the intersection index of the trajec-
tories of v with the separatrix S [Cs], [LN], [Su]. Gomez-Mont, Seade
and Verjovsky have defined another index GSV (v, S, 0) which is a sort
of Poincaré-Hopf index of the restriction of v to S [GSV].

Aim of this paper is to underline some simple properties of these in-
dices, and in particular to prove a relation between them for a rather
general class of isolated singularities: the class of generalized curves
[CLS], that is nondicritical singularities whose resolution does not con-
tain saddle-nodes. In [CLS] it is proven that the Poincaré-Hopf index
of such a singularity coincides with the Milnor number of the union of
all the separatrices S (which is still a separatrix, by nondicriticalness).
Here we prove that the Baum-Bott index also can be “localized” near S.
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Theorem. Let v be a holomorphic vector field near 0 ∈ C2, v(0) = 0,
and suppose that the singularity at 0 is a generalized curve. Let S be the
union of all the separatrices of v at 0. Then

BB(v, 0) = CS(v, S, 0)
GSV (v, S, 0) = 0.

This result is not so strange. The Baum-Bott index is something like a
“mean intersection index at 0” of the leaves of the foliation F generated
by v, whereas the Camacho-Sad index is related to the “intersection
index at 0” of the leaves of F with S. The leaves composing S\(0)
are the only leaves which go “directly” to 0, hence a relation between
BB(v, 0) and CS(v, S, 0) is not surprising: two leaves both different
from separatrices do not “intersect at 0”. The actual proof is obtained
by desingularization (the theorem is elementary for simple singularities,
different from saddle-nodes; and it is false for saddle-nodes), and by the
analysis of the variation of the indices under blow-ups. During the proof,
the notion of nondicritical separatrix will naturally emerge.

In the last section of the paper we will see some global consequences of
these types of results. We also include several remarks about BB, CS,
and GSV which are not strictly necessary to the proof of the theorem
above, but which may be useful for a geometric understanding of these
indices.

1. The Baum-Bott index

Let F be a holomorphic foliation with isolated singularities on a com-
plex surface X. Let p ∈ X be a singular point of F ; near p the foliation
is given either by a holomorphic vector field v = F (z, w) ∂

∂z +G(z, w) ∂
∂w

or by a holomorphic 1-form ω = F (z, w) dw − G(z, w) dz. Here (z, w)
are local coordinates centered at p and F , G, are holomorphic functions
with F−1(0) ∩G−1(0) = {(0, 0)}.

Let J(z, w) be the Jacobian matrix of (F,G) at (z, w), then following
[BB] we can defined two indices:

PH(F , p) = Res(0,0)

{
detJ
F ·G dz ∧ dw

}

BB(F , p) = Res(0,0)

{
(trJ)2

F ·G dz ∧ dw

}

(see [GH] for the background concerning residues). These indices are
well defined (i.e. they depend only on the conjugacy class of the germ of
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F at p), and they are easily computed when p is non degenerate, that is
when J(0, 0) is invertible: if λ, µ are the two eigenvalues of J(0, 0) then

PH(F , p) =
detJ(0, 0)
detJ(0, 0)

= 1

BB(F , p) =
(trJ(0, 0))2

det J(0, 0)
= 2 +

λ

µ
+

µ

λ
.

The index PH(F , p) is nothing else that the Poincaré-Hopf index of v at
p, hence it coincides with the multiplicity of the singular point and it can
be also computed as a degree of a suitable map [GH]. It follows from this
its topological invariance [CLS]. The index BB(F , p) has no meaning
at the algebraic topology level, but it can be computed in the following
way, à la Godbillon-Vey. On a pointed neighborhood U∗ = U\{p} of p
we may find a complex valued smooth 1-form β, of type (1, 0), such that

dω = β ∧ ω.

For example, we may set β = Fz+Gw

|F |2+|G|2 (F̄ dz + Ḡ dw). Using the coho-
mological interpretation of residues [GH] it is easy to verify that

BB(F , p) =
1

(2πi)2

∫
S3

β ∧ dβ

where S3 in a small sphere around p, oriented as a boundary of a small
ball containing p. It is in fact sufficient that β is defined on a neighbor-
hood of such a sphere.

