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Abstract. We provide a simpler proof for a recent generalization of Nagumo’s uniqueness
theorem by A. Constantin: On Nagumo’s theorem. Proc. Japan Acad., Ser. A 86 (2010),
41–44, for the differential equation x′ = f(t, x), x(0) = 0 and we show that not only is the
solution unique but the Picard successive approximations converge to the unique solution.
The proof is based on an approach that was developed in Z. S. Athanassov : Uniqueness and
convergence of successive approximations for ordinary differential equations. Math. Jap. 35
(1990), 351–367. Some classical existence and uniqueness results for initial-value problems
for ordinary differential equations are particular cases of our result.
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1. Introduction

Nagumo’s remarkable theorem [8] for the Cauchy problem

(1.1) x′(t) = f(t, x(t))

with the initial data

(1.2) x(0) = 0,

where a > 0 and f : [0, a] × R
n → R

n is continuous states that (1.1)–(1.2) has

a unique solution if

(1.3) |f(t, x) − f(t, y)| 6
|x − y|

t
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for t ∈ (0, a] and x, y ∈ R
n with |x|, |y| 6 M for some M > 0. This result improves

considerably the classical Lipschitz condition. It also motivates recent investigations

in a variety of directions [1], [9], [10]. Among the various generalizations that ap-

peared in the research literature, the most far-reaching one was recently obtained in

[5]. It states that uniqueness holds if f : [0, a]× R
n → R

n is continuous, with

(1.4)
f(t, x)

u′(t)
→ 0

as t ↓ 0, uniformly in |x| 6 M for some M > 0, and satisfies

(1.5) |f(t, x) − f(t, y)| 6
u′(t)

u(t)
ω(|x − y|)

for t ∈ (0, a] and x, y ∈ R
n with |x|, |y| 6 M , where u is an absolutely continuous

function on [0, a] with u(0) = 0 and u′(t) > 0 a.e. on [0, a], and where ω belongs to

the class F of strictly increasing functions ω : [0,∞) → [0,∞) with ω(0) = 0 and

such that

(1.6)

∫ r

0

ω(s)

s
ds 6 r, r > 0.

Notice that any strictly increasing continuous function ω : [0,∞) → [0,∞) with

ω(s) 6 s for s > 0 belongs to the class F . There are also functions ω ∈ F for which

ω(rn) > rn for all n > 1, along an appropriate sequence rn ↓ 0, cf. [5].

The object of this note is to give a simpler proof of this uniqueness result and to

show that the hypotheses ensure not only uniqueness but also the convergence of the

successive approximations. To this end we adapt to the present context an approach

that was developed in [2] to deal with the classical Nagumo theorem.

2. Alternative proof of uniqueness

The aim of this section is to provide a simpler proof of the uniqueness result in

[5]. We first derive a useful property of functions in the class F .

Lemma 2.1. If ω ∈ F then ω(s) 6 es for s > 0.

P r o o f. For s > 0 we have

(2.1) s >

∫ s

0

ω(r)

r
dr >

∫ s

s/e

ω(r)

r
dr > ω

(s

e

)

∫ s

s/e

1

r
dr = ω

(s

e

)

which yields the statement. �
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Remark 2.2. The previous result might seem to indicate that we should sim-

ply set ω(s) = es in (1.5) and dispense altogether with the class F . However, in

Nagumo’s classical theorem (with u(t) = t and ω(s) = s) the growth of the coefficient

1/t as t ↓ 0 is optimal: for any α > 1 there exist continuous functions f satisfying

(1.3) with the right-hand side multiplied by α but for which (1.1)–(1.2) has nontrivial

solutions [2]. Thus replacing ω(s) by s 7→ es is not an option.

A key role in our approach is the following Gronwall-type integral inequality (see

[3], [6] for the classical Gronwall inequality and [4], [7] for generalizations in directions

different to ours).

Lemma 2.3. Let u : [0, a] → R be absolutely continuous, nondecreasing and

such that u(t) > 0 for t > 0. If v : [0, a] → R is continuous, nonnegative, such that

v(t) = o(u(t)) as t → 0+, and

v(t) 6

∫ t

0

ω(v(s))

u(s)
u′(s) ds, 0 < t 6 a,

for some ω ∈ F , then v must be identically zero.

