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Introduction

This paper is concerned with the abstract Cauchy problem for a
nonlinear equation of evolution of the form

(E) $(d/dt)u(t)+A(t, u(t))u(t)=f(t, u(t))$ , a.e. $t\in[0, T]$ ,

with initial condition $u(O)=a$ . Here $u$ represents an unknown function
taking its values $u(t)$ in a Banach space $X;A(t, y)$ . is a linear operator
in $X$ depending on $t$ in $[0, T]$ and $y$ in a certain subset of $X$ and $f$ is
a nonliear operator from a certain domain of $[0, T]\times X$ into $X$. The
abstract equation of this form was studied by Kato [1] and [4]. Ac-
cording to Kato [1], $A(t, u)u$ is called the quasi-linear part of (E) and
$f(t, u)$ the semi-linear part of (E). The operator $f$ may be genuinely
nonlinear, but is assumed to be regular and stable; hence $f$ is regarded
as a perturbation to the quasi-linear part. In this sense an equation of
the form (E) is called a quasi-linear evolution equation. In [1], an
existence theorem of strong solutions of (E) in a reflexive space is
established by means of the method of successive approximation. This
successive approximation is based on the theory of abstract linear
“hyperbolic’‘ equation advanced in [2] and [3].

The purpose of this paper is to introduce a notion of weak solution
of (E) in a nonreflexive space and prove an existence and uniqueness
theorem for the weak solutions of (E) by means of the method of
Cauchy’s polygonal approximation. This type of approximation makes it
possible to prove the existence theorem under weaker conditions than those
assumed in [1], [4] and [10]. In fact, it is assumed in [1], [4] and [10] that
the operators $y\rightarrow f(t, y)$ and $y\rightarrow A(t, y)$ are X-Lipschitz continuous. But,
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in this paper, these assumptions will be replaced by weaker ones. The
basic idea in our method is based on the recent work of Kobayasi [8].

There are many works in which similar methods are employed, for
instance, see [6], [7], [9] and the references cited there. We here show
that this method can also be applied to the quasi-linear case as mentioned
above.

This paper consists of three sections. In section 1, basic hypotheses
are set up along with some comments. In section 2, we introduce a
notion of $\epsilon$-approximate solution and show that given an $\epsilon>0$ an $\epsilon-$

approximate solution to (E) is always constructed. In section 3, a notion
of weak solution is introduced and the existence and uniqueness theorem
for weak solutions is established. Every strong solution is a weak
solution and under additional assumptions, the converse is also true.
Hence our existence theorem gives a generalization of [1; Theorem 6].

The proof is obtained by proving the convergence of $\epsilon$-approximate
solutions $\{u_{e}\}$ and then showing that the limit $u(t)(=\lim u_{\epsilon}(t))$ gives a
unique weak solution.

\S 1. Basic hypotheses.

In what follows, we consider two real Banach spaces $X$ and $Y$ with
norms $||\cdot||$ and $||\cdot||_{Y}$ , respectively. The operator norm of a bounded
linear operator $A$ on $Y$ to $X$ is denoted by $||A||_{Y,X}$ . However, we write
$||\cdot||$ (resp. $||\cdot||_{Y}$) for the operator norm $||\cdot||_{X,X}$ (resp. $||\cdot||_{Y,Y}$) for brevity
in notation. The domain of an operator $A$ is denoted by $D(A)$ . Let $X^{*}$

be the dual space of $X$. The value of $x^{*}\in X^{*}$ at $xeX$ is denoted by
$(x, x^{*})$ . The duality mapping of $X$ is denoted by $F$, i.e.,

$F(x)=\{x^{*}\in X^{*}; (x, x^{*})=||x||^{2}=||x^{*}||^{2}\}$ for $xeX$ .

We now put basic hypotheses on the spaces $X,$ $Y$ and the operators
$A(t, y)$ and $f$.

(X) $Y$ is continuously and densely embedded in $X$. There $is$ a linear
isometry $S$ of $Y$ onto $X$.

In the following $W$ denotes a fixed open ball in $Y$ with center $y_{0}$ and
radius $R$ , i.e., $W=\{y\in Y;||y-y_{0}||_{Y}<R\}$ . The set $W$ is understood to be
a metric space with the metric $d(y, y^{\prime})=||y-y^{\prime}||_{Y}(y, y’\in W)$ .

(A) Condition for the linear operators $ A(t, y)\cdot$ :
(A 1) There exist positive constants $T_{0}$ and $\alpha$ such that for each

$t\in[0, T_{0}]$ and $yeW,$ $-A(t, y)$ is the infinitesimal generator of a $(C_{0})-$

semigroup $\{\exp[-sA(t, y)]\}_{*\geqq 0}$ on $X$ with $||$ exp $[-sA(t, y)]||\leqq e^{\alpha*}$ for $s\geqq 0$ ,



QUASI-LINEAR EVOLUTION EQUATIONS 293

$t\in[0, T_{0}]$ and $y\in W$.
(A 2) For each $t\in[0, T_{0}]$ and $y\in W$, there is a bounded linear operator

$B(t, y)$ on $X$ into itself such that

SA$(t, y)S^{-1}=A(t, y)+B(t, y)$ , $||B(t, y)||\leqq x_{1}$

for $t\in[0, T_{0}]$ and $y\in W$, where $\lambda_{1}$ is a positive constant depending only
on $T_{0}$ and $W$.

