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Abstract. We review the well-known relation between Lucas sequences 
and exponentiation. This leads to the observation that certain public-key 
cryptosystems that are based on the use of Lucas sequences have some 
elementary properties their re-inventors were apparently not aware of. In 
particular, we present a chosen-message forgery for ‘LUC’ (cf. [21; 25]), 
and we show that ‘LUCELG’ and ‘LUCDIF’ (cf. [22, 261) are vulnerable 
to subexponential time attacks. This proves that various claims that were 
made about Lucas-based cryptosystems are incorrect. 

1 Introduction 

The application of Lucas sequences in various branches of number theory is well 
known (cf. [MI), and their properties have been studied extensively. Applications 
of Lucas sequences to public-key cryptography, phrased in terms of the equivalent 
Dickson-polynomials, were proposed and analysed by a series of authors 113; 14; 
12; 16; 17; 111. More recently, the system from [13] reemerged, by a different 
author and in slightly altered form, as ‘LUC’ (cf. [21], and later [25]), and was 
subsequently extended to ‘LUCDIF’, ‘LUCELG PK’, and ‘LUCELG DS’ (cf. 
[22; 261). The difference between [13] and [21; 251 is that the latter introduce 
‘messagedependent’ keys. 

The main selling point of the Lucas-based cryptosystems aa presented in 
these later publications (cf. [21; 22; 25; 261) is that they are not formulated in 
terms of exponentiation. This would make them unsusceptible to various well- 
known attacks that threaten the security of more traditional exponentiation- 
based cryptosystems like ‘RSA’ (cf. [19]) and ‘Diffie-Hellman’ (cf. [4]). This is 
illustrated by the following quotes from 1211: 

This opens RSA to a cryptographic attack known as adaptive chosen- 
message forgery. ... LUC is not multiplicative and therefore not suscepti- 
ble to this attack. 

and from [22]: 

D. Coppersmith (Ed.): Advances m Cryptology - CRYPT0 ’95, LNCS 963, pp. 386-396, 1995. 
0 Spnnger-Verlag Berlin Heidelberg 1995 
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This problem has the advantage that the subexponential algorithms do 
not appear to generalize to it, so breaking these ciphers is much more 
expensive. 

Concerning the first quote, it was shown independently in [2] and [6] that LUC 
is susceptible to ‘existential forgeries’, a restricted variant of chosen-message 
forgeries. LUC seemed to avoid a true chosen-message forgery, however, which 
is, according to the response to [6] in [23], ‘the most important advance of LUC 
over RSA’. 

Concerning the second quote, LUCDIF and LUCELG would require far 
shorter key sizes than traditional systems to provide the same level of secu- 
rity. Or, alternatively, with the same key sizes they would provide security far 
superior to the older systems. 

In this paper we address these two quotes. We review the relation between 
Lucas sequences and exponentiation, and derive some properties of the Lucas- 
based cryptosystems that the authors of [21; 22; 25; 261 might not have been 
aware of. As a result, we present a chosen-message forgery for LUC that is more 
general than the ‘existential forgery’ referred to above, thus undermining LUC’s 
main advantage over RSA. 

Furthermore, we show that LUCDIF and LUCELG are vulnerable to subex- 
ponential time attacks4. We do not claim that the security of LUCDIF and 
LUCELG is threatened by these subexponential attacks to the same extent 
as RSA or standard ElGamal cryptosystems are threatened by subexponential 
time attacks. In the latter systems one typically works in groups of order M m, 
for some integer m. They can be broken in time L,[1/3; (64/9)li3 + o(l)], for 
m + 00, where 

L, [u, v] = exp(pI (log m) (log iog m)’-“), 

either by factoring m (cf. [lo]) or by computing a discrete logarithm in a group 
of order w m (cf. [l; 5; 7; 201). 

The situation for LUCDIF and LUCELG is reminiscent of the Schnorr vari- 
ation of ElGamal as used in the US government Digital Signature Algorithm 
(‘DSA’, cf. [15]). In DSA one works in a subgroup of order q of a group of order 
w p ,  with q substantially smaller than p .  As above, DSA can be broken in time 
L,[1/3; (64/9)1/3 + o(l)], which is subexponential in p ,  but an attack that is 
subexponential in the subgroup order q seems to be infeasible. So, in a subex- 
ponential attack on DSA nobody knows how to take advantage of the small 
subgroup size. As we will see below, in LUCDIF and LUCELG one works in a 
subgroup of order M p of a group of order w p 2 .  A subexponential attack would 
require time L,2[1/3; (64/9)1/3 + o(l)] = L,[1/3; (128/9)’13 + 0(1)]. Although 
this is subexponential in p ,  it is much slower than time Lp[1/3; (64/9)lI3 + o(l)] 
which one would want to take full advantage of the small subgroup size. 