If F is a foliation on a compact surface X then the sum of Baum-Bott
indices at singular points is equal to c21(NF ), where NF ∈ H1(X,O∗)
is the normal bundle of F (which can be defined even in presence of
singularities, [GM], [Br]). This is the Baum-Bott formula [BB], which
can be straightforwardly generalized to the following situation. Without
assuming the compactness of X, we consider a relatively compact domain
Y ⊂ X with ∂Y smooth and disjoint from the singular set of F , Sing(F).
We assume that NF is holomorphically trivial near ∂Y (even if this is
not completely necessary, the topological triviality would be sufficient),
hence F near ∂Y is given by a nonsingular holomorphic 1-form ω and we
still can construct a smooth (1, 0)-form β near ∂Y such that dω = β∧ω.
Then we define

BB(F , ∂Y ) =
1

(2πi)2

∫
∂Y

β ∧ dβ

with ∂Y oriented as boundary of Y , and of course this number does not
depend on the involved choices. The triviality of NF near the boundary
allows also to define c21(NF ) ∈ Z (here F = F|Y ).
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Proposition 1 [BB].

BB(F , ∂Y ) =
∑

p∈Sing(F)∩Y

BB(F , p) − c21(NF ).

We shall use this formula in the process of desingularization.
Let us return to the local situation, and let S be a separatrix of F at

p, that is a holomorphic curve on a neighborhood of p, containing p and
invariant by F . It is not assumed that S is smooth nor irreducible at p.
Using the 1-form β we may define the following index [KS]:

Var(F , S, p) =
1

2πi

∫
∂S

β

where ∂S = S ∩ S3 and S3 is again a small sphere around p; ∂S is
oriented as a boundary of S ∩ B4, with B4 a small ball containing p.
To give a consistent definition it is in fact sufficient that β is defined
only on a neighborhood of ∂S, and that dω = β ∧ω holds only at points
of ∂S.

Suppose now that S ⊂ X is a compact holomorphic curve invariant
by the foliation F .

Proposition 2 [KS].

∑
p∈Sing(F)∩S

Var(F , S, p) = c1(NF ) · S.

Propositions 1 and 2 are manifestations of the same principle. We
may find a covering U = {Uj} of X, holomorphic 1-forms with isolated
singularities ωj ∈ Ω1(Uj), smooth (1, 0)-forms βj ∈ A(1,0)(Uj), such that:

i) F |Uj is defined by ωj (hence on Uj ∩ Ui one has ωi = gijωj and
{gij} is a O∗-cocycle defining NF ).

ii) dωj = βj ∧ ωj on Uj\Vj , where Vj is a small neighborhood of
Sing(F) ∩ Uj .

iii) βi − βj = dgij

gij
on Ui ∩ Uj .

Then the 2-form Θ locally given by Θ = 1
2πidβj represents (in the

De Rham sense) the first Chern class of NF , hence c21(NF ) =
∫

X
Θ ∧ Θ,

c1(NF ) · S =
∫

S
Θ, and Propositions 1 and 2 follow.
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2. The Camacho-Sad index

Let us consider again a separatrix S at p ∈ X. Let f be a holomorphic
function on a neighborhood of p and defining S : S = {f = 0}. We may
assume that f is reduced, i.e. df �= 0 outside p. Then [LN], [Su] there
are functions g, k and a 1-form η on a neighborhood of p such that

gω = kdf + fη

and moreover k and f are prime, i.e. k �= 0 on S∗ = S\{p}. Remark
that on S we have gω = kdf , and the nonvanishing of k and df on S∗

guarantees that also g �= 0 on S∗.
The Camacho-Sad index [CS], [LN], [Su] is defined as

CS(F , S, p) = − 1
2πi

∫
∂S

1
k
η.

For example, let F be generated by v(z, w) = z(λ+· · · ) ∂
∂z +w(µ+· · · ) ∂

∂w ,
where the dots denote terms vanishing at (0, 0) = p and λ, µ �= 0. Let
S1 = {z = 0}, S2 = {w = 0}. Then [Su]

CS(F , S1, p) =
λ

µ

CS(F , S2, p) =
µ

λ

CS(F , S1 ∪ S2, p) = 2 +
λ

µ
+

µ

λ
.