(A 3) For each $t\in[0, T_{0}]$ and $y\in W,$ $D(A(t, y))\supset Y$.
(A 4) The restriction of $A(t, y)$ to $Y$ (which is a bounded linear

operator on $Y$ to $X$ by the closed graph theorem) satisfies the following:
There is a constant $K$, depending only on $T_{0}$ and $W$, such that
$||A(t, y)||_{Y,X}\leqq K$ for $t6[0, T_{0}]$ and $y\in W$.

(A 5) $A(t, y)y_{0}\in Y$, and $||A(t, y)y_{0}||_{Y}\leqq x_{2}$ for $t\in[0, T_{0}],$ $y\in W$, and
some constant $*$ depending only on $T_{0}$ and $W$.

(G) Condition for the nonlinear operator $ f(\cdot, )-A(\cdot, )\cdot$ :
In what follows, we write $G(t, y, x)$ for $f(t, y)-A(t, y)x$ .
$(G1)$ $f$ is a bounded operator on $[0, T_{0}]\times W$ to $Y$ in the sense that

$||f(t, y)||_{Y}\leqq x_{8}$ for $te[0, T_{0}],$ $y\in W$, and some positive constant $N_{a}$ (de-
pending possibly upon $T_{0}$ and $W$).

$(G2)$ $(t, x)\rightarrow G(t, x, x)$ is continuous on $[0, T_{0}]\times W$ to $X$.
(G3) For $t\in[0, T_{0}]$ , and $x,$ $y\in W$, there is an $x^{*}eF(x-y)$ such that

$(G(t, x, x)-G(t, y, y), x^{*})\leqq\mu||x-y||^{2}$ ,

where $\mu$ is a positive constant independent of $te[0, T_{0}],$ $x,$ $y\in W$ and
$x^{*}\in F(x-y)$ .

We here list some basic consequences that follow immediately from
(X) and (A). By a well-known perturbation theorem for $(C_{0})$-semigroups
(see [5]) we infer that for each $t\in[0, T_{0}]$ and $y\in W,$ $A(t, y)+B(t, y)$ is
the infinitesimal generator of a $(C_{0})$-semigroup $\{\exp[-s(A(t, y)+B(t, y))]\}.\geq 0$

on $X$ such that $||\exp[-s(A(t, y)+B(t, y))]||\leqq e^{(\alpha+\lambda_{1})}$ for $s\geqq 0$ . Moreover,
we have $S$ exp $[-sA(t, y)]S^{-1}=\exp[-s(A(t, y)+B(t, y))]$ . Therefore, we
have exp $[-sA(t, y)](Y)\subset Y$, and the restriction of exp $[-sA(t, y)]$ to $Y$

is a $(C_{0})$-semigroup on $Y$ such that

(1.1) $||$ exp $[-sA(t, y)]||_{Y}\leqq e^{(\alpha+\lambda_{1})}$ ,

for $s\geqq 0,$ $te[0, T_{0}]$ and $y\in W$. Detailed expositions of these facts are
found in [2].

\S 2. Construction of approximate solutions.

Let $r\in(O, R)$ , and let $T$ be a positive $number\leqq T_{0}$ satisfying
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$e^{\{a+\lambda_{1})T}[r+(\lambda_{a}+\lambda_{B})T]<R$ .

We fix both $T$ and $r$ throughout this paper. Let $a$ be an element of $W$

satisfying $||a-y_{0}||_{Y}\leqq r$ . For each partition $P:0=t_{0}<t_{1}<\cdots<t_{N}=T$ of
the interval $[0, T]$ , we define $u_{P}:[0, T]\rightarrow W$ by the following:

$\downarrow u_{P}(0)=a$ ,

(2.1)
$]_{u_{P}(t)=\exp}[-(t-t_{k})A_{k}]u_{P}(t_{k})+\int_{t_{k}}^{t}\exp[-(t-s)A_{k}]f_{k}ds$ ,

$t\in[t_{k}, t_{k+1}],$ $k=0,1,$ $\cdots,$ $N-1$ ,

where $A_{k}=A(t_{k}, u_{P}(t_{k}))$ and $f_{k}=f(t_{k}, u_{P}(t_{k}))$ .
To justify this definition, we need the following:

LEMMA 2.1. Suppose that $u_{P}(t)eW$ for $0\leqq t\leqq t_{k}$ , where $0\leqq k<N$.
Then $u_{P}(t)\in W$ for $te[t_{k}, t_{k+1}]$ .