This fact was independently noted by Burt Kaliski, Scott Vanstone, and the authors 
of [9]. We are grateful to an anonymous member of the Crypto’95 program committee 
for bringing the latter paper to our attention. 
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This greater resistance against subexponential attacks, however, might be 
offset by possible greater speed of the more traditional systems, like RSA, if 
comparable parameter sizes are used. It is conceivable that one could use sub- 
stantially larger parameters in RSA, and still attain the same speed as a Lucas- 
based system with smaller parameters. Naturally, this would affect the relative 
security of the two systems. Because these considerations depend heavily on im- 
plementation details, we do not elaborate. In any case, we conclude that the 
situation is not as bright for LUCDIF and LUCELG as suggested in [26], where 
it is assumed that the best attacks ‘may take time proportional to 

The paper is organized as follows. First we review some properties of Lucas 
sequences. Next we present LUC and a chosen-message forgery for LUC, and 
then we discuss the relative strengths of LUG and RSA. Finally, we present 
LUCELG PK and a subexponential time attack against it. Similar attacks on 
LUCELG DS and LUCDIF follow immediately. 

2 Lucas sequences 

Let P, Q be integers, and let a be a root of z2 - Px + Q = 0 in the field Q(a), 
where A = P2 - 4Q E Z is assumed to be a non-square (but not necessarily 
squarefree). Then (Y is an element of the ring of integers UA of the quadratic field &(a), and there exist integers v = .(a) and u = u(a)  such that a = v. In 

% + U k d i i  

for certain integers V k  = v(ak) = vk(a) and u k  = u(ak)  = Uk(Q). 
and its conjugate /3 = d = q, we find that v1(a) = 

.(a) = P and ul(a) = u(a) = 1 and it is easy to see by induction that the v k  
and Uk are given by the recurrence relations 

fact, for every k 2 1 it holds that 2ak E Z [ a ] ,  and we can write ak = 2 ’  

Choosing a = 

uk+2 = uk+2(P, &) = puk+l - Q U k ,  

vk+2  = vk+2(p, &) = pvk+i - Q V k ,  

ui = 1, 
V i  = p, 

UO = 0, 
VO = 2. 

Remarks. Thus the Vk, uk may be seen as the ‘coefficients’ of the powers of a 
that may be computed by the above recurrence relations. Knowing wk and uk 
implies knowledge of ak, which immediately ties the problem of determining k 
from V k  and U k  to the discrete logarithm of crk with respect to the base a. 

Depending on which view we like to stress we will write Vk(a) or vk(P, Q), and 
these are related via a = 

Of the many relations between the uk, V k  we derive a few that are relevant for 
what is to follow. The first lemma deals with the u and v of conjugates, traces 
and norms of powers. 

P + d Z Q  
2 

Lemma 1. With notation as above, for every a and every k 2 0: 
(i) Vk(@ = vk(a) uk(P) = -uk((Y)* 
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(ii) 
(iii) akpk = Q - 
Proof. The first and second assertions are immediate from the fact that expo- 
nentiation and conjugation commute: 

ak + p k  = Vk(cX) = V k ( p ) .  

k - - 
4 

Multiplying this by ak yields (iii). 

Lemma 2. For all k 2 ! 2 0: 

Proof. Use Lemma l(ii) and (iii). 

This shows that Vk for large k can be easily computed since exponentiation can 
be done by repeated squaring and multiplication. Alternatively, if both sequences 
are needed, the following lemma can be used. 

Proof. Write out the coefficients of (ak)2 and of a(a2k) respectively. 

The other relevant relation is most easily formulated in terms of recurrent se- 
quences. It expresses the fact that the coefficients of the powers of a fixed power 
am can be found from a recursion with parameters depending on am in a simple 
fashion. 