This example shows that CS(F , ·, p) is not additive on the set of sep-
aratrices (whereas Var(F , ·, p) is). More precisely [Su], if S = S1 ∪ S2

then

CS(F , S, p) = CS(F , S1, p) + CS(F , S2, p) + 2(S1 · S2)p

where (S1 · S2)p is the local intersection number of S1 and S2 at p.
If S ⊂ X is a compact holomorphic curve invariant by F , one obtains

the following formula (see [KS] for a direct proof, without desingular-
ization).

Proposition 3 [CS], [LN], [Su].∑
p∈Sing(F)∩S

CS(F , S, p) = S · S.

Remark the consistency of this formula with the above discussion
around the non additivity of CS(F , ·, p).
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3. The Gomez-Mont-Seade-Verjovsky index

We continue with hypothesis and notations of the previous section.
Define

GSV (F , S, p) =
1

2πi

∫
∂S

g

k
d

(
k

g

)
.

Let us verify that this index coincides with the one introduced in [GSV].
Let us denote by J the isomorphism from 1-forms to vector fields induced
by a nonsingular holomorphic 2-form near p. The holomorphic vector
field J(ω) defines F and it can be decomposed as a sum of two mero-
morphic vector fields:

J(ω) =
k

g
J(df) +

f

g
J(η) = v1 + v2.

Observe that: i) on S we have J(ω) = v1; ii) v1 is tangent to Sε = {f =
ε}, ε �= 0 small; iii) v1|Sε has poles in correspondence of Sε ∩{g = 0} and
zeroes in correspondence of Sε ∩ {k = 0}. It is then clear that the index
defined in [GSV] coincides with the difference between the number of
zeroes and the number of poles of v1|Sε , i.e. with 1

2πi

∫
∂Sε

dk
k − dg

g =
1

2πi

∫
∂S

g
kd

(
k
g

)
= GSV (F , S, p).

Taking the example of the previous section, one finds

GSV (F , S1, p) = GSV (F , S2, p) = 1,
GSV (F , S1 ∪ S2, p) = 0

and, as CS, also GSV (F , ·, p) is not additive on the set of separatrices.
From Proposition 5 below, or by a direct computation as in [Su] for CS,
one finds that if S = S1 ∪ S2 then

GSV (F , S, p) = GSV (F , S1, p) + GSV (F , S2, p) − 2(S1 · S2)p.

If S ⊂ X is a compact curve invariant by F then one has the following
formula (in [KS] it is formulated, in an equivalent way, using the Schwarz
index, whose difference with the GSV index is the Milnor number of S
at p).

Proposition 4 [Br], [KS].∑
p∈Sing(F)∩S

GSV (F , S, p) = c1(NF ) · S − S · S.

In fact, Proposition 4 follows also from Propositions 2 and 3 and the
following relation between the three indices Var, CS, GSV .
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Proposition 5. If S is any separatrix at p then

Var(F , S, p) = GSV (F , S, p) + CS(F , S, p).

Proof: Observe that, at points of ∂S:

ω =
k

g
df

dω =
(
d

(
k

g

)
− 1

g
η

)
∧ df

hence dω =
(

g
kd

(
k
g

)
− 1

kη
)
∧ ω and consequently

Var(F , S, p) =
1

2πi

∫
∂S

(
g

k
d

(
k

g

)
− 1

k
η

)
= GSV (F , S, p) + CS(F , S, p).

The GSV index is, of course, an integer number, but it may be neg-
ative; this is the obstruction to the positive solution to “Poincaré prob-
lem” [Car], [Br], because in CP 2 the inequality c1(NF ) ·S ≥ S ·S means
deg(F)+2 ≥ deg(S). Here, after some definitions, we give a simple con-
dition (related to [Car]) that implies the nonnegativity of GSV .