PROOF. By the assumption, $A_{k},$ $f_{k}$ and $u_{P}(t)\in Y,$ $t\in[t_{k}, t_{k+1}]$ , are well-
defined. We then show that $||u_{P}(t)-y_{0}||_{Y}<R$ for $t\in[t_{k}, t_{k+1}]$ . By (2.1),

we have

$||u_{P}(t)-y_{0}||_{Y}\leqq||$ exp $[-(t-t_{k})A_{k}](u_{P}(t_{k})-y_{0})||_{Y}$

$+||$ exp $[-(t-t_{k})A_{k}]y_{0}-y_{0}||_{Y}$

$+\int_{t_{k}}^{t}||$ exp $[-(t-s)A_{k}]f_{k}||_{Y}ds$

for $t_{k}\leqq t\leqq t_{k+1}$ . By (1.1), the first term on the right hand side is bounded
above by $e^{(a+\lambda_{1})h_{k}}||u_{P}(t_{k})-y_{0}||_{Y}$ , where $h_{k}=t_{k+1}-t_{k}$ . By (1.1) and $(G1)$ , the
third term is bounded above by $\lambda_{3}h_{k}e^{(a+\lambda_{1})h_{k}}$ . By (1.1), (A5) and the
equality

exp $[-(t-t_{k})A_{k}]y_{0}-y_{0}=\int_{0}^{t-t_{k}}\exp[-sA_{k}]A_{k}y_{0}ds$ ,

the second term is bounded above by $\lambda_{2}h_{k}e^{(\alpha+\lambda_{1})h_{k}}$ . Therefore, we have

$||u_{P}(t)-y_{0}||_{Y}\leqq e^{(\alpha+\lambda_{1})h_{k}}[||u_{P}(t_{k})-y_{0}||_{Y}+(\lambda_{2}+\lambda_{8})h_{k}]$ .

By induction, it follows that

$||u_{P}(t)-y_{0}||_{Y}\leqq e^{(a+\lambda_{1})t_{k+1}}||a-y_{0}||_{Y}+(\lambda_{2}+\lambda_{3})\sum_{j=0}^{k}h_{\dot{f}}e^{(\alpha+\lambda)(}1k+1^{-}j)$

$\leqq e^{(\alpha+\lambda_{1})T}[r+(x_{2}+x_{S})T]<R$ . Q.E.D.
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The function $u_{P}(t)$ defined by (2.1) is continuous on $[0, T]$ into the
metric space $W$ and is strongly continuously differentiable on each interval
$[t_{k}, t_{k+1}],$ $k=0,1,$ $\cdots,$ $N-1$ , in the sense of the strong topology of $X$.
Moreover, on each interval $[t_{k}, t_{k+1}],$ $k=0,1,$ $\cdots,$ $N-1,$ $u_{P}(t)$ is the solution
of the linear equation

(2.2) $(d/dt)u_{P}(t)=-A(t_{k}, u_{P}(t_{k}))u_{P}(t)+f(t_{k}, u_{P}(t_{k}))$

$=G(t_{k}, u_{P}(t_{k}),$ $u_{P}(t))$ , $t\in[t_{k}, t_{k+1}]$ .

DEFINITION 2.2. Let $\epsilon>0$ , and let $a$ be an element of $W$ satisfying
$||a-y_{0}||_{Y}\leqq\gamma$ . Then a function $u_{\epsilon}$ on $[0, T]$ to $W$ is said to be an $\epsilon-$

approximate solution to (E) with initial value $u_{\epsilon}(0)=a$ , if it satisfies the
following:

(i) There exists a partition $P_{*}:0=t_{0}^{\text{{\it \’{e}}}}<t_{1}^{\epsilon}<\cdots<t_{N_{\epsilon}}^{\epsilon}=T$ of $[0, T]$

satisfying $t_{k+1}^{e}-t_{k}^{\epsilon}\leqq\epsilon,$ $k=0,1,$ $\cdots,$
$N_{\epsilon}-1$ ,

(ii) $u_{\epsilon}$ is defined by (2.1) with $P=P_{*}$ and $u_{\epsilon}=u_{P_{\epsilon}}$ ,
(Iii) $||G(t, u_{\epsilon}(t),$ $u_{\epsilon}(t))-G(t_{k}^{\epsilon}, u_{\epsilon}(t_{k}^{\epsilon}),$ $ u_{\epsilon}(t))||\leqq\epsilon$ for $t\in(t_{k}^{\text{\’{e}}}, t_{k+1}^{\epsilon}$] and $ 0\leqq$

$k\leqq N_{*}-1$ .
Now one can show that given an $\epsilon>0$ there always exists an $\epsilon-$

approximate solution of (E) in the sense of Definition 2.2.

PROPOSITION 2.3. For each $\epsilon>0$ and $a\in W$ with $||a-y_{0}||_{Y}\leqq r$ , there
is an $\epsilon$-approximate solution $u_{\epsilon}$ to (E) with $u_{\epsilon}(O)=a$ .