P r o o f. From Lemma 2.1 it follows that the integral is well-defined. Assume v

is not the zero function. From v(t)/u(t) → 0 as t → 0+ it follows that there exists

0 < δ 6 a such that v(t) 6 u(t) for 0 < t 6 δ. Let

ε =
v(t0)

u(t0)
= sup

0<t6δ

{ v(t)

u(t)

}

> 0

with t0 ∈ (0, δ]. We deduce that

εu(t0) = v(t0) 6

∫ t0

0

ω(v(s))
u′(s)

u(s)
ds <

∫ t0

0

ω(εu(s))
u′(s)

u(s)
ds

=

∫ εu(t0)

εu(0)

ω(r)

r
dr 6

∫ εu(t0)

0

ω(r)

r
dr 6 εu(t0),

which is a contradiction. Thus v is identically zero. �

This enables us to give a simple proof of the main result of [5]:

Theorem 2.4. If f is continuous and satisfies (1.4) and (1.5), then (1.1)–(1.2)

has a unique solution.
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P r o o f. The local existence of a solution is guaranteed by Peano’s theorem. Let

x(t), y(t) be two solutions of (1.1)–(1.2) for 0 < t 6 a. In view of (1.4), given ε > 0,

there exists δ = δ(ε) > 0 such that |f(s, x)| 6 εu′(s) for 0 < s 6 δ and |x| 6 M . For

0 < t 6 δ we have

|x(t) − y(t)| 6

∫ t

0

|f(s, x(s)) − f(s, y(s))| ds 6 2ε

∫ t

0

u′(s) ds 6 2εu(t)

so that |x(t) − y(t)| = o(u(t)) as t → 0+. Since

|x(t) − y(t)| 6

∫ t

0

|f(s, x(s)) − f(s, y(s))| ds 6

∫ t

0

u′(s)

u(s)
ω(|x(s) − y(s)|) ds

=

∫ t

0

u′(s)

u(s)
ω(|x(s) − y(s)|) ds,

Lemma 2.3 yields |x(t) − y(t)| ≡ 0. �

3. Convergence of the successive approximations

The successive approximations for the problem (1.1)–(1.2) are defined by the se-

quence of functions

(3.1) xi(t) =

∫ t

0

f(s, xi−1(s)) ds, i > 1,

x0(t) being a continuous function on [0, a] such that x0(0) = 0 and |x0(t)| 6 M

for 0 6 t 6 a. It turns out that the hypotheses (1.4) and (1.5) guarantee not only

uniqueness but also the convergence of the successive approximations.

Theorem 3.1. If the hypotheses of Theorem 2.4 are satisfied, then there exists

a sufficiently small interval 0 6 t 6 c, c > 0, on which the successive approximations

exist and converge uniformly to the unique solution of (1.1)–(1.2).

P r o o f. We first prove that the successive approximations {xi(t)}i>0 are well

defined. From (1.4) it follows that, given ε > 0, there exists δ = δ(ε) ∈ (0, a] such

that

|f(s, x)| 6
ε

2
u′(s), 0 < s 6 δ, |x| 6 M.

Then it follows by (1.4) that for t ∈ [0, δ]

|x1(t)| 6

∫ t

0

|f(s, x0(s))| ds 6
ε

2

∫ t

0

u′(s) ds 6
ε

2
u(a).
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Taking

ε =
2M

u(a)

and

c = min
{

δ,
2M

u(a)

}

,

we obtain

|x1(t)| 6 M for 0 6 t 6 c.

Suppose now that for j > 1 the continuous function xj−1(t) is well defined on [0, c]

and satisfies xj−1(0) = 0. We then see that f(t, xj−1(t)) is well defined, continuous

and the integral in (3.1) exists, and its norm does not exceed ε
2u(a) by our choice of

c. This implies that xj(t) is also continuous and satisfies

xj(0) = 0, |xj(t)| 6 M for 0 6 t 6 c.

It follows that that the successive approximations are well defined and uniformly

bounded on [0, c].

Now we prove that the family {xj(t)} is equicontinuous. Let 0 6 t1 < t2 6 c and

j > 1 be given. Then

|xj(t2) − xj(t1)| =
∣

∣

∣

∫ t2

t1

f(s, xj−1(s)) ds
∣

∣

∣
6

∫ t2

t1

εu′(s) ds.

From this and the previous calculations it follows that {xj(t)} is equicontinuous

and uniformly bounded on [0, c]. Then, by the Arzela-Ascoli theorem, there exists

a subsequence {xjk
(t)} which converges uniformly on [0, c] to a continuous function

g(t) as jk → ∞. Since

xjk+1(t) =

∫ t

0

f(s, xjk
(s)) ds,

by continuity of f , the sequence {xjk+1(t)} converges uniformly to

g̃(t) =

∫ t

0

f(s, g(s)) ds.