We recall that the singular point p is nondicritical if F has only a
finite number of separatrices at p. This means that if π : X̃ → X is the
desingularization of F at p then π−1(p) is entirely F̃-invariant [CLS].
More generally, we shall say that a separatrix S of F at p is nondicritical
if there is a sequence of blow-ups π : X̂ → X, based at p, such that:

i) π is a resolution of S, i.e. Ŝ = π−1(S) is a curve with only normal
crossing singularities;

ii) π−1(p) is F̂-invariant.
For instance, if p is a nondicritical singular point of F then any sepa-
ratrix of F at p is nondicritical (take π = resolution of F in the above
definition). At the opposite case, if either S is smooth at p or S has
a normal crossing singular point at p then S is certainly nondicritical,
independently on F (take π = identity in the above definition).

Proposition 6. If S is a nondicritical separatrix at p then

GSV (F , S, p) ≥ 0.



534 M. Brunella

Proof: We shall prove the more general inequality

GSV (F , S′, p) ≥ (S′ · S′′)p

where S′ ⊂ S is a union of irreducible components of S and S′′ ⊂ S is
the union of those irreducible components which are not in S′. Let us
consider a function f : (X, p) → (C, 0) such that S = f−1(0), but only
in the set theoretic sense: if S1, . . . , SN are the irreducible components
of S and f1, . . . , fN their reduced equations, then f = fp1

1 · . . . · fpN

N ,
with pj positive integer numbers. As in [CLS], the idea is to compare
F with the foliation Gf given by the level curves of f , i.e. by the 1-form
f ·

∑N
j=1 pj

dfj

fj
(remark that if S is smooth then Gf is nonsingular, and

if S has a normal crossing singular point then Gf is linearizable). We
denote by ord(·, p) the order of a foliation at p, i.e. the vanishing order
at p of a 1-form generating the foliation near p.

Claim.

i) ord(F , p) ≥ ord(Gf , p)

ii) GSV (F , S′, p) ≥ GSV (Gf , S
′, p).

This claim is proven by induction on the (minimal) number n of blow-
ups appearing in the definition of nondicritical separatrix.

n = 0: easy verification, left to the reader.

n − 1 �→ n: let π : X̃ → X be a blow-up at p, D = π−1(p) its
exceptional divisor, S̃j the strict transform of Sj by π, F̃ = π∗(F),
G̃f = π∗(Gf ). The curve D is F̃-invariant, by nondicriticalness of S,
and clearly also G̃f -invariant. Each singular point q at G̃f on D is also a
singular point of F̃ ; near such a point G̃f is given by the levels of f̃ = f◦π,
and f̃−1(0) is a nondicritical separatrix of F̃ at q. The divisor D is an
irreducible component of this separatrix, hence, by induction hypothesis,

GSV (F̃ , D, q) ≥ GSV (G̃f , D, q).

The same inequality holds if q ∈ Sing(F̃)\Sing(G̃f ), because in that case
the left hand side index is at least 1 and the right hand side index is 0.
Now, using Proposition 4 and the fact that ord(F , p) = c1(NF̃ ) · D we
obtain
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ord(F , p) = −1 +
∑

q∈D∩Sing(F̃)

GSV (F̃ , D, q)

and similarly

ord(Gf , p) = −1 +
∑

q∈D∩Sing(G̃f )

GSV (G̃f , D, q).

Hence the first desired inequality ord(F , p) ≥ ord(Gf , p) follows from
GSV (F̃ , D, q) ≥ GSV (G̃f , D, q).

Let now mj be the order of Sj at p, so that f̃j = fj ◦ π vanishes on D
with order mj . Set M = ord(F , p), so that ω̃ = π∗ω vanishes on D with
order M . If qj ∈ D is the unique intersection point between S̃j and D,
then near qj we may write

ω̃ = tMω0

f̃j = tmjf0

where t is a local equation of D, ω0 has an isolated zero at qj , f0 is a
reduced equation of S̃j . The usual decomposition of ω,

gω = kdfj + fjη,

implies
g̃tMω0 = k̃tmjdf0 + f0(mjt

mj−1k̃dt + tmj η̃).

Hence GSV (F̃ , S̃j , qj) is given by

GSV (F̃ , S̃j , qj) =
1

2πi

∫
∂S̃j

g̃tM

k̃tmj
d

(
k̃tmj

g̃tM

)

=
1

2πi

∫
∂S̃j

g̃

k̃
d

(
k̃

g̃

)
+ (mj −M)

dt

t

=
1

2πi

∫
∂Sj

g

k
d

(
k

g

)
+ mj(mj −M)

= GSV (F , Sj , p) + mj(mj −M).