To show this, we first prepare the following:

LEMMA 2.4. Let $a\in W$ be an element satisfying $||a-y_{0}||_{Y}\leqq r$ , and
let $P:0=t_{0}<t_{1}<\cdots<t_{n}<\cdots\leqq T$ be a strictly increasing sequence in $[0, T]$ .
We define $u_{P}:[0, t_{\infty}$) $\rightarrow W$ by (2.1), where $t_{\infty}=\lim t_{n}$ . Then, $u_{P}(t)$ converges
in Y-norm as $t\rightarrow t_{\infty}$ .

PROOF. For each $t\in[0, t_{\infty}$) and $s\in[0, t]$ , we define linear operator
$U_{P}(t, s)$ by

$U_{P}(t, s)=\exp[-(t-t_{k})A_{k}]$ exp $[-(t_{k}-t_{k-1})A_{k-1}]\cdots\exp[-(t_{j+1}-s)A_{j}]$

for $t\in[t_{k}, t_{k+1}]$ and se $[t_{j}, t_{j+1}]$ , where $A_{n}=A(t,, u_{P}(t_{n})),$ $n=0,1,$ $\cdots$ . Note
that $U_{P}(t, s)(Y)\subset Y$ and $U_{P}(t, s)=\exp[-(t-t_{k})A_{k}]U_{P}(t_{k}, s)$ for $t_{k}\leqq t\leqq t_{k+1}$ .
Let $t\in\{t_{n}\}$ and $ y\in$ Y. Let $t$ and $s$ be any numbers satisfying $t_{\infty}>t>s>t_{i}$ ;
hence $te[t_{k}, t_{k+1}]$ and $s\in[t_{j}, t_{j+1}]$ for some $j$ and $k$ . Then, recalling that
$S:Y\rightarrow X$ is an isometry, we have
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$||u_{P}(t)-u_{P}(s)||_{Y}=||Su_{P}(t)-Su_{P}(s)||$

$\leqq||Su_{P}(t)-SU_{P}(t, t_{i})S^{-1}y||+||SU_{P}(t, t)S^{-1}y-U_{P}(t, t_{i})y||$

$+||U_{P}(t, t_{i})y-U_{P}(s, t)y||+||U_{P}(s, t_{i})y-SU_{P}(s, t_{i})S^{-1}y||$

$+||SU_{P}(s, t_{i})S^{-1}y-Su_{P}(s)||$

$\equiv I+\Pi+III+IV+V$ .

Put $h_{q}=t_{q+1}-t_{q}$ and $a_{q}=||u_{P}(t_{q})-U_{P}(t_{q}, t_{i})S^{-1}y||_{Y},$ $q=i,$ $i+1,$ $\cdots$ . Then, by
(1.1) and $(G1)$ , we have

$I\leqq||$ exp $[-(t-t_{k})A_{k}]u_{P}(t_{k})$ -exp $[-(t-t_{k})A_{k}]U_{P}(t_{k}, t_{i})S^{-1}y||_{Y}$

$+\int_{\iota_{k}}^{t}||\exp[-(t-s)A_{k}]f_{k}||_{Y}ds$

$\leqq e^{(\alpha+\lambda_{1})h_{k}}a_{k}+\lambda_{\theta}h_{k}e^{(\alpha+\lambda_{1})h_{k}}$ .

Therefore, by induction, we have

$I\leqq\exp((\alpha+x_{1})\sum_{q=i}^{k}h_{q})a_{i}+\lambda_{\theta}\sum_{p=i}^{k}h_{p}\exp((\alpha+x_{1})\sum_{q=p}^{k}h_{q})$

$\leqq e^{(\alpha+\lambda_{1})T}[||u_{P}(t_{i})-S^{-1}y||_{Y}+x_{3}(t_{k+1}-t_{i})]$ .
Similarly, we have

$V\leqq e^{(\alpha+\lambda_{1})T}[||u_{P}(t_{i})-S^{-1}y||_{Y}+\lambda_{S}(t_{j+1}-t_{i})]$ .

The estimates for the terms II, III and IV are given in [10; Lemma
2.1]:

$\Pi\leqq\lambda_{1}e^{(\alpha+\lambda_{1})T}(t-t_{i})||y||$ ,
$IV\leqq\lambda_{1}e^{(\alpha+\lambda_{1})T}(s-t_{i})||y||$ ,

$III\leqq Ke^{(\alpha+\lambda_{1})T}(t-s)||y||_{Y}$ .

Combining these estimates, we have

$\lim_{t\rightarrow}\sup_{t_{\infty}}||u_{P}(t)-u_{P}(s)||_{Y}$

$\leqq 2e^{(\alpha+\lambda_{1})T}[||u_{P}(t)-S^{-1}y||_{Y}+\lambda_{B}(t_{\infty}-t_{i})+\lambda_{1}(t_{\infty}-t_{\ell})||y||]$ ,

for every $t_{i}$ and $ y\in$ Y. Recalling that $Y$ is dense in $X$, and that $t_{i}$ and
$y$ are arbitrary, we have

$\lim_{t..\rightarrow t_{\infty}}||u_{P}(t)-u_{P}(s)||_{Y}=0$ . Q.E.D.