Proof. Let a: be as before; then 

by Lemma 1. so 
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where P‘ = v,(P, Q )  and Q’ = &*, and thus 

In the applications, Lucas sequences are often considered modulo a fixed mod- 
ulus. If we choose a prime p # 2 for which the Legendre symbol ($) = -1 then 
O d / p  CY Fpz, the finite field of p2 elements, via an isomorphism that we will 
denote by q5p. The following lemma gives information about the order of a in 
Oa/p ,  and hence of +p(a) in Fp2, which we will refer to in section 6. 

2 - 4 9  Lemma 5. Let a = 
Then: 

and let p be twl odd prime, with (9) = -1. 

E Q mod p .  

Proof. In Oalp:  

because 
A* = ($) = -1modp 

by Euler’s criterion. 

3 LUC 

In [21] the following cryptographic application of Lucas sequences was proposed, 
apparently independent of earlier publication in [13] and [14]. See also [25]. 

Public Key System (LUC). Each user publishes the product n of two large 
primes p and q, and an index e with gcd(e, (p2 - 1)(q2 - 1)) = 1. The correspond- 
ing d such that de = 1 mod (p2 - l)(q2 - 1) is kept secret (cf. [25: page 1151). 

A message rn is an integer satisfying 1 5 m 5 n - 1 with gcd(m,n) = 1. To 
encrypt a message m meant for some user, one looks up the user’s n and e, and 
computes the encrypted message y = ve(m, 1) mod n - i.e., P is equal to the 
message, and Q = 1. This computation can be carried out using the recurrence 
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given in Lemma 2 in O(1oge) elementary operations on integers modulo n. TO 
decrypt the message, the user calculates 

v d ( Y ,  1) 'Ud('Ue(m, I), 1) E V d e ( m ,  1) m mod 12 

(cf. Lemma 4). The final identity holds because ade = a modulo both p and q. 
Alternatively, to use LUC as a signature scheme, the user's signature on 

a message m equals V d ( m ,  1) mod n, which can be verified by checking that 
ve(vd(m, l) ,  1) 3 m mod n. 

Remarks. Our description of the choice of e and d is more general than the 
message-dependent choices from [21] or [25]; we refer to [21] and [25] for details. 
We would like to stress that the Lucas function using these message-dependent 
secret keys and the Lucas function using our choice of d are the same functions, 
since in both cases the inverse of e I+ v, (m, Q) is computed. In practical cir- 
cumstances one would probably prefer to use message-dependent secret keys for 
efficiency reasons [24], for instance as follows. 

Note that t qp ) (m,  1) E vd(m, 1) mod p if d(p)  = d mod (p - (e)) (use 
Lemma 5 if (e) = -1; otherwise use that a E Fp). Signatures can therefore 
be generated substantially faster than computing V d ( m ,  1) mod n by comput- 
ing v d ( p )  (m, 1) mod p and vd(9) (m, 1) mod q, followed by an application of the 
Chinese remainder theorem. However, no message-dependent d will be used in 
the sequel, because a message-independent d simplifies the analysis of LUC, and 
because in this paper we are not concerned with efficiency issues of LUC. 

The choice Q = 1 is not essential for LUC as a public-key system: y could have 
been defined as y = v, (m, Q) mod n, for some Q depending on the intended re- 
cipient, who can calculate wd(y, &") = vd(ve(m, &), Q") E V d e ( m ,  Q) = m mod- 
ulo n. This would be slightly less efficient and offers no additional security. To use 
LUC as a signature system, however, either Q has to be equal to 1, or Qd mod n 
has to be included in the user's public key. Otherwise a verifier of the signature 
vd(m,Q) on message m would not be able to verify that ve(vd(m,Q),Qd) is 
indeed equivalent to m modulo n. 

The signature vd(m,l) on message m can be used to generate signatures 
w(wk(m, l) ,  1) E v d k ( m ,  1) = vk(vd(m, l), 1) mod n on message vk(m, 1) for any 
k 2 0. This 'existential forgery' was mentioned in [2] and [S]. 

4 A chosen-message forgery for LUC 

Let n = pq,  e, and d be as above the public and secret data of some user, and 
let Q = 1. To forge the signature of this user on message m, an adversary could 
proceed as follows. First, integers a, b, c, s, and t are selected such that 

bs - ct = 1, bs + ct = ae. 