Similarly, if Mf = ord(Gf , p):

GSV (G̃f , S̃j , qj) = GSV (Gf , Sj , p) + mj(mj −Mf ).



536 M. Brunella

But GSV (F̃ , S̃j , qj) ≥ GSV (G̃f , S̃j , qj) by induction hypothesis, and we
have proven before that M ≥ Mf , so that

GSV (F , Sj , p) ≥ GSV (Gf , Sj , p)

and using the formula before Proposition 4 we finally obtain the second
inequality of the claim.

Let us return to the proof of Proposition 6. We take as f a re-
duced equation of S, then the 1-form generating Gf is simply df , so
that GSV (Gf , S

′, p) = (S′ ·S′′)p as a simple computation shows. By the
previous claim we obtain the desired result:

GSV (F , S′, p) ≥ (S′ · S′′)p.

Recall that the singularity of F at p is said to be a generalized curve if
it is nondicritical and there are no saddle-nodes in its resolution [CLS].
By nondicriticalness, the union of all separatrices of a generalized curve
is still a separatrix, the “maximal” one. In this case Proposition 6 can
be improved

Proposition 7. If the singularity of F at p is a generalized curve and
if S is the union of all separatrices then

GSV (F , S, p) = 0.

Proof: Using the same notations as in the previous proof, we have
now that the inequalities of the claim become equalities [CLS]. In fact,
looking at that proof, one sees that the only possibility to have a strict
inequality is that G̃f has on D less singularities than F̃ , and this cannot
happen in our situation [CLS], so we can prove the claim with equalities
instead of inequalities. Hence we obtain GSV (F , S′, p) = (S′ · S′′)p and
in particular GSV (F , S, p) = 0.

Remark. Suppose that S is a nondicritical separatrix satisfying
GSV (F , S, p) = 0, then, again, all inequalities appearing in Proposi-
tion 6 and its proof must become equalities, because we are in an ex-
tremal case. This means that the resolution of Gf is almost a resolution
of F . More precisely, if π : X̃ → X is the desingularization of S which
appears in the definition of nondicritical separatrix, then π∗(F) has only
nondegenerate singularities, and all these singularities are in correspon-
dence with the normal crossing points of π−1(S). The only difference
with the generalized curve case is that some of these singularities can be
dicritical (like nzdw −mwdz = 0, with n and m positive integers).
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4. The case of almost Liouvillean singularities

The singularity of F at p is called almost Liouvillean if there exist a
closed meromorphic 1-form γ0 and a holomorphic 1-form γ1 near p such
that

dω = (γ0 + γ1) ∧ ω.

If one can choose γ1 = 0 then p is called Liouvillean. The polar divisor
of γ = γ1 + γ0 is invariant by F : near a point q ∈ (γ)∞\(p) we may
choose coordinates (z, w) such that ω = adz, a ∈ O∗; if γ0 = bdz + cdw,
b, c meromorphic, then dγ0 = 0 means bw = cz and dω = γ ∧ ω implies
that c is holomorphic; hence cz also is holomorphic and consequently the
poles of b (i.e. of γ) are invariant by F .

Let ∪N
j=1Sj be the decomposition of S = (γ)∞ into irreducible com-

ponents. Each Sj is a separatrix of F at p; we denote by Res(γ0, Sj)
the residue of γ0 around Sj . We will say that the almost Liouvillean
singularity is simple if one can choose γ0 having only first order poles.

Proposition 8. If the singularity of F at p is a simple almost Liou-
villean singularity then

BB(F , p) =
N∑

j=1

Res(γ0, Sj) · Var(F , Sj , p).