PROOF OF PROPOSITION 2.3. For each $\epsilon>0$ , we put $t_{0}^{*}=0$ and $u_{e}(0)=a$ .
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We define $t^{\epsilon}$ and $u_{e}(t)$ on $(t_{n}^{\epsilon}, t_{n+1}^{\epsilon}$ ], $n=0,1,$ $\cdots$ , in the following manner:
Suppose that $t_{j}^{e},$ $j=0,1,$ $\cdots,$

$k$ , are constructed. If $t_{k}^{\epsilon}<T$, let $t_{k+1}^{\epsilon}$ be the
largest number satisfying $t_{k+1}^{e}\leqq T,$ $ t_{k+1}^{\epsilon}-t_{k}^{\epsilon}\leqq\epsilon$ and

$M_{e}(t)\equiv||G(t, u_{\epsilon}(t),$ $u_{e}(t))-G(t_{k}^{\epsilon}, u_{\epsilon}(t_{k}^{\epsilon}),$ $ u_{\epsilon}(t))||\leqq\epsilon$ ,

for $t\in(t_{k}^{\epsilon}, t_{k+1}^{\epsilon}$]; and define $u_{\epsilon}(t)$ on $[0, t_{k+1}^{\epsilon}]$ by (2.1) for the partition $P=$

P.’: $0=t_{0}^{\epsilon}<t_{1}^{\epsilon}<\cdots<t_{k+1}^{e}$ of $[0, t_{k+1}^{e}]$ . Observe that if $ti<T$, then one has
$t_{k+1}^{\epsilon}>t_{k}^{\epsilon}$ , since $M_{\epsilon}(t)$ is continuous in $t\in(t_{k}^{e}, t_{k+1}^{\epsilon}$] and $\lim_{t\downarrow t_{k}^{e}}M_{\epsilon}(t)=0$ by
$(G2)$ and (A 4). We then show that there is an $N_{\epsilon}$ such that $t_{N_{*}}^{\epsilon}=T$.
Assume for the contrary that $t^{\epsilon},$ $<T$ for all $n=0,1,$ $\cdots$ . Let $t_{\infty}=\lim t_{n}$

and let $w$ be the limit $\lim_{t\uparrow t_{\infty}}u_{\epsilon}(t)$ obtained by Lemma 2.4. Since $||u_{e}(t)-$

$ y_{0}||_{Y}\leqq e^{(\alpha+\lambda_{1})T}[r+(\lambda_{2}+\lambda_{3})T]\equiv\rho$ , we have $||w-y_{0}||_{Y}\leqq\rho<R$ . Therefore, by
(G2) and (A4), we have $\lim_{t\uparrow t\infty}M_{e}(t)=0$ . It follows that there is an $m$

such that $t_{m+1}^{e}-t_{m}^{e}\leqq\epsilon/2$ and $M.(t)\leqq\epsilon/2$ for $t\in(t_{n}^{\epsilon}., t_{m+1}^{e}$]. This is a contradic-
tion, since $t_{m+1}^{\epsilon}$ is the largest number satisfying $t_{m+1}^{\epsilon}\leqq T,$ $ t_{n+1}^{\epsilon}-t_{n}^{\epsilon}\leqq\epsilon$ and
$ M_{\epsilon}(t)\leqq\epsilon$ for $t\in(t_{m}^{\frac{*}{}}, ti_{n+1}-$]. Thus the partition $P_{e}:0=t_{0}^{\epsilon}<t_{1}^{\epsilon}<\cdots<t_{N_{\epsilon}}^{\epsilon}=T$

constructed as above fulfills all the requirements of Definition 2.2.

\S 3. Existence and uniqueness of weak solutions.

In this section, we discuss the construction of weak solutions to (E)

and establish an existence and uniqueness theorem for the weak solutions.
We begin by introducing the following:

DEFINITION 3.1. Let $a$ be an element of $W$ satisfying $||a-y_{0}||_{Y}\leqq r$ .
Then a function $u:[0, T]\rightarrow X$ is said to be a weak solution to (E) with
initial value $u(O)=a$ , if it satisfies the following:

(i) There exist a sequence $\{\epsilon.\}$ of positive numbers converging to
$0$ and a sequence $\{u_{n}\}$ of $e_{n}$-approximate solutions with $u.(O)=a$ ,

(ii) $u.(t)$ converges in $X$ as $ n\rightarrow\infty$ to $u(t)$ , uniformly on $[0, T]$ .
Note that the value $u(t)$ of a weak solution $u$ with initial value $a$

satisfying $||a-y_{0}||_{Y}\leqq r$ belongs to the X-closure $\overline{W}_{\rho}$ of $W_{\rho}$ , where $W_{\rho}=$

$\{y\in Y;||y-y_{0}||_{Y}\leqq\rho\}$ and $\rho=e^{(\alpha+\lambda_{1})T}[\gamma+(\lambda_{2}+\lambda_{3})T]$ . As will be shown later,

the notion of weak solution is a generalization of the following notion
of strong solution:

DEFINITION 3.2. A function $u:[0, T]\rightarrow X$ is said to be a strong

solution to (E) constrained in $W$, if it satisfies the following:

(i) $u(t)$ is X-strongly absolutely continuous on $[0, T]$ , and is X-
strongly differentiable at almost every $t\in[0, T]$ ,

(ii) $u(t)eW$ and $u$ satisfies (E) at a.e. $t\in[0, T]$ .
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We now state our existence and uniqueness theorem for the weak
solutions to (E).