This can for instance be done by selecting c, h, and t such that ct = (e- 1)/2+eh 
(note that e is odd), and selecting b and s such that bs = 1 + ct. It follows that 
bs - ct = 1, and that bs + d = 1 + 2ct = e + 2eh, so that a = 2h + 1. 



392 

Next, the adversary calculates the messages m, = v8(m, 1) mod n and 
mt = wt(m, 1) mod n and obtains the user’s signatures wd(m,, 1) mod n and 
vd(mt, 1) mod n on these messages. Finally, wd(m, 1) is computed as 

vd(m, 1) = V b ( w d ( m s ,  l),l)vc(vd(mt, 1),1> - va(m, 1) mod 72. 

The correctness follows from Lemma 4, the choice of a, b, c, s, t ,  m ~ ,  and mt, 
and from Lemma 2 with k = dbs, C = dct, and Q = 1: 

vb(vd(m~,  1),l)%(vd(mt, 1),1) V d b s ( m ,  l)vdct(m, 1) 
Vd(b ,+ct )  (m, + ud(bs-ct) (m, l> 

= ‘Udae(m, 1) + V d b ,  1) 
F ~,(m, 1) + vd(m, 1) mod n. 

Remarks. The mapping sending f to w k ( m ,  1) mod n is not generally a random 
map into the message space (since it need not be surjective). As a consequence, 
the messages v,(m, 1) mod n and wt(m, 1) mod n that are to be signed are not 
always completely ‘blind’. 

If m, s, t and the signatures for v,(m, 1) mod n and vt(m, 1) mod n are given 
and if s, t ,  and e are pairwise relatively prime, then b, c satisfying bs - ct = 1 
and bs + ct E 0 mod e can be found. Thus the signatures for m and Wk (m, 1) can 
be computed. 

The choice of a, b, c, s, t is supposed to make it difficult for the user to find 
out which past signatures were used to make the forgery. The latter would be 
easy if we would have chosen a = b = c = 1, s = (e + 1)/2, t = (e - 1)/2, and 

~ ( m ,  1) = w d ( m , ,  l)wd(mt, 1) - m mod n. 

5 LUCandRSA 

In the abstract and the introduction of [25] the authors of [25] announce a proof 
that LUC is cryptographically stronger than RSA. We have not been able to 
locate this proof in [2515, and neither have we been able to derive such a proof 
ourselves. Here we offer some observations that might be pertinent to this matter. 

Because ade 5 a mod n and u1 = 1, it follows from the second identity in 
Lemma 4 that 

ud(P, 1) E ue(vd(P, l),  1)-l mod n. 

Thus ud(P, 1) can be computed whenever wd(P, 1) is known. Moreover, the fol- 
lowing equation can be shown to hold by induction on k, using the recurrence 
relations for u k  and uk: 

In [25: 3.41, however, the authors ‘say, with confidence, that LUC is cryptographically 
stronger than RSA’. 
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2Pk G Vk(P + P-l ,  1) + ( P  - P-l)Uk(P + P-l, 1) mod n. 

In particular, the above relations show that Pd mod n can be derived once w(P+ 
P-l ,  1) is known. 

To break an MA-cryptogram E(rn), where E(rn) = me mod n for some 
message rn, it suffices to compute E(m)d mod n, where e and d are as in the 
description of LUC, since de 1 mod (g - 1)(q2 - 1) implies that de G 1 mod 
(p - l)(q - 1). According to the above, this can be achieved if vd(E(m) + 

E(m)-' ,  1) mod n can be computed. Thus the RSA-cryptogram E(m)  can be 
broken if LUC can be broken for the message E(m) + E(m)-l mod n. 

This does not imply, however, that LUG is stronger than RSA. It is conceiv- 
able that LUG can only be broken for some particular set of messages, whereas 
RSA is secure. For instance, it might be the case that vd(X, l )  can only effi- 
ciently be derived from X, e,  and n for X for which (e) = (e) = -1, 
where p and q are the prime factors of n. This would allow us to break 25% of 
all LUC-cryptograms, but since (l x+x-' 2-4 ) = ({ X-x-1)2) = 1, the method 
cannot be used in the above manner to break RSA. 

We are not aware of any further results in this direction. 

6 LUCELG 

In [26] the following cryptographic application of Lucas sequences was proposed. 