Proof: Let γ′ be a holomorphic 1-form on a tubular neighborhood V
of ∂S such that dω = γ′ ∧ ω. Let φ ∈ C∞

c (V ) be equal to 1 on a smaller
neighborhood of ∂S. Then β = φγ′ + (1 − φ)γ is a smooth (1, 0)-form
on a neighborhood of S3, and dω = β ∧ ω. A simple computation gives
β ∧ dβ = dφ ∧ γ′ ∧ γ and so

∫
S3

β ∧ dβ =
∫
S3∩V

β ∧ dβ =
∫
S3∩V

d((1 − φ)γ ∧ γ′)

=
∫

∂(S3∩V )

γ ∧ γ′ =
∫

∂(S3∩V )

γ0 ∧ γ′.

We may choose holomorphic coordinates (z, w) near each ∂Sj , with z
varing on a neighborhood of the unit circle and w on a neighborhood of
zero, such that Sj = {w = 0} and ∂Sj = {w = 0, |z| = 1}. Then, on the
domain of these coordinates, γ0 = λj

dw
w + γ0j , where λj = Res(γ0, Sj)

and γ0j is holomorphic, and γ′ = adz + bdw with a, b holomorphic
functions. Moreover, we may assume that the small sphere S3 (which is
not necessarily a round sphere) and the neighborhood V are choosen so



538 M. Brunella

that V = ∪N
j=1Vj , Vj = neighborhood of ∂Sj , S3∩Vj = {|w| < ε, |z| = 1}.

Hence the previous integral becomes a sum of terms of the form∫
|w|=ε,|z|=1

λj
dw

w
∧ adz = 2πiλj

∫
|z|=1

a(z, 0) dz

= 2πiλj

∫
∂Sj

γ′ = (2πi)2λj Var(F , Sj , p)

and finally

BB(F , p) =
N∑

j=1

λj Var(F , Sj , p).

Example. Let F be generated by

ω = z(λ + · · · ) dw − w(µ + · · · ) dz (λ, µ �= 0)

and let α, β be any two complex numbers such that αλ + βµ = λ + µ.
Then if we set γ0 = αdz

z + β dw
w , we may find a suitable holomorphic

1-form γ1 such that dω = (γ0+γ1)∧ω. Let S1 = {z = 0}, S2 = {w = 0},
then

Var(F , S1, p) =
λ

µ
+ 1

Var(F , S2, p) =
µ

λ
+ 1

and, using Proposition 8,

BB(F , p) = α

(
λ

µ
+ 1

)
+ β

(µ
λ

+ 1
)

=
λ

µ
+

µ

λ
+ 2.

Example. Let F be generated by

ω = zp+1 dw − w(1 + λzp) dz, p ≥ 1, λ ∈ C

(the formal normal form of a saddle-node), then dω = γ ∧ ω with γ =
(p + 1)dz

z + dw
w . If S1 = {z = 0}, S2 = {w = 0}, one finds

CS(F , S1, p) = 0, CS(F , S2, p) = λ

GSV (F , S1, p) = 1, GSV (F , S2, p) = p + 1

BB(F , p) = (p + 1)(1 + 0) + 1(p + 1 + λ) = 2p + 2 + λ.
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5. The case of generalized curves

The second statement of the theorem mentioned in the introduction
has been proved in Proposition 7. We now prove the first statement, in a
form which is a little more general (see the remark after Proposition 7).

Proposition 9. If S is a nondicritical separatrix with the property
GSV (F , S, p) = 0 then

BB(F , p) = CS(F , S, p).

Proof: Let π : X̃ → X be the desingularization of S at p appearing
in the definition of nondicritical separatrix, D = ∪N

j=1Dj = π−1(p) the
exceptional divisor. Let U ⊂ X be a (small) spherical neighborhood of p
and Ũ = π−1(U), F̃ = π∗(F|U ). Let ω ∈ Ω1(U) be a 1-form generating
F ; the 1-form ω̃ = π∗ω vanishes on every Dj , with vanishing order mj ,
so that

c1(N∗
F̃ ) =

N∑
j=1

mj [Dj ].

Let p1, . . . , pM be the singularities of F̃ which are not corners of D, and
let pM+1, . . . , pL be the ones which coincide with corners. We clearly
have (see section 1) BB(F , p) = BB(F̃ , ∂Ũ) and hence, by Proposition 1:

BB(F , p) =
L∑

j=1

BB(F̃ , pj) − c21(NF̃ ).