THEOREM 3.3. Given an initial value $a$ with $||a-y_{0}||_{Y}\leqq r$ , there is
a unique weak solution to (E). More precisely, let $\{\epsilon_{\pi}\}$ be any sequence
of positive numbers converging to $0$ and for each $\epsilon_{n}$ , let $u_{\hslash}$ be any $\epsilon_{*}-$

approximate solution to (E) with $u.(O)=a$ . Then $\{u,\}$ converges uniformly
to a unique weak solution $u$ to (E) with $u(O)=a$ . Furthermore, if $u$ and
$v$ are two weak solutions to (E) with $||u(0)-y_{0}||_{Y}\leqq\gamma$ and $||v(0)-y_{0}||_{Y}\leqq r$ ,
then we have

(3.1) $e^{-\mu}$
‘ $||u(t)-v(t)||\leqq e^{-\mu}||u(s)-v(s)||$

for every pair $t,$ $s\in[0_{1}T]$ with $t\geqq s$ .

PROOF. Let $\{\hat{\epsilon}_{n}\}$ be another sequence of positive numbers converging
to $0$ . For each $\hat{\epsilon},.$ , let $v_{*}$ be an $\hat{\epsilon}_{*}$-approximate solution to (E) with
$||v_{n}(0)-y_{0}||_{Y}\leqq r$ . Then, by Proposition 2.3, there are partitions $P_{*t}=\{t_{k}\cdot\}$

and $ P_{e_{\hslash}}\wedge=\{t_{\dot{f}}^{n}\}\wedge$ of $[0, T]$ which fulfill all the requirements of Definition 2.2
for $u_{n}$ and $v_{n}$ , respectively.

Let $ t\in(t_{k}^{n}, t_{k+1}^{n})\cap(t_{j}^{n}\wedge, t_{\dot{g}+1}^{n})\wedge$ . Then, by (2.2), we have

$(d/dt)||u_{\alpha}(t)-v_{n}(t)||^{2}$

$=2(G(t_{k}^{\iota}, u,.(t_{k}), u.(t))-G(t, u,(t), u_{\alpha}(t)), x^{*})$

$+2(G(t, u_{\pi}(t),$ $u,.(t))-G(t, v_{m}(t),$ $v_{n}(t)),$ $x^{*}$ )

$+2(G(t, v_{m}(t),$ $v_{n}(t))-G(t_{\dot{f}}^{n}\wedge, v_{n}(t_{j}^{n}),$ $v_{n}(t)),$ $x^{*}$ )
$\wedge$

for every $x^{*}\in F(u,(t)-v,.(t))$ . By (G3), there is an $x^{*}\in F(u_{\hslash}(t)-v_{\alpha*}(t))$

such that the second term on the right hand side is bounded above by
$2\mu||u_{*}(t)-v_{n*}(t)||^{2}$ . In view of Definition 2.2, the first and the third terms
are bounded above by $2\epsilon_{n}||u,.(t)-v_{*}(t)||$ and $2\hat{\epsilon}_{\iota}||u_{n}(t)-v_{\hslash}(t)||$ , respectively.
Therefore, we have

$(d/dt)||u_{n}(t)-v_{n}(t)||^{2}\leqq 2\mu||u.(t)-v_{n}(t)||^{2}$

$+2(\epsilon_{n}+\hat{\epsilon}_{n})||u.(t)-v,.(t)||$ .
It follows that

(3.2) $e^{-\rho t}||u.(t)-v_{n}(t)||-e^{-\mu}||u_{*}(s)-v_{n}(s)||$

$\leqq(\epsilon_{n}+\hat{\epsilon}_{n})\int^{t}e^{-\mu t}dr$

for $0\leqq s\leqq t\leqq T$. Put $s=0$ and $v.=u$. for $n=1,2,$ $\cdots$ . Then, (3.2) yields
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that $\{u_{n}\}$ converges uniformly on $[0, T]$ to some function $u$ and the limit
function $u$ is by definition a weak solution to (E) with $u(O)=a$ . (3.1)

follows from (3.2). The uniqueness of the weak solution follows from
(3.1). Q.E.D.

The next two theorems show the relationship between weak and
strong solutions.

THEOREM 3.4. Let $u$ be a strong solution to (E) with $u(O)=a$ ,
$||a-y_{0}||_{Y}\leqq r$ . Then $u$ is a weak solution to (E) with the same initial
value. Therefore, there exists at most one strong solution to (E) with
initial value $a$ satisfying $||a-y_{0}||_{Y}\leqq\gamma$ .