Public Key System (LUCELG PK).  A prime p and the start values P and Q = 
1 are published, chosen such that P2 - 4Q mod p is a quadratic non-residue, and 
such that ve(P, Q) f 2 mod p for any .!? less than and dividing p + 1. Every user 
also chooses a private key 2, and publishes the public key y = vz(P, &) mod p 
(cf. Lemma 2 ) .  

A message m is an integer satisfying 1 5 m 5 p - 1. To encrypt a message 
meant for some user, one looks up the user's y, chooses a secret k, which will also 
be an integer satisfying 1 5 k 5 p - 1, computes G = ?&(Y, Q)  mod p ,  as well as 
dl ?& (P, Q)  mod p and d2 = Gm mod p .  The encrypted message consists of 
the pair (dl, d2). 

' To decrypt the message, the user calculates 

~ z ( d 1 , Q )  vz(uk(P,Q),Qk) zukz(P,Q) G m o d ~ ,  

inverts the result modulo p and recovers m = d2G-l mod p .  

Remarks. Note that it seems essential in this scheme that Q = 1 mod p :  the 
recipient needs to know Qk mod p for the secret value k in order to be able to 
compute Vkz(P,&) from Ok(P,Q) using the fourth lemma above. This can be 
achieved by taking Q = 1 mod p ;  in [21; 22; 25; 261 it is assumed that Q = 1. 

Let a = z; the condition that ve(P, Q) f 2 mod p for proper divi- 
sors .!? of p + 1 ensures that the multiplicative order of the image +p(a) E Fp2 

P+ P2-4Q 
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equals p +  1. Namely, if $,(an) = 1 then v,(a) = 2 mod p and un(a) = 0 mod p ,  
which does not happen for any proper divisor of p + 1 by this condition. On the 
other hand, by Lemma 5 (with Q f 1 mod p )  the order divides p + 1. 

The condition that (9) = -1 (which is nowhere explicitly stated in [26]) 
guarantees that one is working in the the finite field F,z rather than F,; the 
latter contains a square root of P2 - 4Q if the Legendre symbol equals 1 instead. 
In that case the attack described in the next section merely requires a discrete 
logarithm computation in F,. The recursive relations are still valid, but the order 
of a in 04 / p  will be a divisor of p - 1. 

7 A subexponential time attack on LUCELG 

Unfortunately, choosing Q = 1 mod p also provides the key to an attack on the 
proposed system: noting that 

in this case, enables an adversary to obtain a f k  from v k ,  since it is a root in F p z  of 
the equation za-vkz+l  = 0 (this is equivalent to deriving f U k ( a )  and therefore 
a f k  from ' u k ( a )  using Lemma l(iii)). Then retrieving kk from a f k  is a discrete 
logarithm problem in F,z , which with the currently best available methods can 
be done in subexponential time L,z[1/3; (64/9)lIs + o(l)], for p + 00 (cf. [20]). 
Note that the sign of k does not matter, since vk = v-k for all Ic when Q = 1, 
and that roots in F,z can be computed in expected polynomial time (cf. [3]). 
Other subexponential time methods to compute discrete logarithms in Fp2 can 
be found in [l; 51. 

This implies that an adversary can .derive z from y in subexponential time for 
any user, and decrypt all intercepted messages sent to that user. Alternatively, an 
adversary can decide only to derive Ic from the intercepted dl , in subexponential 
time, after which G and thus m follow trivially from y and d2. 

Remarks. In [22; 261 an ElGamal-type signature scheme based on Lucas se- 
quences was proposed (LUCELG DS). Since in this system both 2)k and uk are 
explicitly given, a direct analogue of the discrete logarithm attack on ElGamal 
(but here in Fpa) applies. Note that the 'double key size' problems of LUCELG 
DS as mentioned in [26] cam be avoided if one uses Lemma l(iii) to derive f u k  
from Vk. This would also avoid the serious weakness in LUCELG DS that is 
pointed out in [8]. Another variant of ElGamal based Lucas functions is dis- 
cussed in [8]. The security of that system relies on the difficulty of computing 
discrete logarithms in F,. 

In [22] a Diffie-Hellman-type key agreement scheme based on Lucaa sequences 
was proposed (LUCDIF). Since LUCDIF again uses Q = 1, a subexponential 
attack similar to the one described above applies to it. 
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