Corrections to

"Some Remarks on Maximum Principles", by L. E. Payne Journal d'Analyse Mathématique, Vol. 30, 1976, pp. 421–433.

Theorem II should read as follows:

Theorem II. Let $u \in C^2(\bar{D})$ vanish on a portion Γ_1 of ∂D and satisfy $\int_{\partial D - \Gamma_1} u \frac{\partial u}{\partial \nu} ds \leq 0$. Then if the average curvature K is positive at every point of Γ_1 the maximum value of

$$|\operatorname{grad} u|^2 - 2u\Delta u$$

cannot occur on Γ_1 unless $u \equiv 0$ in \bar{D} .

Equation (2.10) should read

$$\frac{\partial H}{\partial v} = -2(n-1)K(\Delta u)^2.$$

The sign in front of the last term in (3.20) should be minus instead of plus.

The following changes are to be made in equations (5.2)–(5.7):

Equation (5.2): $(\Delta u)_{M}$ should be $-(\Delta u)_{m}$;

Equation (5.3) should read $(\Delta u)_m = \min_{x \in \partial D} \Delta u$;

Equation (5.4): $[(\Delta u)_M - \Delta u]$ should be $[\Delta u - (\Delta u)_m]$;

Inequality (5.5) should read

$$u_{,ij}u_{,ij}-u_{,i}\Delta u_{,i}+\int_{0}^{u}f(\eta)d\eta-\frac{1}{4}[\Delta u-(\Delta u)_{m}^{2}]\leq M^{2};$$

In the line following (5.6), $(\Delta u)_M$ should be $-(\Delta u)_m$; Inequality (5.7): $(\Delta u)_M^2$ should be $[(\Delta u)_m]^2$.