PROOF. Let $u_{n}$ be a $(1/n)$-approximate solution to (E) with $u_{n}(0)=a$,
and let $P_{n}=\{t_{k}^{n}\}$ be a partition of $[0, T]$ fulfilling all of the requirements

of Definition 2.2 for $u_{n}$ . Let $ t\in$ $(t‘‘, t_{k+1}^{n})$ . Then, in a way similar to the
proof of Theorem 3.3, we have

$(d/dt)||u(t)-u_{n}(t)||^{2}$

$=2(G(t, u(t),$ $u(t))-G(t, u_{n}(t),$ $u_{n}(t)),$ $x^{*}$ )

$+2(G(t, u, (t), u_{n}(t))-G(t_{k}^{n}, u_{n}(t_{k}^{n}), u_{n}(t)), x^{*})$

$\leqq 2\mu||u(t)-u,.(t)||^{2}+(2/n)||u(t)-u_{n}(t)||$

for some $x^{*}\in F(u(t)-u_{n}(t))$ . It follows that

(3.3) $e^{-\mu}$
‘ $||u(t)-u_{n}(t)||\leqq(1/n)\int_{0}^{t}e^{-\mu r}d\gamma$ .

On the other hand, by Theorem 3.3, $\{u_{r}.\}$ converges to a weak solution
$v$ with $v(O)=a$ . Therefore, we have $u=v$ by (3.3). Q.E.D.

THEOREM 3.5. Let $u$ be a weak solution to (E) with $u(O)=a,$ $||a-y_{0}||_{Y}\leqq$

$r$ . Suppose that $u(t_{0})\in W$ for some $t_{0}\in[0, T$). Then the strong right

derivative $(d/dt)^{+}u(t)$ exists at $t=t_{0}$ and is equaf to $-A(t_{0}, u(t_{0}))u(t_{0})+$

$f(t_{0}, u(t_{0}))$ .

PROOF. Put $u_{0}=u(t_{0}),$ $A_{0}=A(t_{0}, u_{0}),$ $f_{0}=f(t_{0}, u_{0})$ and

$v(t)=\exp[-(t-t_{0})A_{0}]u_{0}+f_{t_{0}}^{t}\exp[-(t-s)A_{\theta}]f_{0}ds$ ,

for $t_{0}\leqq t\leqq T$. Then $v$ is continuously differentiable on $[t_{0}, T]$ into $X$ and

$(d/dt)v(t)=-A_{0}v(t)+f_{0}$ , $t_{0}\leqq t\leqq T$ , $v(t_{0})=u_{0}$ .
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Moreover, since $v$ is continuous on $[t_{0}, T]$ into $Y$ and $v(t_{0})\in W,$ $v(t)\in W$

for sufficiently small $t>t_{0}$ . In what follows, we will show that

$||u(t)-v(t)||=o(t-t_{0})$ , as $t\downarrow t_{0}$ .

Once this is done, then we have

$\Vert\frac{u(t)-u_{0}}{t-t_{0}}+A_{0}u_{0}-f_{0}\Vert$

$\leqq\Vert\frac{u(t)-v(t)}{t-t_{0}}\Vert+\Vert\frac{v(t)-u_{0}}{t-t_{0}}+A_{0}u_{0}-f_{0}\Vert$

$\rightarrow 0$ , as $t\downarrow t_{0}$ ,

which proves the conclusion of Theorem 3.5.
Now, we assume without loss of generality that $v(t)\in W$ for $t\geqq t_{0}$ .

Let $u_{n}$ be a $(1/n)$-approximate solution to (E) with $u.(O)=a$ . By Theorem
3.3, $\{u_{*}\}$ converges to $u$ . Let $P,.=\{t_{k}^{n}\}$ be a partition of $[0, T]$ which
fulfills all the requirements of Definition 2.2 for $u_{n}$ , and let $ t\in(t_{k}^{n}, t_{k+1}^{n})\cap$

$(t_{0}, T]$ . Then we have

$(d/dt)||u_{n}(t)-v(t)||^{2}$

$=2(G(t_{k}^{n}, u_{n}(t_{k}^{n}),$ $u_{n}(t))-G(t, u,.(t), u_{n}(t)),$ $x^{*}$ )

$+2(G(t, u_{n}(t),$ $u_{\alpha}(t))-G(t, v(t),$ $v(t)),$ $x^{*}$ )

$+2(G(t, v(t),$ $v(t))-G(t_{0}, u_{0}, v(t)),$ $x^{*}$ )

$\leqq(2/n)||u.(t)-v(t)||+2\mu||u,(t)-v(t)||^{2}$

$+2||u_{n}(t)-v(t)||\cdot||G(t, v(t),$ $v(t))-G(t_{0}, u_{0}, v(t))||$

for some $x^{*}\in F(u_{n}(t)-v(t))$ . It follows that

$e^{-\mu t}||u(t)-v(t)||$

$\leqq\int_{t_{0}}^{t}e^{-\mu}||G(s, v(s),$ $v(s))-G(t_{0}, u_{0}, v(s))||ds$

for $t\in[t_{0}, T]$ . This implies that $||u(t)-v(t)||=o(t-t_{0})$ as $t\downarrow t_{0}$ , since the
integrand is continuous in $s$ by $(G2)$ and (A 4), and vanishes at

$s=.t_{0}QE.D$

.