We shall prove that on [0, c] we have

(3.2) lim
j→∞

|xj+1(t) − xj(t)| = 0.

By (3.1) this yields g(t) = g̃(t) on [0, c]. This means that g(t) is a solution of

the equation. Since this solution is unique by Theorem 2.4, every subsequence of
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{xj(t)} which is convergent will tend to the same solution g(t), and this shows that

{xj(t)} converges to g(t) on [0, c]. Because of the uniform boundedness and the

equicontinuity of the sequence this convergence is uniform.

To prove (3.2) we define on [0, c] functions

yj(t) := |xj+1(t) − xj(t)| , j > 1,

m(t) := sup
06s6t

|x2(s) − x1(s)|

u(s)
,

z1(t) := m(t)u(t).

Then for t ∈ [0, c] we have

0 6 m(t) 6 ε

so that

0 6 z1(t) 6 εu(t).

Also

yj(t) = |xj+1(t) − xj(t)| 6

∫ t

0

|f(s, xj(s)) − f(s, xj−1(s))| ds 6 ε

∫ t

0

u′(s) ds

6 εu(t),

while

y1(t) 6 sup
06s6t

{ |x2(s) − x1(s)|

u(s)

}

u(t) = m(t)u(t) = z1(t).

Define now on [0, c] functions zj with j > 1 as follows:

zj+1(t) :=

∫ t

0

u′(s)

u(s)
ω(zj(s)) ds.

Since 0 6 z1(t) 6 εu(t) and u′ ∈ L1[0, a], the function z2 is continuous on [0, c] with

0 6 z2(t) 6

∫ t

0

u′(s)

u(s)
ω(εu(s)) ds =

∫ εu(t)

εu(0)

ω(r)

r
dr 6 εu(t).

By induction we show that for j > 1

(3.3) 0 6 zj(t) 6 εu(t), t ∈ [0, c].

On the other hand,

y2(t) = |x3(t) − x2(t)| 6

∫ t

0

|f(s, x2(s)) − f(s, x1(s))| ds 6

∫ t

0

u′(s)

u(s)
ω(y1(s))

6

∫ t

0

u′(s)

u(s)
ω(z1(s)) = z2(t),
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and by induction one gets for j > 1 and t ∈ [0, c] that

(3.4) yj(t) = |xj+1(t) − xj(t)| 6 zj(t).

We now prove by induction that for j > 1 and t ∈ [0, c] we have

(3.5) 0 6 zj+1(t) 6 zj(t).

Indeed,

z1(t) − z2(t) = z1(t) −

∫ t

0

u′(s)

u(s)
ω(z1(s)) ds = z1(t) −

∫ t

0

u′(s)

u(s)
ω(m(s)u(s)) ds

> z1(t) −

∫ t

0

u′(s)

u(s)
ω(m(t)u(s)) ds = z1(t) −

∫ m(t)u(t)

m(t)u(0)

ω(r)

r
dr

> z1(t) −

∫ m(t)u(t)

0

ω(r)

r
dr > z1(t) − z1(t) = 0.

Now assume

zj(t) 6 zj−1(t), t ∈ [0, c].

Then

zj+1(t) =

∫ t

0

u′(s)

u(s)
ω(zj(s)) ds 6

∫ t

0

u′(s)

u(s)
ω(zj−1(s)) ds = zj(t)

throughout [0, c].

From (3.5) we infer that on [0, c] the sequence {zj(t)} is decreasing and has a limit

z(t) > 0 as j → ∞. By Lebesgue’s dominated convergence theorem we get

z(t) = lim
j→∞

zj+1(t) = lim
j→∞

∫ t

0

u′(s)

u(s)
ω(zj(s)) ds =

∫ t

0

lim
j→∞

{u′(s)

u(s)
ω(zj(s))

}

ds

=

∫ t

0

u′(s)

u(s)
ω( lim

j→∞

zj(s)) ds =

∫ t

0

u′(s)

u(s)
ω(z(s)) ds.

Since z(t) = o(u(t)) for t ↓ 0, cf. (3.3), by Lemma 2.1 it follows that z ≡ 0. From

this and (3.4) we deduce (3.2) and the proof is complete. �
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