Every pj is a nondegenerate singularity with exactly two separatrices
contained in π−1(S). If j = 1, . . . ,M we denote by S0

j the separatrix
transverse to D, which projects by π to an irreducible component Ŝj of
S, and by S1

j the separatrix contained in D. If j = M + 1, . . . , L we
denote by S1

j the union of the two separatrices, both contained in D. By
the previous computations:

BB(F̃ , pj) = Var(F̃ , S0
j , pj) + Var(F̃ , S1

j , pj) if 1 ≤ j ≤ M

BB(F̃ , pj) = Var(F̃ , S1
j , pj) if M + 1 ≤ j ≤ L.

By Proposition 2 the sum of terms Var(F̃ , S1
j , pj) is equal to c1(NF̃ ) ·D,

and so we find

BB(F , p) =
M∑

j=1

Var(F̃ , S0
j , pj) + c1(NF̃ ) ·D − c21(NF̃ ).
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We now study the relation between Var(F̃ , S0
j , pj) and Var(F , Ŝj , p), by

an argument similar to that used in Propositions 6 and 7. Let ω0 be a
1-form generating F̃ near pj and vanishing only at pj ; hence ω̃ = hω0

where h vanishes on D at order mk, k being the index such that pj ∈ Dk.
Let β be a smooth (1, 0)-form near ∂Ŝj such that dω = β ∧ ω, and let
β̃ = π∗β, so that near ∂S0

j we have dω̃ = β̃ ∧ ω̃. We obtain, again near

∂S0
j , dω0 =

(
β̃ − dh

h

)
∧ ω0, hence

Var(F̃ , S0
j , pj) =

1
2πi

∫
∂S0

j

β̃ − dh

h

=
1

2πi

∫
∂Ŝj

β − 1
2πi

∫
∂S0

j

dh

h
= Var(F , Ŝj , p) −mk.

If lk, k = 1, . . . , N , is the number of singularities of F̃ on Dk different
from corners, we obtain

M∑
j=1

Var(F̃ , S0
j , pj) =

M∑
j=1

Var(F , Ŝj , p) −
N∑

k=1

lkmk

= Var(F , S, p) −
N∑

k=1

lkmk

and hence

BB(F , p) = Var(F , S, p) −
N∑

k=1

lkmk + c1(NF̃ ) ·D − c21(NF̃ ).

On the other hand, the numbers lk can be computed from Proposition 4:
if ck is the numbers of corners on Dk then

lk + ck = c1(NF̃ ) ·Dk −D2
k

but ck = Dk ·D −D2
k, so that

lk = c1(NF̃ ) ·Dk −D ·Dk = (c1(NF̃ ) −D) ·Dk.

As a consequence, we have

N∑
k=1

lkmk = (c1(NF̃ ) −D) ·
N∑

k=1

mkDk

= (c1(NF̃ ) −D) · c1(N∗
F̃ ) = c1(NF̃ ) ·D − c21(NF̃ )
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and finally
BB(F , p) = Var(F , S, p).

The proof is then achieved by Propositions 5 and 7.

Remark that by Proposition 5 and the additivity of Var, this result
can be reformulated as follows:

BB(F , p) =
M∑

j=1

[CS(F , Sj , p) + GSV (F , Sj , p)]

where ∪M
j=1Sj is any decomposition of S (for example, the decomposition

into irreducible components).

6. Some global remarks

Let X be a compact surface and let F be a holomorphic foliation on
X leaving invariant a compact curve S ⊂ X. If S is nondicritical (i.e.,
it is a nondicritical separatrix at every singular point of F on S) the
Propositions 4 and 6 imply the inequality

S · S ≤ c1(NF ) · S.

We study here the limit case S · S = c1(NF ) · S, as it was done (among
other things) in [CL] for the case of a curve in CP 2 with only normal
crossing singularities.

The first remark is that c1(NF ) · S = S · S implies that for every
irreducible component Sj we also have

c1(NF ) · Sj = S · Sj .

This holds because for every p ∈ Sing(F) ∩ S we have not only
GSV (F , S, p) = 0 but also GSV (F , Sj , p) = (Sj · S\Sj)p (see section 3),
and hence

c1(NF ) · Sj = Sj · Sj +
∑

p∈Sing(F)∩Sj

GSV (F , Sj , p)

= Sj · Sj +
∑

p

(Sj · S\Sj)p = Sj · S.