COROLLARY 3.6. Let $u$ be a weak solution to (E) with $u(O)=a$ and
$||a-y_{0}||_{Y}\leqq r$ . Suppose that $u(t)\in W$ for all $t\in[0, T]$ . Then $u$ is a unique
strong solution to (E) with $u(O)=a$ . Furthermore, we have

(E) $(d/dt)^{+}u(t)+A(t, u(t))u(t)=f(t, u(t))$ ,
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for all $t\in[0, T]$ .

PROOF. By Theorem 3.5, $u$ satisfies (E’). The uniqueness of a strong
solution was proved by Theorem 3.4. Let $u_{\epsilon}$ be any $\epsilon$-approximate
solution to (E) with $u_{\epsilon}(O)=a$ . Then, by (A4), (G1) and (2.2), we have
$||(d/dt)u_{\epsilon}(t)||\leqq K(R+||y_{0}||_{Y})+x_{a}$ . Therefore, $u(t)$ is Lipschitz continuous
on $[0, T]$ to $X$. Since $t\rightarrow(u(t), x^{*})$ is Lipschitz continuous for every
$x^{*}\in X^{*}$ , we have

$(u(t)-a, x^{*})=\int_{0}^{t}(d/ds)(u(s), x^{*})ds=(\int_{0}^{t}(d/ds)^{+}u(s)ds,$ $x^{*)}$ ,

for $t\in[0, T]$ and $x^{*}\in X^{*}$ . It follows that

$u(t)-a=\int_{0}^{t}(d/ds)^{+}u(s)ds$ , $t\in[0, T]$ .

This implies that $u(t)$ is differentiable at almost every $t\in[0, T]$ . There-
fore, the relation (E’) yields that $u$ satisfies (E) at almost every

$t\in[0T]Q.E.D$

.

Let $u$ be a weak solution to (E) with $u(O)=a$ and $||a-y_{0}||_{Y}\leqq r$ . Let
$W_{\rho}=\{y\in Y;||y-y_{0}||_{Y}\leqq\rho\}$ , where $\rho=e^{(a+\lambda_{1})T}[r+(\lambda_{2}+\lambda_{3})T]<R$ . We consider
the following condition:

(I) $W_{\rho}$ is closed in $X$ .

If (I) is satisfied, then we have $u(t)\in W_{\rho}\subset W$. In [1], it is assumed that
$X$ is reflexive. If $X$ is reflexive, (I) is automatically satisfied. See [1;

Lemma 7.3]. Therefore, we obtain the following:

COROLLARY 3.7. In addition to the assumptions (X), (A) and (G),

suppose that $X$ is rejlexive. Let $a\in W$ be an element satisfying $||a-y_{0}||_{Y}\leqq$

$\gamma$ . Then there exists a unique strong solution $u$ to (E) with $u(O)=a$ .

REMARK 3.8. The strong solution $u$ obtained by [1; Theorem 6] is
strongly continuously differentiable on $[0, T]$ . To obtain such solutions,

it is required to impose the following condition:
(G2’) For each $x\in Y$, the functions $(t, y)\rightarrow A(t, y)x$ and $(t, y)\rightarrow f(t, y)$

are continuous on $[0, T_{0}]\times W_{X}$ to $X$.
Here $W_{X}$ denotes a metric space with the metric $d_{X}(x, y)=||x-y||$ on

$W$. In what follows, we assume $(G2^{\prime})$ , instead of $(G2)$ . Suppose that
$X$ is reflexive. Let $u$ be a strong solution to (E) with $||u(0)-y_{0}||_{Y}\leqq r$ ,

obtained by Corollary 3.7. Then, by [1; Lemmas 9.2 and 9.3], the function
$t\rightarrow B(t, u(t))$ is strongly measurable in $X$ and the function $t\rightarrow f(t, u(t))$
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is strongly measurable in Y. Therefore, in view of [8], $\wedge.we$ can apply
[1; Theorem 2] to the linear equation of evolution

$(L^{u})$ $(d/dt)w(t)+A^{u}(t)w(t)=f^{u}(t)$ , $0\leqq t\leqq T$ , $w(O)=u(O)$ ,

where $A^{u}(t)=A(t, u(t))$ and $f(t)=f(t, u(t))$ . The strong solution $w$ of (L)
exists uniquely and is continuously differentiable. On the other hand,
since $u$ is also a strong solution to $(L^{u})$ , we have $u=w$ . Therefore, $u$

must be continuously differentiable.
The result mentioned above is an extension of [1; Theorem 6].
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