In other words, the line bundle N∗
F ⊗O(S) is topologically trivial on S:

c1(N∗
F ⊗O(S)) · Sj = 0 ∀ j = 1, . . . , N.
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The second remark, contained in [CLS] when the singularities of F
are generalized curves, is the following. Near p ∈ Sing(F) ∩ S choose a
holomorphic 1-form ω generating F and a reduced equation f of S, so
that ω

f has a first order pole on S. Let π : X̃ → X be the resolution of S
at p appearing in the definition of nondicriticalness and set ω̃ = π∗ω, f̃ =
f ◦ π. Because GSV (F , S, p) = 0, we have also ord(F , p) = ord(Gf , p),
that is the vanishing order of f̃ on every component of π−1(p) is equal to
the vanishing order of ω̃ plus 1 (this is checked, as usual, by induction).
That is, ω̃

f̃
has again a first order pole on π−1(S). Or, equivalently, S̃ =

π−1(S) is still a nondicritical F̃ -invariant curve satisfying the extremal
equality c1(NF̃ ) · S̃ = S̃ · S̃.

After these two remarks, we can state the following proposition, based
on a theorem of Deligne [De], [Nog].

Proposition 10. Let X be a compact Kähler surface having the prop-
erty that the “real Chern class map” H1(X,O∗) c→ H2(X,R) is injective.
Let F be a holomorphic foliation on X leaving invariant a nondicritical
curve S such that:

i) c1(NF ) · S = S · S
ii) S · S ≤ c21(NF )
iii) the intersection form of X restricted to the subspace generated

by the irreducible components S1, . . . , SN of S has at least one
positive eigenvalue, i.e. there exist m1, . . . ,mN ∈ Z such that
(
∑

mjSj)2 > 0.
Then F is generated by a closed meromorphic 1-form Ω, having S as
first order polar divisor.

Proof: Let us consider the line bundle L = N∗
F ⊗O(S). By i) and ii):

c21(L) = c21(NF ) + S2 − 2c1(NF ) · S = c21(NF ) − S2 ≥ 0.

On the other hand, we have seen that c1(L) · Sj = 0 for every j. By iii)
and Hodge index theorem [BPV, ch. IV], we must have

c21(L) ≤ 0.

Hence the only possibility is c21(L) = 0, and, again by Hodge index
theorem, the real Chern class of L is zero. The hypothesis on X implies
that L is the trivial line bundle, that is NF = O(S) and so F can be
generated by a meromorphic 1-form Ω such that:

a) the zero divisor (Ω0) is empty
b) the polar divisor (Ω)∞ is S, and it has order one.
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It remains to prove that Ω is closed. Let π : X̃ → X be the composition
of the resolutions of the singular points of S, so that S̃ = π−1(S) is a
normal crossing curve, invariant by F̃ = π−1(F). As remarked before,
Ω̃ = π∗(Ω) has on S̃ a first order pole. Because S̃ is invariant, dΩ̃ has
the same property. In other words, Ω̃ is a so called “logarithmic form”,
and a theorem of Deligne [De], [Nog] asserts that Ω̃ is closed. Of course,
this means that also Ω is closed.

Three remarks on hypotheses:

1) the hypothesis on the injectivity of the real Chern class map can
be omitted, but then the conclusion must be twisted with a flat
line bundle: Ω will be a closed meromorphic 1-form with values
in a suitable flat line bundle;

2) by Proposition 3 and 9, the hypothesis i) implies that S · S =∑
p∈Sing(F)∩S BB(F , p), whereas by Proposition 1 c21(NF ) =∑
p∈Sing(F) BB(F , p). Hence i) implies ii) if BB(F , p) ≥ 0 for

every singular point outside S, and in particular if S contains all
the singularities of F ;

3) obviously i) implies ii) also if the rank of the Néron-Severi group
of X [BPV] is one.
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[De] P. Deligne, Théorie de Hodge II, Publ. IHES 40 (1971), 5–57.



544 M. Brunella

[GM] X. Gomez-Mont, Universal families of foliations by curves,
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